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Abstract: In this work, a deep representation learning method is proposed to build continuous-valued
representations of individual integrated circuit (IC) devices. These representations are used to render
mixed-variable analog circuit sizing problems as continuous ones and to apply a low-budget black
box Bayesian optimization (BO) variant to solve them. By transforming the initial search spaces
into continuous-valued ones, the BO’s Gaussian process models (GPs), which typically operate
on real-valued spaces, can be used to guide the optimization search towards the global optimum.
The proposed Device Representation Learning approach involves using device simulation data and
training a composite model of a Variational Autoencoder (VAE) and a dense Neural Network. The
latent variables of the trained VAE model serve as the representations of the integrated device and
replace the discrete-valued parametrizations of particular devices. A thorough explanation of the
proposed methodology’s mathematical formulation is given and example sizing applications on
real-world analog circuits and integrated devices underline its efficiency.

Keywords: analog circuit sizing; optimization; Bayesian; representation learning; variational
autoencoder

1. Introduction

The economic and social impact of the device miniaturization in Integrated Cir-
cuits (ICs), described by Gordon Moore in his famous heuristic law [1], is undeniable.
Individuals harness the benefits of an interconnected world, where modern power effi-
cient computational and communication ICs enable unprecedented capabilities and yield
considerable profits for investors. These benefits, however, come at the cost of increased
design times and manufacturing difficulties [2]. In practice, successful IC design requires
well studied, established procedures which include, among others, the time consuming
extensive verification of circuits. Often, the need to decrease the time-to-market leads to
inefficient and error prone designs [2].

Device miniaturization, in reality, has had more impact on the work of analog de-
signers, compared to digital ones [2]. The main reason for this issue is the nature of the
circuits themselves; digital circuitry that operates on signals having distinct levels is more
easy to abstract and reason about, in comparison to analog designs that requires expert
skills to take into account the physics of each fabrication process [3]. In addition, the sizing
of individual devices in analog ICs involves selecting values from a continuous range,
rendering the design space virtually infinite. The resulting analog performance metrics,
on the other hand, are closely correlated to both the device sizes and low-level circuit
aspects, such as voltages and currents, making it difficult to establish abstractions and to
determine a good compromise between trade-offs [4]. The aforementioned problems, and
the resulting productivity gap in analog design [3], can be addressed by means of dedicated
automation tools that facilitate the job of analog designers.

Efforts to establish means of automation in the analog design cycle include mostly
sizing automation approaches [5–10]. In this setting, the sizing procedure of a given analog
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circuit topology is formulated as a black-box optimization problem, where the design space
includes all the unknown design variables and the optimization goals and constraints rely
on the desired performance metrics. To evaluate potential solutions, these approaches
use a simulation-in-the-loop method where parametrized testbenches are updated at
each optimization step and they are simulated using commercial simulators in order
to attain their goodness, i.e., their deviation from the desired performance metrics. The
optimization algorithm is the main choice for such automation tools. Typically, Evolutionary
Algorithms (EAs) [11] are used to derive optimal sizing solutions. However, EAs are
population-based methods that produce good approximations for the global optima when
a large number of evaluations have taken place. A low simulation budget alternative is
the Bayesian optimization (BO) algorithm [12], which derives good approximations of the
optima with relatively fewer evaluations than EAs [12]. BO has been applied to analog
circuit sizing, both in the multi-objective [5] and in the single-objective settings [8].

BO is an iterative surrogate modelling procedure that uses Gaussian processes (GPs) [13]
to model the objective and constraint functions of the optimization problem. GPs, however,
operate only on continuous spaces and, subsequently, hinder the application of BO in prob-
lems that include discrete variables. In practice, many real-world circuits include devices,
such as integrated inductors, which are parametrized by both discrete and continuous
variables. A partial remedy to this situation is allowing GPs to operate on a continuous
space and having BO propose promising (query) points that are continuous [5]. These query
points can be altered prior to the simulation, by rounding the discrete-valued variables to
the closest integers. This relaxation approach, however, may lead to systematic biasing to-
wards some discrete values on top of others. An alternative approach, where no brute-force
rounding takes place is much needed.

Recently, the topic of latent space optimization [14–17] has emerged in the field of
Machine Learning (ML) as a promising approach to solving optimization problems that are
hard to formulate, either because of the large dimensionality of the search space or due to
the representation of the input one. This approach involves a latent variable generative
model [18] G : Z→ X that maps vectors from a space Z to the actual search space of the
optimization X. By choosing Z to be of low dimensionality and continuous and using it as
the search space, one can map the initial optimization problem into a new, low-dimensional,
and continuous one. Motivated by the above, in this paper we present an approach for
learning continuous, data-driven representations of integrated devices as latent codes
and we use them to render mixed-variable sizing problems continuous. The resulting
continuous optimization problem is then solved using a BO variant.

We use a variational autoencoder (VAE) [19] as the generative model for learning the
device representations and, to ensure that the latent space is well structured, we embed
a label-guiding supervised predictor network that maps latent codes to device geometric
sizes. Instead of training the generative network to map geometric sizes to latent codes,
we embed domain-specific simulation data to Z. The latent codes are used as inputs in the
predictor net, which is trained simultaneously with the VAE to predict device sizes. During
optimization, the search is conducted on the latent space, and the geometric features are
acquired by using the predictor model that maps latent codes to actual geometries.

The paper is organized as follows. Section 2 explains the simulation-based optimiza-
tion framework for analog circuit sizing employed in this work. In Section 3, the employed
BO algorithm is discussed. Section 4 presents theoretical background on latent space opti-
mization and the VAE and demonstrates the proposed approach. In Section 5, the proposed
approach is applied for learning representations of integrated inductors and capacitors.
Finally, Section 6 presents two sizing examples using two LNA topologies and Section 7
concludes the paper.

2. Automatic Sizing Framework

In this section, the framework used for automatic sizing and optimization of analog
and RF circuits is explained and its advantages over other approaches are discussed.
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Automating the procedure of analog circuit sizing, while at the same time optimizing
the circuit’s performance is a subject that has been addressed by both heuristic rules and
optimization approaches. However, the latter have demonstrated increased generalization
and seem to be a more viable solution for analog Electronic Design Automation (EDA) tools.
These methods cast the sizing procedure as a minimization problem, where the devices
of the circuit under test are updated until some imposed specifications are met. They are
composed of two basic ingredients: an optimization algorithm and an evaluation engine.
As shown in Figure 1, the core of this approach is an iterative procedure, which repeats
the steps of searching for potentially promising solutions, using optimization algorithms,
and evaluating them. Depending on the choice of evaluation engine, these methods are
distinguished between simulation-based [20] and model-based ones [21].
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Figure 1. Optimization-based flow of analog circuit sizing.

The model-based methods evaluate the goodness of each parametrization of the circuit
using analytical equations, which are derived by hand analysis. A particular example
of this family of methods is the transconductance-over-current gm/Id methodology [22],
where transistors’ behavior is implicitly taken into account by replacing the overdrive
voltage with the technology-independent gm/Id metric. By building analytical models of
the circuit’s performance using the gm/Id as design variable, one may define optimization
problems that result in sized circuits, such as in [21]. A limitation of the gm/Id is that,
being a small-signal metric that describes the inversion level of each transistor, it does
not give insights into the large signal behavior of the circuit. In addition, the formulation
of the design equations using gm/Id as a free-parameter may require a substantial effort
from the designer and even become intractable when the variable space is large, which is
contradictory with the effort of automating the sizing process.

Instead, in this work, we use off-the-shelf commercial simulators as evaluation en-
gines for the optimization procedure. We developed a high-level Python framework that
automates the process of simulation triggering, result parsing and metric calculation, using
the Cadence Spectre simulator. The designer is able to define constraints and optimization
goals for the simulator outputs and the simulation takes place at each loop of the itera-
tive procedure of Figure 1. This black-box approach is applicable to any type of circuit
and requires only the existence of parametrized testbenches, without need for analytical
derivation of the circuit’s equations. It is worth noting that the designer should impose any
constraint necessary for the circuit to be functional, in order for the optimization algorithm
to produce reasonable results.

3. Employed Bayesian Optimization

In this section, the functionality of BO, along with its GP surrogate models
are discussed.

3.1. Gaussian Processes

Gaussian processes (GPs) [13] belong to the family of non-parametric models. They
build a distribution over the function space and perform Bayesian inference to approxi-
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mate an unknown black-box function. GPs are highly studied topic with their popularity
stemming from the fact that (1) they rely on few hyperparameters to approximate the given
dataset, which are determined in a systematic manner, (2) they yield uncertainty estimates
about their predictions, and (3) they use closed-form expressions for all operations required
to perform inference.

Let us now discuss GPs in mathematical terms. Consider a dataset D comprised
of n d-dimensional parameter vectors X = {xi}n

i=1 and a corresponding 1-dimensional
observation value set y = {yi}n

i=1, derived by measuring an unknown black-box function
f : Rd → R. In the general case, we assume that the observations are corrupted by an
uncorrelated additive noise source such that it holds

yi = f
(
xi
)
+ εi, i = 1, . . . , n, (1)

where εi is the noise in the i-th measurement. In the GP context, we say that the actual
function f in Equation (1) is modeled by a GP f̃ , such that

yi = f̃
(
xi
)
+ εi, i = 1, . . . , n. (2)

Here, the random noise is considered to follow a zero mean Gaussian distribution, such
that εi ∼ N

(
0, σ2), where σ is the standard deviation.

The values of f̃ at any point x? ∈ Rd are 1D random variables that follow Gaussian
distributions. In practice, the distribution f̃

(
x?
)

serves as an uncertainty estimate for the
GP model’s prediction. The aforementioned property leads to the conclusion that a GP can
be considered as a stochastic process of infinitely many random variables, which together
form a probability distribution over function f [13]. For every positive integer n, any (n× 1)
vector f = [ f̃

(
xi
)
]ni=1, which is comprised out of a subset of these random variables, follows

a multivariate Gaussian distribution [13], i.e.,

f = [ f̃
(
x1,
)

. . . , f̃
(
xn
)
]T ∼ N (µ, K). (3)

Vector µ is the GP mean, defined by a mean function m : Rd → R, and K is the covariance
matrix, constructed by a kernel function k : Rd ×Rd → R [18], such that Kij = k(xi, xj).

Functions m
(
x
)

and k
(
x, x′

)
define uniquely the GP model and constitute design

choices. The mean function imposes a bias on the function values and it can be used to
describe our prior beliefs about the unknown black-box function. Often, in cases when no
prior information about f is available, the mean function is set to a constant µ. The kernel
function is a measure of similarity between the GP outputs of any two input points and
determines the model’s behavior, such as periodicity, smoothness, etc. [23].

Popular kernel functions include the squared exponential and Matèrn kernel fami-
lies [13]. The Matèrn 5/2 kernel is employed in this work, since it relaxes the smoothness
of the exponential ones. Its function is given by

kν=5/2(xi, xj) = σ2
(

1 +
√

5r +
5
3

r2
)

e−
√

5r, (4)

where r is given by

r =

(
d

∑
k=1

(xi,k − xj,k)
2

λ2
k

)1/2

. (5)

Here, the parameters λk are the length-scales of the kernel and correspond to the degree of
variation of the GP with respect to the dimensions of the input point [13].

Having established the kernel and mean functions of the GP model, one must adapt
the model to the observed dataset D. This involves learning the kernel’s hyperparameters,
i.e., length-scales, variance, which are grouped into a vector θ. To do so, one needs to
maximize the marginal likelihood of the observations in D, i.e., determine the values of the
hyperparameters, such that the observations y become likely, under the GP. Arranging the
noise-corrupted measurements y in a vector, and taking into account the additive Gaussian
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noise in Equation (2), this vector follows a Gaussian distribution with mean and covariance

y ∼ N
(
µ, K + σ2I

)
. (6)

The learning process for a GP consists of minimizing the negative log-marginal likeli-
hood [12],

L(θ) =
1
2
(y− µ)T(K + σ2I)−1(y− µ) +

1
2

log(|K + σ2I|) + n
2

log(2π). (7)

This expression is used to learn parameters θ, using off-the-shelf optimizers, such as the
limited-memory BFGS [24].

After adapting the GP model to the data, one can make predictions about a point x?

that does not belong in D. This is achieved by utilizing the GP’s predictive distribution,
which is defined by

µ f̃ |y(x
?) = µ + kT(K + σ2I)−1(y− µ)

σ2
f̃ |y(x

?) = k(x?, x?)− kT(K + σ2I)−1k
. (8)

Here, kT is a (1 × n) vector with values k(xi, x?) for i = 1, . . . , n and K is the n × n
kernelvmatrix.

By using the Gaussian distribution defined in Equation (8), one can produce
1D distributions which serve as predictions, for pointwise inputs x?. It is important
to note that, although the predictive distribution in Equation (8) is given for the pointwise
input x?, one can define and use a multivariate predictive distribution as well. Considering
a set of k > 1 unseen points x1, . . . , xk, the predictive distribution p

([
f̃ (x1), . . . , f̃ (xk))

])
has a covariance matrix

Cov(xi, xj) = k(xi, xj)− kT
X,xi

(K + σ2I)−1kX,xj , (9)

where 1 ≤ i < j ≤ k and the (1× n) vector kT
X,xj

=
[
k(xi, xj)

]n
i=1, while the mean vector

remains the same as in Equation (8). Sampling from this joint predictive distribution results
in a k-dimensional output vector f̃.

3.2. Bayesian Optimization

Bayesian optimization (BO) [12] is a sample efficient method to solve global op-
timization problems, particularly aiming expensive-to-evaluate cost functions. In the
unconstrained regime, a real valued, unknown function f is provided, and BO learns a
fast-to-evaluate surrogate model from past evaluations. It selects next query points for eval-
uation sequentially, by balancing exploration and exploitation to find the global optimum.
The BO framework consists of two main components; the probabilistic surrogate model
that aims to approximate f and an acquisition function a : S→ R [12] that provides a score
of utility for evaluating a candidate query point, based on the probabilistic model. In most
approaches, the surrogate model is a GP, which is trained and used for predictive point
evaluations as discussed in the previous subsection.

BO works in iterations and its pseudocode is given in Algorithm 1. Starting from an
initial set of evaluations, BO incrementally builds a GP model based on historical data,
and selects a new query point as the one that optimizes the acquisition function. This is
an auxiliary optimization problem, but since the acquisition function is fast to evaluate,
off-the-shelf optimization methods, such as CMA-ES [12] and BFGS [24], can be used.
After the selection of the query point x?, the black-box function is evaluated to acquire the
corresponding measurement value y?. The data pair {x?, y?} is appended to the historical
data and BO proceeds with training the models once again.

Acquisition functions take as inputs the trained GP model and produce estimates
about the goodness of each point in the search space. To do so, they rely on the predictive
distributions of Equations (8) and (9) and implement a procedure to translate these distribu-
tions to a scalar-valued measure. Typically, they are designed such that their optimization
yields the best candidate point for evaluation, at a particular BO iteration. Since in the
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context of black-box optimization there is no universally accepted ‘best’ way to explore
the search space, there exist several acquisition functions that work in different ways. In
the single-objective case, the most popular acquisition functions are the Lower Confidence
Bound (LCB), the Expected Improvement (EI), and the Probability of Improvement (PI)
[25]. All of these functions define the goodness of each point using the pointwise predictive
distribution of the GP model in Equation (8).

Algorithm 1: BO algorithm
Input : Initial samples Ninit, number of iterations Tmax, variable space S
Output : Global minimum xbest
Create randomly a set X of Ninit initial samples from S
Evaluate X to acquire observations y
for i = 1, . . . , Tmax do

Adjust GP models using Equation (7)
x? ← argmaxx∈S α(x, y)
Evaluate x? to acquire y?

Update archive X← X ∪ {x?}, y← y ∪ {y?}
end
Find xbest from X, y

In contrast, this work utilizes the Thompson Sampling (TS) [12] acquisition function,
which addresses the exploration–exploitation trade-off by drawing random samples from
the GPs’ posterior distributions and selecting a query vector by optimizing on these samples.
The samples are drawn over a large number of input points, to provide multiple vectors
of functions values, which, intuitively, can be thought as sampled functions from the GP
models. However, there is no way to yield exact, analytical expressions for the samples of
GP models [13]. Typically, TS samples the values of the functions at a predefined, finite-
length vector of input points [10], and determines the query point by finding the best value
among them. However, in the case of high-dimensional variable spaces, this quantization
approach is not practical since exponentially many points need to be considered to achieve
good coverage. Therefore, in this work, we use analytic approximations of the posterior
samples using Random Fourier Features (RFF) [26], instead of relying on quantization.
RFFs are a set of basis cosine functions φ(x) = [φi(x]

M
i=1 that approximate the GP’s kernel

function as k
(
x, x′

)
≈ φ(x)Tφ(x′) and can be also used to to approximate a sample from

the GP as a linear model [26]
fsample(x) ≈ φ(x)Tθ, (10)

where θ is an M-dimensional vector drawn from a Gaussian distribution. In this work, at
each iteration, Ns ≥ 1 approximate analytic samples are created through RFF, for each of
the objective and the constraint functions. Each set of sampled constraint and objective
functions is utilized in an auxiliary optimization problem, which is solved using a genetic
algorithm (GA). Background on the use of RFFs in BO can be found in [5], where it was
applied in the case of multiple objectives.

4. Device Representation Learning

In this section, the proposed method to derive continuous representations of integrated
devices using deep VAE models is presented. For completeness, a subsection with a
summary about the functionality of the employed VAE model is also given.

4.1. Variational Autoencoders

VAEs [19] are generative models, i.e., provided a dataset D = {xi ∈ X}N
i=1 they can

produce synthetic samples that follow approximately the distribution of the inputs {xi}N
i=1.

They rely on an encoder–decoder architecture and fall into the category of latent variable
models [18]. These assume that, the—potentially complex—distribution of D which we
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wish to approximate, can be better explained using some hidden or latent variablesZ=[zi]
N
i=1.

By defining a joint distribution over the observed variables in x and the unobserved latent
variables z, one can acquire the distribution of the observable ones pθ(x) by marginalization:

pθ(x) =
∫

pθ(x, z)dz. (11)

Note that the distributions in the above expression stem from a flexible parametric model
pθ, with parameters θ. Therefore, pθ(x) can be expressed using simpler distributions as
components. The VAE latent variable model defines the joint distribution of the observable
and the latent variables as

pθ(x, z) = pθ(x|z)pθ(z). (12)

Here, pθ(z) is the prior distribution and controls the behavior of the latent variables. The
model’s likelihood pθ(x|z) describes the mapping from latent variables to observable ones.
In addition, pθ(z|x) is termed the posterior distribution of the model.

Given the above, the generational procedure of the VAE consists of two steps [19]:

1. Sampling a latent variable vector zi from the prior distribution p(z);
2. Using the likelihood pθ(x|z = zi) to generate an observable vector.

The inference process of a latent variable model involves determining the latent
variable value given an input data point x, and it is formulated by the posterior distribution
pθ(z|x).

In practice, the posterior distribution pθ(z|x) stems from non-linear activation func-
tions of neural nets, which makes it intractable to compute. Thus, brute maximum
likelihood to train the VAE model is not possible [19]. To circumvent this issue, VAEs
build a parametric approximation qφ(z|x) to the true posterior using an encoder network
fθ : RN → R2×M. Parameters φ are the are the weights and the biases of the network and
the approximate posterior is formulated as(

µ, log(σ)
)
= fφ(x),

qφ(z|x) = N
(

z; µ, diag(σ)
)

.
(13)

Learning the optimal VAE parameters requires the maximization of the Evidence
Lower Bound (ELBO), which is given by

LVAE(φ, θ) = Eqφ(z|x)

[
logpθ(x|z)

]
−DKL

(
qφ(z|x) ‖ pθ(z)

)
, (14)

where DKL is the Kullback–Leibler (KL) divergence, which is a non-negative measure of
similarity between distributions. Low KL-divergence values indicate a good resemblance
between the given distributions. The maximization of Equation (14) with respect to both
θ, φ induces the maximization of the log-likelihood, ensuring greater reconstruction likeli-
hood, as well as the minimization of the KL divergence between the approximate and the
true posterior.

The approximate posterior qφ(z|x) is the encoder net which takes as inputs vectors
from D and provides their latent representation whereas the likelihood pθ(x|z) is the de-
coder net, which maps latent representations back to their original form. A depiction of the
encoder–decoder VAE architecture is given in Figure 2. Since neural nets are deterministic
models, the approximate posterior qφ(z|x) is implemented as in Equation (13), i.e., as a
multivariate Gaussian distribution with diagonal covariance matrix with learned mean
and standard deviation functions. Latent vectors z are produced by sampling from this
distribution, as shown in Figure 2. Typically, the prior p(z) is an isotropic, unit-variance
multivariate Gaussian distribution with zero mean, which results in an analytic expression
for the KL divergence term [19] in Equation (14) as

DKL

(
qφ(z|x) ‖ pθ(z)

)
=

1
2

M

∑
i=1

[
µ2

i + σ2
i − log(σ2

i )− 1

]
, (15)
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with µ = [µi]
M
i=1 and σ = [σi]

M
i=1 being the outputs of the encoder network.

Mean

Standard
Deviation
Figure 2. Illustration of the VAE architecture.

4.2. Latent Space Optimization

Latent space optimization [14–17] involves the substitution of the original search space
of an optimization problem, S, with the latent space of a deep generative model, Z. Thus,
the optimization algorithm performs its search for the global optimum in the latent space
and, before evaluation, the latent vectors are transformed to their original representation
and fed to the simulator. This technique has been proven to be helpful in two main cases;
by choosing a low latent-space dimensionality, one may mitigate the effects of the curse of
dimensionality. In addition, in the case of mixed-variable input spaces, generative models
can produce continuous valued latent representations, effectively rendering the original
problem a continuous-valued one.

To perform latent space optimization, one must choose and adapt a generative model
to the optimization search space. In our work, this is completed by the VAE model. Input
vectors that reside in S are used as training data and the VAE represents them in Z, by
learning to reconstruct them. An optimization algorithm, such as BO, is then used to search
over Z for optimal variables, which are then reconstructed by the decoder network and
eventually fed to the simulator for evaluation.

In this setting, the structure of the VAE’s latent space is of utter importance. In fact, the
VAE must learn to map input vectors that yield similar outputs close-by to the latent space,
such that the optimization algorithm’s exploration is not deteriorated. In the case of analog
circuit sizing optimization problems, learning a VAE model directly from input (device
sizes) and output (performance metrics) data is not practical. This is because the model will
not be able to generalize to new, unseen topologies and processes. Additionally, the process
of learning such a model involves simulations that could otherwise be used to optimize
the circuit in the first place. In contrast, our approach to latent space optimization involves
learning multiple VAE models, each one for a particular PDK model of an integrated device.
Thus, devices that are parametrized by discrete variables can be represented by continuous
valued ones, under a trained VAE model. These continuous representations, then, can be
used in the optimization setting, replacing the original discrete variables, and rendering
the problem continuous. An illustration of the proposed procedure is shown in Figure 3.

To produce a continuous representation for an integrated device, and by taking into
account that the VAE learns a manifold of the input data in such a manner that ‘similar’
inputs are mapped to ‘close-by’ latent codes, we use data that enable such a similarity
comparison to take place. An i.i.d. sampling of the structured combinatorial design
space of a device can be used to define similarity via the Euclidean distance, but this
may not be useful in real-life cases, where a slight variation of a device’s geometry yields
completely different behavior. For this reason, we choose to use simulation data, tailored to
each specific device. We argue that by using current-voltage characteristics or frequency
responses, over some predefined ranges, functional similarity between integrated devices
can be implicitly captured by the VAE model. In the following section, for example, we
use frequency response data to learn a latent space representation for spiral inductors and
integrated capacitors.
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Since we choose to learn a representation of an integrated device using simulation
data, we must incorporate the geometric characteristics of the devices in the model as
well, otherwise there will be no way to embed them in an optimization procedure. To
this end, besides the unsupervised VAE model, our approach also uses a predictor model
g : Z→ R, which maps latent codes to actual geometries. The predictor model is trained
simultaneously with the VAE and its parameters are learned so as to minimize the deviation
between the actual and predicted geometries. Therefore, one can use the latent space in an
optimization formulation and by passing latent code queries to the predictor, they can have
valid geometries to pass to the simulator. Figure 3 shows an illustrative example of this
transformation process. This approach has an additional effect on the latent space structure:
it enforces an ordering of the latent codes, such that they have clear gradients with respect
to geometrical characteristics.

The overall class of the proposed models for device representation learning are, there-
fore, composed of a VAE part and a predictor network. The simultaneous training of these
parts requires the definition of a composite loss function, as well. By denoting the VAE
loss in Equation (14) as LVAE(φ, θ), and introducing the supervised loss of the predictor as
Lsup(φ, λ), where λ are the parameters of the predictor network, the overall loss function
is their summation, i.e.,

Loverall = LVAE(φ, θ) + Lsup(φ, λ). (16)

The supervised loss induces changes in the encoder network, and its actual formulation
depends on the device characteristics.

An advantage of using VAEs stems from the additional KL divergence term in
Equation (14), which enforces the posterior distribution to resemble a zero mean, unit
variance isotropic Gaussian one. In this case, a logical choice for latent variable ranges in
an optimization setting is the hypercube [−3, 3]M with M being the dimensionality of the
latent space. This translates to a 3-sigma interval, where 97.7% of all samples from a unit
variance Gaussian reside, i.e., it includes almost all latent codes produced by the dataset.

By using this Deep Learning modeling approach, we are able to decouple the functional
space of integrated devices from their geometric parameters. This is important because it
allows us to create a parametrization where functionally similar devices are close-by in
the parameter space, irrespective of the devices’ granularity. It is worth noting that this
representation learning technique cannot be implemented with the use of linear or other
off-the-shelf shallow models alone.

In real analog sizing applications, only a subset of the original variables are discrete,
or belong to the class of devices for which we learn continuous representations. Therefore,
based on our approach, a new search space will be used in the optimization, where both
original, continuous-valued geometric parameters and latent variables reside. Without loss
of generality, let us suppose that only variable x1 is discrete and that the rest of the variables
reside in a space S. Let us also assume that the latent variable has M = 1 dimension. Then,
the new search space for the optimization is defined as D = S× [−3, 3], where [−3, 3]
is the space where the latent variable that substitutes x1 resides. Of course, prior to the
evaluation, the latent variable is passed through the predictor model to acquire valid input
for the simulator.
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Figure 3. The proposed device representation learning scheme within a sizing problem, where the
latent variables are shown in red. (a) The original variable space of the sizing problem is changed
into a transformed one, by mapping sets of variables that belong to devices into continuous latent
ones. (b) During the optimization, a query from the optimization algorithm is transformed back to
the original variable space using the predictor networks, prior to simulation.

5. Applications on Integrated Devices

In this section the application of the proposed device representation learning method-
ology is demonstrated on a spiral octagonal inductor and a rotative metal capacitor.

5.1. Spiral Inductor

In this subsection, we apply the continuous representation learning technique to
integrated octagonal spiral inductors. We use a TSMC 90 nm process and the ‘spiral
std’ model for 3-terminal octagonal, symmetric spiral inductors. The geometry of these
devices is parametrized by 3 variables, namely inner radius, inductor width, and number
of turns, whereas the spacing between inductor turns is fixed. The inner radius variable
is continuous in the range [15, 90] µm, the inductor width one takes values from the set
{3, 6, 9, 15} µm and the number of turns is a discrete variable with quarter-turn multiples,
in the range [0.5, 5.25]. Although this parametrization suits the case of the PDK-provided
model, it is important to state that the proposed concept applies to other inductors’ models
or geometric parametrizations.

In this case, we use frequency response data to train a VAE model. We consider that
functional similarity between different inductors can be inferred through 1D vectors of
inductance L( f ) and quality factor Q( f ), over a wide frequency range. To obtain these data,
we first define a grid on which we conduct parametric sp analyses, based on the geometric
variable ranges described previously. This results in 6000 inductor geometries, which are
simulated on a predefined set of 250 frequencies, in the range [0.1, 100] GHz. The inductors
are simulated in single-ended fashion and their frequency responses are acquired by the
impedance parameters as [27]

L( f ) =
imag(Z11)

2π · f
, Q( f ) =

imag(Z11)

real(Z11)
. (17)

Both inductance and quality factor features for each geometry are 1D vectors with
250 entries.

The overall architecture employed for the derivation of continuous inductor rep-
resentations is shown in Figure 4. The VAE part of this model is implemented using
1D convolutional filters, and the inputs to this model are tensors of size B× 2× 250, where
B is the batch size. Both the encoder and the decoder have 3 convolutional layers with
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kernel size 4, stride 2, and padding 1, while the filter size is shown in the Figure 4. The
ReLU non-linearity is used. Two linear layers are used before and after the projection to the
latent space, which has M = 3 dimensions. It is important to state that the convolutional
architecture is preferred, in order to take advantage of the spatial correlations between the
entries of the 1D vector inputs.

The predictor part of the model is a Fully Connected Neural Network (FCNN) which
takes as inputs the sampled points from the approximate posterior distribution and maps
them to the actual geometric characteristics. The FCNN has three layers in total, which
are linear with 3, 50, and 25 neurons, and use ReLU activations; this is shown in pink
colour in Figure 4. The 25 outputs of the predictor network are utilized as follows: for the
number of turns and the inductor width, we use a classification approach and define 20
and 4 distinct outputs, each one of them corresponding to a particular valid geometric
value. A single output from the FCNN corresponds to the inductor’s inner radius, since it
is a continuous-valued variable and its approximation is handled by regression.

Figure 4. A depiction of the proposed composite model for spiral inductor representation learning.
The 1D vectors of inductors’ Quality Factor and Inductance frequency behavior are inputs to the
1D convolutional filters of the architecture. The filter sizes are shown as well. The predictor FCNN
obtains as an input the latent representation of the inductor’s frequency characteristics and yields its
geometric sizes.

In order to train the composite model, we need to define its supervised loss as in
Equation (16). Let us denote as x̃i, with i = 1, . . . , 25 the outputs of the predictor net.
Outputs [x̃i]

20
i=1 correspond to the number of turns, outputs [x̃i]

24
i=21 to the inductor’s

width and output x̃25 to inner radius. For a particular geometry, let us also denote as
ŷ = [y1, . . . , y25] the ground truth results, where out of the first 20 items all of them are zero,
with the exception of the corresponding index of the ground truth number of turns. The
same applies for the next four items, and the last one is a continuous variable. Therefore, the
ground truth vector ŷ has always 22 zeros, 2 ones, and a real-valued item. The loss function
that penalizes deviations from actual geometries is comprised out of three individual losses,
LNoT for the number of turns, LIW for the inductor’s width and LIR for the inner radius.
These are computed via

LNoT = −
20

∑
i=1

yi · log

[
exp(xi)

∑20
j=1 exp(xj)

]
,

LIW = −
24

∑
i=21

yi · log

[
exp(xi)

∑24
j=21 exp(xj)

]
,

LIR = (x25 − y25)
2,

Lsup = LNoT + LIW + LIR.

(18)

We use the squared euclidean loss for the inner radius, and a cross-entropy loss for the
two classification-based outputs.
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The model was trained using the Adam optimizer for 1000 epochs and a 80–20%
training-test split. After training, the test data were mapped to their latent representations,
by passing them through the encoder part of the VAE, and the predictor’s accuracy was
calculated as 94% for number of turns and 96% for inductor width. For the inner radius,
the MSE score is 0.11, where the values are normalized in the [0, 1] range. An illustration
of the model’s operation is also shown in Figure 5, where 500 descaled random samples
from the model are depicted. This is completed by sampling from the isotropic, unit
variance, zero mean Gaussian distribution p(z) and passing the samples from the decoder
network. It is seen that the curves follow a particular trajectory, which resembles the
resonant characteristic of the actual inductor’s curves.

Figure 5. The 500 samples of inductance curves sampled from the generative model.

5.2. Metal Capacitor

In this subsection, the proposed model is used to derive continuous representations
for a TSMC 90 nm ‘crtmom’ rotative metal capacitor. We consider a parametrization with
three variables, namely fingers space, number of vertical fingers, and number of horizontal
fingers. The width of the fingers is considered fixed, since it contributes relatively little
to the frequency behavior of the device. The fingers spacing variable is continuous in
the range [140, 180] nm, whereas the rest of the variables take integer values in the range
[6, 200].

Similarly to the previous case of spiral inductors, we gather a dataset of 3000 frequency
responses in the range of [0.1, 330] GHz. The data are obtained as S11 responses from a
parametric sp analysis. Instead of following the convolutional approach as in the spiral
inductor case, in this case we consider a simpler approach is sufficient. We proceed to
select 30 frequencies in the aforementioned range and keep the real and imaginary parts of
the S11 responses only for them. The VAE model then consists of fully connected encoder
and decoder networks, with its input being the concatenated imaginary and real part of
each frequency response, i.e., a vector of 60 length. Both the encoder and decoders have
three layers with 200, 400, and 600 neurons, with ReLU activations. The chosen latent space
dimensionality is M = 3 and the predictor network is a three layer FCNN with 50, 50 and
three neurons and ReLU activations.

To train the composite, we define its supervised loss Lsup as the summation of three
individual losses, LHF for horizontal fingers, LVF for vertical fingers and L f space for fin-
ger spacing. All of them are mean squared losses, defined in a similar way as LIR in
Equation (18), and the overall loss is the summation of all of them and the VAE loss. The
model is trained for 1000 epochs, using the Adam optimizer. After training, the test data
were mapped to their latent representations through the encoder part of the trained VAE
and the predictor’s mean squared error for all three outputs was 0.13, with the labels being
scaled to [0, 1].
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6. Sizing Results

In this section, the continuous representations of spiral inductors and metal capacitors
are used to automatically size two LNA topologies. For both circuits, we use the composite
models discussed in the previous section and the same TSMC 90 nm process. It is worth
noting that for device models that are used more than once in a single topology, the same
models are utilized, but with different latent variables for optimization.

6.1. Inductively Degenerated LNA

In this example, we consider the LNA topology shown in Figure 6. It is an inductively
degenerated single-stage LNA, having three spiral inductors and two metal capacitors,
namely Cg and Cd. The supply voltage is 1.2 V and the operating frequency is 2.4 GHz.

Figure 6. The inductively degenerated LNA considered in this subsection.

This circuit is parametrized by its transistor lengths and widths, the metal resistors’
widths and lengths, as well as the geometrics parameters of the capacitors and inductors.
The parameters of the inductors in the latent space formulation are substituted with 9 latent
variables in total, 3 for each device. Similarly, the parameters of the capacitors amount to 6
latent variables in total. In total, there are 21 variables both in the latent space formulation
and in the original variable space. The ranges of the variables, both in their original form
and in the transformed-latent space form are given in Table 1.

For automatic sizing, we consider a single objective formulation and wish to minimize
the static power consumption Pdc of the LNA, while enforcing IP3 ≥ −5 dBm, NF ≤ 2.5
dB, S11 ≤ −8 dB, and S22 ≤ −8 dB at the operating frequency at the following corners: ss,
sf, fs, and ff, and at working temperatures of −50, 27, and 125 Celsius. Additionally, for the
nominal conditions we enforce S21 ≥ 21dB. This amounts to a total of 13 testbenches and 49
constraints [g(x)]49

i=1. Since there are no matched devices or pairs of devices in the topology
of Figure 6, the mismatch effects on the performance of this circuit are not considerable
and are not accounted for. However, in the general case, one can account for PVT and
mismatch effects by providing testbenches with the appropriate PDK models included to
the simulator and defining corresponding constraints in the optimization formulation.

For comparison, we consider the following sizing methodologies:

• The proposed BO algorithm, with the latent space formulation;
• The proposed BO algorithm with the relaxation procedure for integer/discrete

variables [5];
• A genetic algorithm operating on the transformed variable space, making use of the

proposed models of Section 5 to transform individuals to the original space;
• A genetic algorithm with mixed-variable operators operating on the original

variable space.

The hyperparameters of the aforementioned algorithms are chosen as follows: Both
BO algorithms have 1200 total evaluations, with NS = 8 RFF samples per iteration and
150 initial samples. The genetic algorithms have 100 individuals per generation, and are
allowed to search for 50 generations.
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Table 1. LNA Variable Ranges.

Variable Description Range

WM Transistor Widths [1, 120] µm
LM Transistor Lengths [100, 240] nm
LR1 Resistor Rb1 Length [0.1, 30] µm
LR2 Resistor Rb2 Length [0.1, 30] µm
WR1 Resistor Rb1 Width [0.4, 10] µm
WR2 Resistor Rb2 Width [0.4, 10] µm

IWLg /LLg1 Inductor Lg: Width/Latent [3, 15] µm/[−3, 3]
IWLs /LLs1 Inductor Ls: Width/Latent [3, 15] µm/[−3, 3]
IWLd /LLd1 Inductor Ld: Width/Latent [3, 15] µm/[−3, 3]
IRLg LLg2 Inductor Lg: Radius/Latent [15, 90] µm/[−3, 3]
IRLs /LLs2 Inductor Ls: Radius/Latent [15, 90] µm/[−3, 3]
IRLd /LLd2 Inductor Ld: Radius/Latent [15, 90] µm/[−3, 3]
NTLg LLg3 Inductor Lg: Turns/Latent [0.5, 5.25]/[−3, 3]
NTLs /LLs3 Inductor Ls: Turns/Latent [0.5, 5.25]/[−3, 3]
NTLd /LLs3 Inductor Ld: Turns/Latent [0.5, 5.25]/[−3, 3]

VFCg /LCg1
Capacitor Cg: Vertical

Fingers/Latent [6, 200]/[−3, 3]

VFCd /LCd1
Capacitor Cd: Vertical

Fingers/Latent [6, 200]/[−3, 3]

HFCg /LCg2
Capacitor Cg: Horizontal

Fingers/Latent [6, 200]/[−3, 3]

HFCd /LCd2
Capacitor Cd: Horizontal

Fingers/Latent [6, 200]/[−3, 3]

f sCg /LCg3
Capacitor Cg: Fingers

Spacing/Latent [140, 180] nm/[−3, 3]

f sCd /LCd3
Capacitor Cd: Fingers

Spacing/Latent [140, 180] nm/[−3, 3]

To account for random fluctuations, we repeat all of the experiments for 10 times.
The results of the experiments, with respect to best attained feasible solution, average best
feasible solution, standard deviation of best attained feasible solution and success rate are
given in Table 2. It is seen that, in the provided simulation budget, both BO formulations
outperform the GA ones. The vanilla GA formulation, that works on the original search
space, finds feasible solutions two times only, whereas the GA operating in the transformed
space, i.e., having only continuous variables, finds feasible solutions 8 out of 10 times. In
contrast, both BO formulations find feasible solutions in all experiments.

The efficiency of the proposed approach is underlined by the power consumption
results. Among all formulations, the BO that operates in the transformed variable space
yields the best solution on average (11.7 mW) and the best solutions out of all formulations
and executions (9.5 mW). The BO with relaxation is able to find a single good solution
(9.8 mW), but yields in average 13.6 mW of power, which is close to the result of the GA
working on the transformed space. The fact that the mixed variable GA formulation has the
lowest standard deviation is due to the number of feasible outcomes; only two executions
result in feasible results that are taken into account in Table 2.

To study the stability of the resulting circuit parameterizations, we consider the Stern
stability factor

K =
1 + |∆|2 − |S11|2 − |S22|2

2|S21| · |S12|
, (19)

where ∆ = S11S22 − S12S21. For the circuit to be unconditionally stable, it must hold K > 1
and ∆ < 1, at all frequencies. We assessed the outcome of the stability criterion on all
the feasible and best outcomes of the algorithms examined, on all of the repetitions of
Table 2. We considered a frequency range of [1, 100] GHz to measure K and ∆. In all
cases, the parametrized circuits are stable. However, this does not hold for all feasible
parametrizations encountered during the optimization. An inclusion of these metrics as
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constraints in the optimization definition would ensure that all feasible solutions are stable.
However, the fact that the resulting solutions are stable indicates that constrained circuits
are predominantly stable.

Table 2. LNA sizing results—static power consumption.

Formulation Pdc—Best [mW] Pdc—Avg [mW] Pdc—Std [mW] Success

BO-Latent 9.5 11.7 1.7 10/10
BO-Relaxation 9.8 13.6 2.2 10/10

GA-Latent 11.9 14.3 2.5 8/10
GA 13.8 14.7 1.6 2/10

A graphical illustration of the performance of all formulations in the sizing procedure
of the LNA is given in Figure 7, where the evolution of the Constraint Violation (CV) metric
is given, against the number of evaluations. The value of the CV is computed as

CV(x) =
49

∑
i=1

max[gi(x), 0]. (20)

Here, it is seen that the BO that works in the transformed space requires roughly
600 evaluations to find feasible solutions. In the case of the BO with the relaxation procedure,
all executions find feasible solutions at around 1100 evaluations. The mixed-variable GA’s
CV seems to stagnate at 4000 evaluations, whereas the transformed space formulation of
GA seems to improve its CV even at the end of the experiment.

6.2. Wideband LNA

In this subsection, a wideband, noise cancelling LNA [28] shown in Figure 8 is sized.
This topology consists of Common-Gate and a Common-Source-Common-Gate stage, along
with a source follower output buffer. It works on a 1.8 V supply and its operating frequency
range is [2, 5] GHz.

In a similar way as in the previous example, this circuit is parametrized by its transistor
widths and lengths, its metal resistors widths and lengths, and the geometric sizes of the
capacitors and inductors. All of the capacitors are rotative metal ones, and the inductors
are spiral octagonal ones, making the proposed models in Section 5 applicable. In addition,
there are three biasing voltages, namely Vb1, Vb2 and Vb3 to be selected. Following the
guidelines in the original implementation, all capacitors are chosen to be identical and the
transistors share the same gate length. In total, there are 34 design variables, both in the
original variable space and in the latent space formulation. The ranges of the variables,
both latent ones and the original ones, are given in Table 3. The variable space of the
optimization will be denoted as S.

For automatic sizing, we consider again a single objective formulation. In order
to compare the results of the sizing formulations in a principled way, we consider the
following Figure of Merit (FoM) [29] for wideband LNAs and set its maximization as our
optimization goal:

FoM(x) = 20log10

(
Gmax(x)× I IP3max(x)× BW(x)

(Fmin(x)− 1)× Pdc(x)

)
. (21)

The term Gmax indicates the maximum voltage gain of the LNA in V/V, I IP3max is the
maximum input-referred third-order intercept point in mW, BW is the LNAs bandwidth
and Fmin is the minimum noise figure in the operating frequency range, in linear units. In
our formulation, we consider the bandwidth fixed to 3 GHz. To ensure this, we consider
the following constraint function:



Electronics 2022, 11, 3127 16 of 21

(a)

(b)

(c)

(d)

Figure 7. The LNA’s CV for the discussed formulations. The blue area indicates the confidence region
of ±std, while the purple lines are the curves of each repetition. (a) BO-Latent. (b) BO-rounding.
(c) GA-Latent. (d) GA.



Electronics 2022, 11, 3127 17 of 21

g(x) = max
f∈[2,5]GHz

[
S11(x, f )

]
+ 10, x ∈ S (22)

with g(x) ≤ 0 being the feasibility criterion. Here, function S11(x, f ) is the S11 result of
the simulation, in dBs. The satisfaction of this constraint ensures that the results will be
matched to a 50 Ω input port. Thus, the sizing of this particular LNA topology can be
formulated as

min FoM(x), x ∈ S
s.t. g(x) ≤ 0

. (23)

VDD

VSS

M1

Cc1

R1

Rd1

Lg1

Ls1

Ld2

Ld3

Rd3

Vb1 Vb1

Vb2

Vb2

Vin

Vout

Vb3

Cc3

Cc2 Cc4

Cc5

M2

M3

M4

M5M6M7

Figure 8. The wideband, noise canceling LNA [28] considered in this subsection.

For comparison, we consider again the same four optimization algorithm cases as in
the previous subsection, with the hyperparameters of the algorithms remaining the same.
The experiments were executed 10 times to account for random fluctuations.

Table 4 depicts the sizing results using the different formulations, with respect to the
objective FoM. Among the considered cases and under the optimization budget given,
the proposed BO with the latent space representations of inductors and capacitors yields
in average a FoM of 63.9 dBs, whereas the same BO with the relaxation of the discrete
variables yields 58 dBs. In addition, the latent space formulation seems to be reliable, since
it yields less variance (5.5 dB standard deviation) in comparison to the relaxation approach
(9.3 dBs).

Regarding the GA sizing formulations, both the GA that operates in the latent space
and the vanilla GA succeed in finding feasible solutions at all experiments. However,
the GA-latent formulation is more successful with respect to its resulting FoM, which is
roughly 23 dBs higher. Both GAs do not succeed in overpassing BO in the obtained FoM
performance, both in averaged results and in terms of the best valued acquired throughout
the 10 repetitions. The above highlights the fact that the utilized BO variant is able to
approximate the global optimum better, in comparison to the population-based GA, under
the given simulation budgets.

The fact that both BO and GA formulations that work with the continuous repre-
sentations outperform their mixed-variable counterparts underlines the efficiency of our
approach. This improvement for the case of BO can be attributed to the fact that there is
no brute force rounding of the variables, enabling the GP models to assign correlations to
points in the variable space by using their Euclidean distance. In the case of the GA, the
results can be attributed to the fact that continuous-only operators work better, and the
fact that the latent space of the devices is created in such a way that functionally similar
devices are close-by, which assists in the exploration of the variable space. In fact, a simple
perturbation of a particular discrete variable may change in a great extent the behavior of
the device, such as the spiral inductor.
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Table 3. Wideband LNA variable ranges.

Variable Description Range

LM Transistor Lengths [100, 240] nm
WM1 M1 Width [1, 120] µm
WM2 M2Width [1, 120] µm
WM3 M3 Width [1, 120] µm
WM4 M4Width [1, 120] µm
WM5 M5 Width [1, 120] µm
WM6 M6Width [1, 120] µm
WM7 M7Width [1, 120] µm
LRd1 Resistor Rd1 Length [0.1, 30] µm
LRd2 Resistor Rd2 Length [0.1, 30] µm
LRd3 Resistor Rd3 Length [0.1, 30] µm
LR1 Resistor R1 Length [0.1, 30] µm

WRd1 Resistor Rd1 Width [0.4, 10] µm
WRd2 Resistor Rd2 Width [0.4, 10] µm
WRd3 Resistor Rd3 Width [0.4, 10] µm
WR1 Resistor R1 Width [0.4, 10] µm
Vb1 Volatge Vb1 [0.2, 0.5] µm
Vb2 Volatge Vb2 [0.2, 0.5] µm
Vb3 Volatge Vb3 [0.2, 0.5] µm

IWLg1/LLg11 Inductor Lg1: Width/Latent [3, 15] µm/[−3, 3]
IWLs1/LLs11 Inductor Ls1: Width/Latent [3, 15] µm/[−3, 3]
IWLd2/LLd21 Inductor Ld2: Width/Latent [3, 15] µm/[−3, 3]
IWLd3/LLd31 Inductor Ld3: Width/Latent [3, 15] µm/[−3, 3]
IRLg1/LLg12 Inductor Lg1: Radius/Latent [15, 90] µm/[−3, 3]
IRLs1/LLs12 Inductor Ls1: Radius/Latent [15, 90] µm/[−3, 3]
IRLd2/LLd22 Inductor Ld2: Radius/Latent [15, 90] µm/[−3, 3]
IRLd3/LLd32 Inductor Ld3: Radius/Latent [15, 90] µm/[−3, 3]
NTLg1/LLg12 Inductor Lg1: Turns/Latent [0.5, 5.25]/[−3, 3]
NTLs1/LLs12 Inductor Ls1: Turns/Latent [0.5, 5.25]/[−3, 3]
NTLd2/LLd22 Inductor Ld2: Turns/Latent [0.5, 5.25]/[−3, 3]
NTLd3/LLd32 Inductor Ld3: Turns/Latent [0.5, 5.25]/[−3, 3]

VF/LC1
Capacitors: Vertical

Fingers/Latent [6, 200]/[−3, 3]

HF/LC2
Capacitors: Horizontal

Fingers/Latent [6, 200]/[−3, 3]

f s/LC3
Capacitors: Fingers

Spacing/Latent [140, 180] nm/[−3, 3]

The best and feasible results of the algorithms in Table 4 are checked for their stability
using the Stern factor of Equation (19). Using the same frequency range as in the previous
subsection, the parameterized circuits are unconditionally stable.

Table 4. Wideband LNA sizing results.

Formulation FoM—Best [dB] FoM—Avg [dB] FoM—Std [dB] Success

BO-Latent 71.1 63.9 5.5 10/10
BO 68.3 58.4 9.3 10/10

GA-Latent 65.9 58.2 8.5 10/10
GA 49.8 35.6 8.3 10/10

For a graphical comparison, Figure 9 demonstrates the evolution of the LNA’s FoM
metric for each of the 4 formulations considered, against the number of evaluations. It is
seen that the GAs require roughly 800 to 1500 evaluations for reaching a feasible solution,
which is seen as an abrupt deviation in the FoM metric in these plots. For the BO cases, the
first feasible solutions are found below 200 evaluations. On average, the BO cases require
much less evaluations to reach acceptable results, in comparison to the population-based
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GAs. The BO operating in the transformed variable space has the smallest variance in
results, highlighted by the range of the blue region in the respective figure.

(a)

(b)

(c)

(d)

Figure 9. The evolution of the LNA’s FoM during the automatic sizing, using the four discussed
formulations. The blue area indicates the confidence region of ±std, while the purple lines are the
curves of each repetition. (a) BO-Latent. (b) BO-relaxation. (c) GA-latent. (d) GA.

7. Conclusions

This paper presented a new approach to low-budget analog circuit automatic sizing by
combining a batched version of BO with learned continuous representations of integrated
devices. By using simulation data and a composite model of a VAE and a FCNN, continuous
representations of integrated devices that are originally parametrized by discrete variables
are derived. These representations are used to render circuit sizing problems as continuous
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optimization ones, which are then solved using black-box optimizers. Experimental results
on two real-world circuits suggest that the proposed approach, when combined with a
proposed BO variant, outperforms other state-of-the-art approaches to mixed-variable
optimization for analog circuit sizing.
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