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Abstract: This review paper explores existing architectures, operating principles, performance
metrics and applications of analog Gaussian function circuits. Architectures based on the translinear
principle, the bulk-controlled approach, the floating gate approach, the use of multiple differential
pairs, compositions of different fundamental blocks and others are considered. Applications involving
analog implementations of Machine Learning algorithms, neuromorphic circuits, smart sensor
systems and fuzzy/neuro-fuzzy systems are discussed, focusing on the role of the Gaussian function
circuit. Finally, a general discussion and concluding remarks are provided.

Keywords: Gaussian function circuit; integrated circuits; bulk-controlled; translinear principle;
floating-gate transistors; extra components; machine learning applications

1. Introduction

Since the first Gaussian function circuit (also called the Bump circuit) was introduced
by Delbruck (Delbruck’s Simple Bump) in 1991 [1,2] (shown in Figure 1), many research
groups have focused on improving this architecture and/or incorporating it in various
fields [3–14]. Some of the implementations are used for Machine Learning (ML) applica-
tions [15,16], neuromorphic systems [17,18], smart sensors [19,20] and fuzzy or neuro-fuzzy
systems [21,22]. Gaussian function circuits are specific analog circuits that provide an out-
put current, which is a typical Gaussian function [23] or a bell-shaped curve [24]. The
main three characteristics of a Gaussian function curve, shown in Figure 2, are the height
(amplitude), the mean value (center) and the variance (width) [1,2]. Depending on the type
of the architecture or the application of the Gaussian function circuit can operate in the
sub-threshold [25] or the strong inversion region [26].

The first Gaussian function circuit (Simple Bump) is used for computing the similarity
of analog voltages (or generally the distance between input signals) [1,2]. The Simple
Bump circuit consists of two sub-circuits, a current correlator and a simple differential
pair, as shown in Figure 3. The (non-symmetric) current correlator is a compact circuit
which consists of four PMOS transistors (Mp1 − Mp4), shown in Figure 1. When the
current correlator operates only in the sub-threshold region, it has the ability to measure
the similarity between two input signals (two input currents I1 and I2). If one of the
transistors operats above the threshold, the correlation is not commutative. This leads to a
difficulty in providing the appropriate mathematical model (more complicated expression).
Normally, the output current Iout is a self-normalized correlation of the two input currents
that resembles the Gaussian function, based on Equation (1), shown in Figure 4. The output
current of Delbruck’s Simple Bump is given by:

Iout =
Ibias S

4cosh2
(

κVin−Vmean
2

) , (1)
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where Ibias and Vmean are the bias current and the voltage parameter, controlling the height
and the mean value of the Gaussian function curve, respectively. The quantity S is an
important circuit parameter for the simple current correlator, given by Equation (2), κ is
the slope factor and Vin is the input voltage.

S =
(W/L)3,4

(W/L)1,2
. (2)

In the case of the Simple Bump circuit, the height and the mean value are indepen-
dently tuned via the circuit’s parameters, while the deviation is altered by the effective
W/L ratio (via transistors’ dimensions). We note that a primary aim in the design flow of
most Gaussian function circuits is the independent and electronic tunability of the Gaussian
curve’s characteristics (height, mean value and variance) [27–29]. By designing a fully-
tunable architecture, the Gaussian function circuit can be used as a general purpose circuit
in multiple applications [22]. On the other hand, a design lacking electronic tunability is
focused on a specific application [9].
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Figure 1. Delbruck’s Simple Bump transistor level implementation.

Figure 2. Theoretical Gaussian Function Curve.
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Figure 3. Block diagram of a generic Gaussian function circuit (inspired by Delbruck’s Simple Bump).

Figure 4. Theoretical output current of Delbruck’s Simple Bump (left) Simulation for Vmean = 0
(right) Parametric simulation over Vmean.

In order to properly demonstrate the existing Gaussian function circuit implementa-
tions we divide them in five main categories based on their operating principles:

• Architectures based on the translinear principle which use absoluters, squarers, cur-
rent to voltage (I-V) converters, exponentiators and compensators as building blocks;

• Bulk-controlled circuits based on modifications of Delbruck’s Simple Bump, that use
the body effect in order to tune the variance;

• Circuits including floating-gate transistors that use floating nodes in direct current
and capacitively connected inputs in order to achieve tunability in the characteristics;

• Designs using exclusively differential pairs and current mirrors;
• Implementations that add extra components, for example Operational Transconduc-

tance Amplifiers (OTAs), Digital to Analog Converters (DACs), mixed-mode circuits,
and so forth, which provide the appropriate tunability in the variance.

These categories are not mutually exclusive, since there are a few implementations that
may belong in more than one. Each category consists of the circuits with the most possible
simillarities since an absolute criterion for categorization is difficult. Moreover, there are
other implementations, which use different design methodologies for the realization of the
Gaussian function. Therefore, we add an extra category (other implementations), which
consists of the designs that are not part of the previous categories.

Gaussian function circuits’ applications range from low-power and area efficient to
high speed computation and high accuracy due to the fact that each application has its
own limitations [30,31]. For example, in the case of a wearable classification application,
the design of a low-power and area efficient Gaussian function circuit is necessary, be-
cause its realization consists of many cells which have to operate in parallel fashion [30].
On the other hand, for object recognition or fuzzy systems, high accuracy, high-speed
and real-time computation are needed [31]. The most popular Gaussian function circuits’
domains and applications are the following:
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• Analog-hardware implementations of ML algorithms, for example Radial Basis Func-
tion Neural Networks (RBF NNs), Support Vector Machines (SVMs), the K-means
clustering algorithm and so forth;

• Neuromorphic systems, architectures which use physical artificial neurons for compu-
tations or design artificial neural systems;

• Smart sensor systems, devices that take input from the physical environment and use
built-in computing resources;

• Fuzzy or neuro-fuzzy systems with main applications in controllers and object recognition.

This paper presents an overview of circuits and systems for Gaussian function circuits
focusing on integrated implementations. All related architectures, operating principles,
design methods and applications, are provided, to the best of the authors’ knowledge.
The rest of the paper is organized as follows: Architectures and operating principles are
reviewed in Section 2. System level implementations and applications are summarized
in Section 3. Section 4 discusses and summarizes the performance of different Gaussian
function circuits. Concluding remarks are drawn in Section 5.

2. Architectures and Operating Principles

Many Gaussian function circuits have been proposed in a effort to achieve low power
consumption, area efficiency and high accuracy, for example [5,9,32,33]. This Section
presents and analyzes the existing Gaussian function circuits, and categorizes them based
on their operating principle. The five main categories include the architectures based on
the translinear principle, the bulk-controlled approach, circuits built with floating-gate
transistors, circuits built exclusively with differential pairs and designs combining different
fundamental blocks. Additionally, a sixth category is formed of all other types of Gaussian
function circuits.

2.1. Architectures Based on the Translinear Principle

The translinear principle, introduced by Barry Gilbert in 1975 [34], results in a direct
and elegant methodology to analyze and synthesize circuits realizing certain nonlinear
mathematical functions, like multiplication, power-law, etc., using exclusively analog cir-
cuits [35,36]. The core of such circuits is a closed translinear loop, containing a number
of translinear elements (e.g. bipolar and sub-threshold MOS transistors exhibiting an
exponential current–voltage relationship). A typical translinear loop contains an even
number of only one type of transistors (p-type or n-type).

Typically, this realization of a Gaussian function circuit is done by implementing and com-
bining the absolute value, the square and exponential functions circuits using the translinear
principle [35,36]. The design flow (Figure 5) involves three basic building blocks, an absoluter
(for example Figures 6 and 7), a squarer (for example Figures 8 and 9) and an exponentiator
(for example Figure 10) [25,37–39]. Some of the implementations combine the absoluter with
the squarer or use a squarer directly [3,4,40–44]. The exponentiator can be excluded for the
generation of the Gaussian function’s logarithm [45]. Some implementations use additional
components to improve the accuracy of the Gaussian function. Specifically, an I-V converter
(Figure 11) [4,40–42] or a transimpedance amplifier [37] are used between the squarer and
the exponentiator. Such components are used because typical translinear squarers have a
current output while typical exponentiators have a voltage input. Alternatively, in [43] a
compensation circuit is added targeting the reduction of the offset caused by the Body Effect.

absoluterIin... squarer     exponentiator
Iout

Figure 5. Design flow diagram for the implementation of the Gaussian function based on the
translinear principle.
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Figure 6. An example schematic of an absolute value circuit.
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Figure 7. A different approach to an absolute value circuit’s transistor level implementation.
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Figure 8. An example transistor level implementation of a squarer divider circuit.
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Figure 9. An example transistor level implementation of a basic squarer block.
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Figure 10. A schematic of a simple exponential generation circuit.

✁ ✁

VDD

Mp1 Mp2

Mn1

✁ ✁

Ibias

VDD

✁ ✁

VSS

Mn2 Mn3

Iin Vout

Figure 11. Transistor level implementation of a current to voltage (I-V) converter.

The absoluter derives the absolute value of the difference between the input current
and the current setting the Gaussian mean value by using both PMOS and NMOS current
mirrors. The squaring circuits are typically translinear multipliers (using the same input
twice) [35,36]. The multiplication is performed by the translinear loop; the product of
currents flowing in clockwise elements is equal to the product of currents of counter
clockwise elements with exponential characteristic. Some squaring circuits include an
absoluter and some other ones require an external one. Also, some of them include a
divider (squarer divider circuit). The exponentiator is generally based on the exponential
current to voltage law of a single MOS transistor operating in the sub-threshold region.



Electronics 2021, 10, 2530 7 of 36

The expression of the output current of a Gaussian function circuit, can be a good
approximation of the Gaussian function, or an exact realization (at least with the standard
simple models). For example in [25],

Iout = Ipre · exp

[
−

κε(Ix − Iµ)2

Ibiasktri(VDD − Vwidth)VT

]
, (3)

where Ipre is the transistor’s pre-exponential current, κ is the slope factor, ε is the generic
error term, VT is thermal voltage and Ibias, Im and Vwidth are the bias current and current
and voltage parameters, controlling the height, the mean value and the variance of the
Gaussian function curve, respectively. The value ktri = µpCox(W/L)tri, where µp is the
hole mobility, Cox is the oxide capacitance per unit area and (W/L)tri is the effective (W/L)
ratio of the exponentiator input transistor. The theoretical output current of the Gaussian
circuit, according to (3), is presented in Figure 12.

Figure 12. Theoretical output current of an example of a circuit based on the Translinear Principle
(left) Simulation for Im = 100 and Vwidth = 0.4 (center) Parametric simulation over Im for Vwidth = 0.4
(right) Parametric simulation over Vwidth for Im = 100.

In Table 1, we summarize the technology used, the minimum operational characteris-
tics (power consumption, power supply, bias current), the operation region and the number
of transistors for each implementation. The power consumption for the Gaussian function
circuit ranges from 350 nW to 1.534 µW, the power supply ranges from 0.7 V to 3.3 V with
the minimum operational bias current being less than 0.8 µA (except from [44]). All of the
architectures are designed to operate in the sub-threshold region, except from [3,44]. The
number of the transistors is usually high, as the Gaussian function is implemented with
multiple stages. Though, it should be noted that the Gaussian function’s dimensionality can
be increased by adding extra squarers and using the same exponentiator circuit, therefore
decreasing the overall number of transistors compared to a fully cascaded implementation.
In the case of [4,39], the number of transistors and the presented power consumption refers
to the realized Support Vector Regression Algorithm [4] or Self Organized Map (SOM) [39],
respectively.
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Table 1. Gaussian Function Circuits based on the translinear principle. * For the entire system.

Ref. Technology Power Consumption Power Supply Minimum Ibias Operation Region No of Transistors

[3] - - 3 V 325 nA above threshold 14

[4] 180 nm - 1.8 V 50 nA sub-threshold * 600

[25] 180 nm 485 nW 0.7 V 10 nA sub-threshold 14

[37] 1.2 µm 200 µW 1.2 V 4 nA sub-threshold 22

[38] 180 nm 350 nW 0.7 V 50 nA sub-threshold 31

[39] 180 nm * 1.1 mW 1.5 V 0.8 µA above and sub-threshold 55

[40] 0.35 µm 650 nW 1.3 V 90 nA sub-threshold 17

[41] 180 nm - 1.8 V 50 nA sub-threshold 14

[42] 180 nm - 1.8 V 50 nA sub-threshold 14

[43] 0.6 µm 843 nW 1.5 V 10 nA sub-threshold 22

[43] 0.6 µm 1.534 µW 1.5 V 40 nA sub-threshold 26

[44] 0.35 µm - 3.3 V 10 µA above threshold 45

[45] - - - - sub-threshold -

2.2. Bulk-Controlled Implementations

MOS transistors are four-terminal devices (Gate, Drain, Source, Bulk), in which tradi-
tionally the Gate terminal is used as a signal input. Depending on the type of the CMOS
technology (for example P-well, N-well, twin-tub), the Bulk terminal is usually connected
to either the negative (for NMOS) or the positive (for PMOS) supply voltage or even the re-
lated Source terminal (isolating the Bulk from the P-substrate) [46–51]. However, there are
cases (PMOS transistors, triple N-well technologies) in which voltage signals are applied to
the Bulk terminal directly. By using bulk-driven or bulk-controlled transistors the voltage
threshold limitation is reduced from the signal path [46–51]. Therefore, lower power supply
voltages and bias currents are available and hence, using mainly sub-threshold region
techniques, the power consumption is decreased. Additionally, the control voltage con-
nected to the Bulk offers a wide range tunable parameter, directly affecting the transistor’s
Drain current.

The aforementioned benefits motivated researchers to implement new Gaussian func-
tion circuits built with bulk-controlled transistors, which achieve electronic tunability in
the Gaussian output curve’s variance. The variance tunability is also enhanced by alter-
ing Delbruck’s Simple Bump [1,2], which consists of a non-symmetric current correlator,
shown in Figure 13a and a simple differential pair. Some of the proposed modifications
include a symmetric current correlator [24,32], shown in Figure 13b, a differential difference
pair [5,6,17,18,24,52–54], shown in Figure 14 and/or adding additional transistors to the
standard differential pair [24,27,32,55]; an example is shown in Figure 15. Any combination
of current correlators and differential blocks can implement a Gaussian function curve,
for example, Figure 16. Moreover, there are researchers who made significant modifications
to Delbruck’s Simple Bump [17,18,24,52–54]. Specifically, the variable width (VW) Bump,
shown in Figure 17, used in [17,18,52–54], adds multiple current mirrors along with the
(non symmetric) current correlator and the [24] combines the symmetric current correlator
with current substructors.

In general, the desired tunability in the Gaussian function curve’s variance is achieved
by connecting a control voltage to the Body node of some of the differential block’s tran-
sistors. By incorporating a differential difference pair [5,6,17,18,24,52–54] an increased
linearity [56], along with additional output currents are provided. In either case, the con-
trol voltage provides sigmoidal shaped curves I1, I2 with adjustable slopes or symmetric
displacement of currents. The correlation of these currents results in a tunable Gaussian
function circuit. The standard current correlator is, by design, not an ideal circuit, having
inherent asymmetries in the output current. The output of a symmetric current correlator
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is the sum of two non symmetric current correlator cells and therefore reduces such asym-
metries. By using this correlator, the Gaussian function is realized more accurately in the
cost of increased power consumption and circuit’s complexity.
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Figure 13. Transistor level implementation of (a) a non symmetric current correlator and (b) a
symmetric current correlator.
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✁✁

✄ ☎
✟

✄ ☎
✓

✄ ☎
✔

✒ ✑ ✏

✄ ☎ ✠ ✠

VSS

✁ ✁

Mn5

Ibias

VDD

Mn1

Mn6

Vin

Mn3 Mn4

Vc

Vc

Mp5 Mp6

Vc

Vc

Vc

Vc

VS

I1 I2

Mn2

Vm

... ...

Figure 15. Transistor level implementation of a versatile differential block.
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Figure 16. An example of a fully tunable, bulk-controlled Gaussian function circuit.
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Figure 17. Transistor level implementation of the VWbump, which has electrical control over the
Gaussian function curve’s variance.
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The analysis of the bulk-controlled designs is based on the MOS model described
in [57] and since all transistors operate in the sub-threshold region (domain), the currents
for the PMOS and NMOS devices are, respectively:

Ipmos = Iop eκp(Vw−VG)/VT
(

e(VS−Vw)/VT − e(VD−Vw)/VT
)

, (4)

Inmos = Ion eκn(VG−Vw)/VT
(

e(Vw−VS)/VT − e(Vw−VD)/VT
)

. (5)

Here, κp and κn are the slope factors for PMOS and NMOS transistors, respectively,
VG, VS, VD and Vw are the gate voltage, source voltage, drain voltage and bulk voltage,
respectively, VT is the thermal voltage and Iop and Ion are the characteristic currents (pre-
exponential current) for PMOS and NMOS transistors, respectively [57]. Specifically,
by using (4) and (5) the output current of [5] is expressed as:

Iout =
3Ibias

2
12 + 3M2 + 12Mcoshx

(2coshx + M)(6ex + 4e−x + 5M)
, (6)

where the variable M is defined as:

M = 2e−(κn−1)(Vc−VSS)/VT +
e(κn−1)(Vc−VSS)/VT

2
, (7)

and parameter x is given by:

x =
κn(Vr − Vin)

VT
. (8)

Here, Vss is the lower supply voltage, Vin is the input voltage and Ibias, Vr and Vc
are the bias current and the voltage parameters, controlling the height, the mean value
and the variance of the Gaussian function curve, respectively. This circuit [5] consists of a
non-symmetric current correlator and a differential difference pair. The theoretical output
current of the Gaussian circuit, according to (6), is presented in Figure 18.

Figure 18. Theoretical output function of an example of a bulk-controlled circuit (left) Simulation for Vr = 0 and Vc = −0.1
(center) Parametric simulation over Vr for Vc = −0.3 (right) Parametric simulation over Vc for Vr = 0.

A summary of each implementation’s characteristics is presented in Table 2. This
Table includes information regarding the technology used, the minimum operational
characteristics (power consumption, power supply, bias current), the operation region and
the number of transistors. Regarding the technology, most implementations are in CMOS
process, while two of them are tested with discrete components. In the case of [6,24] PTM,
transistor models and quad MOS transistor arrays (Advanced Linear Devices) are used,
respectively. In general, the power consumption ranges from a few nW to a couple µW,
with the power supply being lower than 1.8 V (except from [6]). Moreover, for [54], the
power consumption of the entire system instead of a single bump cell is provided. The
consumption of 50 µW is relatively low for the realized application (neuromorphic Spiking
NN for Electromyography (EMG) signals). The transistors of all the implementations
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operate in the sub-threshold region, and therefore the minimum operational bias currents
are less than 50nA (except from [24]). All of the architectures add additional transistors to
achieve independent tunability of the Gaussian function’s characteristics. As a result, their
number of the transistors is higher than that of Delbruck’s Simple Bump.

Table 2. Bulk-controlled Gaussian Function Circuits. * For the entire System.

Ref. Technology Power Consumption Power Supply Minimum Ibias Operation Region No of Transistors

[5] 90 nm 3.9 nW 0.6 V 1 nA Sub-threshold 11

[6] Discrete - 5 V 2 nA Sub-threshold 10

[17] 180 nm - - 5 nA Sub-threshold 20

[18] 180 nm - - 5 nA Sub-threshold 20

[24] Discrete 4.1 µW 0.7 V 1 µA Sub-threshold 22

[27] 90 nm 6 nW 0.6 V 5 nA Sub-threshold 10

[32] 90 nm 3.3 nW 0.6 V 3 nA Sub-threshold 14

[52] 180 nm - 1.8 V 50 nA Sub-threshold 15

[53] 180 nm - 1.8 V 50 nA Sub-threshold 15

[54] 180 nm * 50 µW 1.8 V 50 nA Sub-threshold 15

[55] 90 nm 4 nW 0.6 V 3 nA Sub-threshold 10

2.3. Circuits Built with Floating-Gate Transistors

The floating-gate transistor or, as it is also called, Floating-gate MOSFET (FGMOS), is a
type of complementary metal-oxide semiconductor transistor or metal–oxide–semiconductor
field-effect transistor, which has the ability to hold an electrical charge in a memory device
that is used to store data [58–60]. In comparison with a typical MOS, it has an additional
terminal (electrode) between the gate and the semiconductor. The name floating is derived
from the floating gate terminal, which is not connected to a voltage source. As in a typical
MOS all the other terminals (Gate, Drain, Source, Bulk) can be connected with a voltage
source. In the case of a high current, electrons get stuck in the floating terminal. Due to the
fact that the floating gate is not connected to anything, it can maintain the stored data.

In all the presented implementations, a classic bump circuit architecture is modified by
replacing existing transistors with floating gate ones or by simply adding extra floating gate
transistors. There are implementations directly inspired by Delbruck’s Simple Bump [1,2],
which add an inverse generation stage [61,62], shown in Figure 19 or a folded differential
pair [63]. Moreover, a compact design based on Delbruck’s non-symmetric current correla-
tor with an integrated differential pair, using floating gate input transistors, is proposed
in [64], shown in Figure 20. Similarly, there are architectures inspired by [65], replacing the
input transistors with floating gate ones [66–68], depicted in Figure 21. Some designs also
incorporate floating gate transistors in architectures following the mathematical approach
of the translinear principle. Specifically, [26,69] modify the exponentiator; [26] is shown in
Figure 22, [7] creates a squaring circuit using floating gate transistors and [8] enhances a
Gilbert multiplier [70] with a floating gate memory cell.

In general, the Gaussian function curve’s characteristics are controlled via the floating
gate transistor’s parameters. In particular, the voltage stored in the floating terminal can
be used as an additional parameter. In the case of [61–63], an inverse generation block
composed of floating gate transistors is used, shown in Figure 19. This block provides
the appropriate input voltages to the variable gain amplifier (VGA). By altering the gain
of the VGA, the width tunability is achieved. An architecture which replaces the input
transistors of Delbruck’s Simple Bump with FGMOS ones is provided in [64]. It uses
FGMOS in order to subtract the stored mean value from the gate input and achieves the
width tunability by setting the value of the input capacitors. A simple exponential based
design is presented in [66–68]. It consists of three MOS and two FGMOS transistors, shown
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in Figure 21. The height of the Gaussian output curve is controlled via the parameter VGG
and References [67,68] achieve the width tunability using extra digital components and
signals. References [7,8,26,69] are based on the translinear principle and use FGMOS to
reduce the complexity (number of transistors) of typical translinear architectures.

✁ ✁

VVGA
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✁ ✁

VDD

Vin1

Mp2

Mn1

✁✁

VVGA

Mp3

✁✁

VDD

Vin2

Mp4

Mn2
Vb

Simple 
 Bump

Inverse Generation Stage

Mn3 Mn4V1 V2

✁ ✁VDD

Figure 19. Schematic of a Gaussian function circuit with a floating gate transistor based inverse
generation block.
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Figure 20. A floating gate transistor based modification of a bump–antibump circuit.
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Figure 21. A modification of an exponential-based Gaussian function circuit, using floating
gate transistors.
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Mn1
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VDD
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VΒ
✁ ✁

VSS

...
Iout

✁ ✁

VDD
Vin

Mn3 Mn4

Mn2
Mp1

Figure 22. Floating gate transistor level architecture based on an exponentiator circuit for the
implementation of the Gaussian function.

The output current of a circuit encorporating floating gate transistors depends on the
original (without floating gate transistors) architecture. For a design inspired by the Simple
Bump (specifically for [63]) the output is given by:

Iout =
2Ibias

2 + eκγ(Vin−Vmean)/VT + e−κγ(Vin−Vmean)/VT
, (9)

where variable γ is defined as:

γ = −2VT
I0

Ib
e−β1Vwidth , (10)

where β1 is set as:

β1 =
Cc

VT(Cc + Cd)
. (11)

Here, κ is the slope factor, VT is the thermal voltage, Ibias, Vmean and Vwidth are the
bias current and the voltage parameters, controlling the height, the mean value and the
variance of the Gaussian function curve, respectively, and Vin is the input voltage. Ib is
a tail current of the core differential pair, I0 is the pre-exponential current. Cc and Cd are
floating gate input capacitances. Gaussian function curves based on Equation (9) are shown
in Figure 23.

Figure 23. Theoretical output function of an example of a floating gate based circuit (left) Simulation for Vmean = 0 and
Vwidth = 0 (center) Parametric simulation over Vmean for Vwidth = 0 (right) Parametric simulation over Vwidth for Vmean = 0.

The characteristics of each implementation are summarized in Table 3. The power
consumption for the presented circuits is higher than 90 µW (except from [7]), with a power
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supply ranging from 0.75 V to 10 V and a minimum operational bias current varying from a
couple nA to a couple µA. The power consumption of [66] refers to the realized handwritten
digit recognition system. The number of the transistors depends on the original architecture
and the methodology used to achieve the electronic tuning (replacing existing transistors
or adding new ones). Regarding the operation regime, there are implementations in both
the above and the sub-threshold regions.

Table 3. Gaussian Function Circuits using Floating Gate Transistors. * For the entire system.

Ref. Technology Power Consumption Power Supply Minimum Ibias Operation Region No of Transistors

[7] 180 nm 160 nW 0.75 V 35 nA sub-threshold 8

[8] - - 10 V 10 µA above threshold -

[26] 0.25 µm 214 µW 3.3 V - above threshold 5

[61] 0.5 µm 90 µW 3.3 V - above and sub-threshold 15

[62] 0.5 µm - 3.3 V - sub-threshold 15

[63] 0.5 µm - 1.6 V 200 nA sub-threshold 16

[64] 0.5 µm - - 5 µA above threshold 5

[66] 0.6 µm * 6 mW 5 V 100 nA above or sub-threshold 6

[67] 0.6 µm - 5 V 1 µA above or sub-threshold 6

[68] 0.6 µm - 5 V 100 nA above threshold 6

[69] 180 nm 100 µW 1.8 V 10 µA above threshold 14

2.4. Circuits Built Exclusively with Differential Pairs

Some researchers follow a simpler approach to realize Gaussian function circuits
and base their designs on multiple differential pairs. The Gaussian function is formed by
adding and subtracting currents using mainly the differential pairs and current mirrors,
unlike the Delbruck inspired architectures that combine differential pairs with current or
voltage correlators. Most of the architectures have the same operating principles. Some of
the implementations produce a Gaussian function curve by adding two currents (generated
from a different input voltage) from two differential pairs [10,21,23,71–75]. A characteristic
example of such circuits is shown in Figure 24. In [75] an extra resistor is used to determine
the height of the Gaussian function curve. Some architectures follow the same principle
but use folded cascode differential pairs [76], include multiple mirrors [77,78] or produce
more than one Gaussian curve [79]. Furthermore, some designs [9,80] are inspired by
Gilbert’s Gaussian circuit, shown in Figure 25, which is not fundamentally different from
the previous implementations but is based on the Gilbert multiplier [70], an example is
shown in Figure 26.

The output current of a typical circuit built exclusively with differential pairs (for
example [23] ) is given by:

Iout =
β2

2

(
Vmean − Vin +

√
2Ibias

β1

)2

, (12)

where βi = K · Wi/Li, i = 1, 2 representing the input transistors, K is a process related
constant, Vmean and Ibias are the voltage and current parameters controlling the mean value
and height of the Gaussian curve, respectively, and Vin is the input voltage. The variance
is controlled via the parameter β1. The theoretical output current of the Gaussian circuit,
according to (12), is presented in Figure 27.

A summary that includes the technology used, the minimum operational characteris-
tics (power consumption, power supply, bias current), the operation region and the number
of transistors for each implementation is presented in Table 4. Regarding the technology
used, all the implementations are in the CMOS process, with the exception of [10,76], which
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are tested with discrete components. All the provided power consumptions, mentioned
in Table 4 refer to the realized system (except from [23]). The power supply is generally
higher than 2 V with most of the implementations operating mainly in the above threshold
region and the minimum operational bias current being around a few µA. Regarding the
number of transistors, most implementations are generally compact. The implementa-
tion with the minimum number of transistors (only four) is categorized here. Moreover,
the implementations that are marked with a single star, have a simplified schematic where
the bias transistors are replaced with current sources and therefore the actual number of
transistors is higher.

✄ ☎
✟

✒ ✑ ✏

Mn1 Mn2

Ibias

Vin Vm1

✄ ☎
✟

✒ ✑ ✏

Mn3 Mn4

Vm2

Ibias

✁ ✁

VDD

Mp1
Mp2

Mp3

Mn5

Ifeedback...

Figure 24. An example of a Gaussian function circuit using only differential pairs.
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✁ ✁
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✄ ☎ ✠
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Mn3
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Figure 25. Gilbert’s Gaussian circuit.
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✒ ✑ ✏

Mn4

✁

✁Iout

✒ ✑ ✏

Mn2

...

Mn1

Mn3

Vin Vm

Figure 26. An area-efficient version of Gilbert’s Gaussian circuit.

Figure 27. Theoretical output function of an example of a circuit built with differential pairs (left) Simulation for Vmean = 0
and β1 = 1 (center) Parametric simulation over Vmean for β1 = 1 (right) Parametric simulation over β1 for Vmean = 0.

Table 4. Gaussian function circuits built with differential pairs. * Additional current sources or resistors. ** Power
consumption for the entire System.

Ref. Technology Power Consumption Power Supply Minimum Ibias Operation Region No of Transistors

[9] 180 nm - 1.3 V - above and sub-threshold 4

[10] Discrete - 3 V - above threshold 8

[21] - - 10 V 10 µA above threshold * 8

[23] 0.35 µm 105 µW 3.3 V 10 µA above threshold 15

[71] 0.7 µm ** 45 mW 5 V 100 nA above threshold -

[72] 180 nm ** 20 mW 3.3 V 100 µA above threshold 9

[73] 180 nm ** 2.64 mW 3.3 V 100 µA above threshold 9

[74] 1.6 µm - 5 V 15 µA above and sub-threshold * 11

[75] 180 nm ** 1 mW 3.3 V - above threshold * 8

[76] Discrete - 3 V 1.4 µA above threshold * 8

[77] 2 µm - 3 V 10 µA above threshold 15

[78] 1.2 µm - 10 V 5 µA above threshold 15

[79] 0.35 µm ** 2.54 mW 3.3 V 10 µA above threshold * 19

[80] 2 µm - 10 V 50 µA above threshold * 10

2.5. Designs Incorporating Extra Components

There are implementations that use extra components in order to realize a tunable
Gaussian function circuit. In most cases, digital or other analog circuits are attached
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around a partially tunable Gaussian or Gaussian-like function circuit (Figure 28) to im-
prove the tunability of the Gaussian function curve’s three characteristics (height, mean
value and variance). The extra components include multiplexers (MUX) [11,81] and/or
switches [15,82–85] and other digital circuitry (mixed-mode architectures [86]) [82–84],
series of resistors [19,87,88], DACs [22,28,87] or Analog to Digital converters (ADC) [22],
multipliers [28,31,33,87] or tunable current mirrors [89,90], OTAs [91–94] or other am-
plifiers [12,87], common mode feedback circuits (CMFB) [22,95], squarers [33], exponen-
tiators [87], current-controlled current-conveyor second generation (CCII) circuits [90],
minimum value circuits [96] and additional current correlators [97]. Four representative
examples are provided in Figures 29–32. By adding such components, the power consump-
tion and the area of the system are increased but more versatile circuits are created.

Simple Bump 
     Circuit

Multiplier

  MUX/
Switches

  DAC

 Resistor

  Digital
 Circuits

  Opamps

  OTA

  Current Mode
    Minimum 
      Circuits

Figure 28. A general flow chart, presenting potential extra components of fully tunable Gaussian
function circuit architectures.
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a b
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Iw
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Mn4

✁✁
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VDD Vm 

I1 I2

Mn5 Mn6
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VDD
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Figure 29. A Gaussian function circuit with a CMFB stage.
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Figure 30. A modified Gilbert’s Gaussian circuit, using a series of resistors controlled via switches.
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Figure 31. A Gaussian function circuit using a multiplexer to adjust the multiplicity of the transistors
in the differential pairs. (a) schematic (b) block for selecting transistors with different dimensions via
the multiplexer.

Each implementation uses the extra components differently, but the general concept
regarding the added extra components is to enhance the operation of a simple Gaussian
function core, for example, to provide variance tunability to the circuit. In particular,
multiplexers and switches are used to select the appropriate value from multiple parallel
outputs in order to achieve the tunability in the variance [11,15,81–85]. In a similar manner,
the series of resistors alter the Gaussian function output by changing the total resistance
value [19,87,88]. Moreover, DACs, multipliers, squarers or tunable current mirrors usually
directly affect the height of the Gaussian function [22,28,31,33,87,89,90]. There are imple-
mentations that use OTAs as current to voltage converters [91] or deploy three OTAs along
with multiple resistors as basic building blocks to design tunable Gaussian function cir-
cuits [92–94]. Similarly, CCIIs, exponentiators, additional current correlators or minimum
value circuits are used as basic building blocks in [87,90,96,97]. The operational amplifier
in [87] is used to bias a BJT transistor in the exponential region, while the sense amplifier
in [12] operates as a CMFB, similar to the extra components in [22,95].

In Table 5, we summarize the characteristics of each implementation. The provided
power consumption for most of the implementations refers to the realized system and
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varies from a couple to many mW (except from [88]). For the rest, the power consumption
ranges from 13.5 nW to 220 µW. The increased power consumption is reasonable due to
the scale of the extra components. The power supply is different for each application,
with most implementations operating above the threshold (in the saturation region) and
the minimum operational bias current ranges from nA to µA. There are implementations
for which the provided power consumption or number of transistors, mentioned in Table 5,
refer to the bump circuit core without including all or any of the added components. These
implementations are marked accordingly.

CCII
x

y
z

CCII
x

y
-z

VS1

VS2

Vin

✁
✁

Iout

...

...

Ib

Ib

Figure 32. A current conveyor second generation based Gaussian function circuit.

Table 5. Gaussian Function Circuits using extra components. * Does not include the extra components. ** For the entire system.

Ref. Technology Power Consumption Power Supply Minimum Ibias Operation Region No of Transistors

[11] 180 nm * 13.5 nW 0.9 V - sub-threshold * 9

[12] - ** 2 mW - - sub-threshold * 6

[15] 130 nm ** 2.2 mW 1.2 V 1.2 µA above threshold *14

[19] 45 nm 200 nW - - sub-threshold 12

[22] 130 nm ** 13.92 mW 1 V - above threshold * 19

[28] 180 nm - 1.8 V 100 nA sub-threshold * 11

[31] 130 nm ** 496 mW 1.2 V - above threshold 12

[33] 180 nm 100 µW 1 V 10 µA above threshold 30

[81] 130 nm 10.5 µW 2 V 722 nA above threshold * 23

[82] 130 nm ** 1.2 mW 1.2 V 1.2 µA above threshold * 8

[83] 130 nm ** 345 mW 1.2 V 1.2 µA above threshold * 8

[84] 130 nm ** 1.2 mW 1.2 V 1.2 µA above threshold * 8

[85] 0.35 µm ** 13.4 mW - 18 µA above threshold * 23

[87] 2 µm - 5 V - above threshold -

[88] 2.4 µm ** 550 nW 10 V - above threshold * 4

[89] 0.35 µm 220 µW 3.3 V 9 µA above threshold * 14

[90] 180 nm 23.7 µW 2 V 5 µA above threshold 32

[91] - - 5 V - sub-threshold * 10

[92] 0.8 µm - 5 V 4 µA above threshold -

[93] 0.8 µm - 5 V 4 µA above threshold -

[94] 0.8 µm - 5 V 1 µA above threshold * 36

[95] 130 nm 18.9 nW 3 V 1 nA sub-threshold * 14

[96] 180 nm 27 µW 1.8 V 2 µA above threshold 15

[97] 3 µm - 5 V 1.2 nA above threshold * 9
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2.6. Other Implementations

The following implementations do not belong to any of the previously described
categories and do not fit to a different distinct design methodology. Nonetheless, they
can be added into a general group. In particular, there are architectures [13,14,20,30]
based on Delbruck’s Simple Bump , designs [65,98] inspired by Anderson [12] or based
on other function generation circuits, like a triangular [29,99], an exponential [16,100] or a
Euclidean [101]. An example for each group is shown in Figures 33–36, respectively.

The characteristics of each implementation are summarized in Table 6. Regarding the
technology, most architectures are in the CMOS process, except for one [101]. In the case
of the power consumption, only three designs provide the appropriate value and two of
them refer to the entire system’s consumption. The power supply ranges from 1.8 V to 5 V
and the minimum operational bias current is less than 1 µA (except from [29]). There are
implementations operating in either the sub-threshold or the saturation region, with two
of them having transistors that operate in the triode region [13,30]. Regarding the number
of transistors, most architectures are generally compact. The implementations that are
marked with a single star have simplified the schematic by replacing the bias transistors
with current sources or have added resistors or capacitors to their designs.
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Figure 33. Gaussian function circuit with voltage correlator.
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Figure 34. A design inspired by Anderson.
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Figure 35. An example of a Gaussian function circuit based on an exponentiator circuit.
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Figure 36. A different example of a Gaussian function circuit based on an exponentiator circuit.

Table 6. Gaussian Function Circuits with other implementations. * Additional current sources, resistors or capacitors.
** Power consumption for the entire System.

Ref. Technology Power Consumption Power Supply Minimum Ibias Operation Region No of Transistors

[13] 0.35 µm - - - above threshold 10

[14] - - - - sub-threshold 12

[16] 2.4 µm - 5 V 0.5 µA above threshold * 5

[20] 180 nm ** 0.9 µW per pixel 1.8 V - above threshold 8

[29] 180 nm 23.7 µW 2 V 3 µA above threshold * 22

[30] 0.35 µm - - - above threshold 10

[65] 2 µm - 3 V 200 nA above or sub-threshold * 4

[98] 2 µm - 3 V 200 nA above or sub-threshold * 4

[99] 2 µm ** 0.7 mW 5 V 0.5 µA sub-threshold 14

[100] 3 µm - 5 V 1 µA above threshold 5

[101] Discrete - 5 V - above threshold * 4

3. Gaussian Function Circuit Applications

Gaussian function circuits are used as building blocks in various applications and
domains. This Section discusses the applications and describes the role of the Gaussian
function circuits in system level implementations. Various realizations are presented and
categorized in four main fields. These categories are the following: (a) Analog-hardware
implementation of ML algorithms; (b) neuromorphic circuits/systems; (c) smart sensor
systems; and (d) fuzzy/neuro-fuzzy systems. The use of Gaussian function circuits in
(a)–(d) is extensively explained.
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3.1. Analog-Hardware ML

The world is filled with a lot of data (words, pictures, videos, etc.) and it does not
look like it is going to slow down anytime soon [102,103]. ML provides the promise of
deriving meaning from all of that data. As an interdisciplinary field, ML shares com-
mon threads with the mathematical fields of statistics, information theory, game theory,
and optimization [104,105]. ML is a combination of tools and technology that can be used
in order to process all these data. Moreover, all these automated techniques (algorithms)
may be able to figure out meaningful patterns (or hypotheses) that may have been missed
by the human observer. Traditionally, all these algorithms are implemented in the software.
However, there is a trend in which hardware-friendly implementations are used in order
to realize these algorithms and models [57,106].

There are three different hardware design approaches with their own advantages and
disadvantages. These three approaches are analog, digital, and mixed-mode implemen-
tations. In general, digital circuits for ML applications have the advantage that they can
achieve high classification accuracy, flexibility, and programmability, but they consume
huge power and area due to the large amount of data transaction and high operation
speed. On the other hand, specific analog-hardware ML enables low-cost parallelism with
low-power computation, but their inaccurate circuit parameters induced by noise and low
precision degrade the accuracy. Several mixed-mode architectures took advantage of both
analog and digital implementations obtaining low-power consumption within small areas,
but it suffers from domain conversion overhead costs.

There are dedicated Analog-hardware architectures for ML algorithms and models
that are based on Gaussian function circuits. In Table 7, we summarize some common
characteristics of the system level implementations, presented along with the Gaussian
function circuit. The proposed ML systems are RBF NNs [11,12,14,16,24,28,61,81,94,101],
a general design flow is shown in Figure 37 or other NNs, like a Multi-layer Perceptron
(MLP) / RBF network (RBFN) [15] or a Gaussian RBF NN (GRBF NN) [87], Support
Vector Machine (SVM) [41,62], regression (SVR) [4] or domain description (SVDD) [42]
algorithms, pattern-matching classifiers [66,68], vector quantizers [64,99], a Deep ML
(DML) engine [45], a similarity evaluation circuit [67] and an SOM [39]. A typical example
of an Analog-hardware implementation of the SVM algorithm is shown in Figure 38.
Gaussian function circuits are used for the implementation of two functions that are
useful for many ML algorithms: (a) kernel density (b) distance computation. Most of the
applications are designed for an input dimensionality lower than 65 dimensions, with some
not specifying an upper boundary [15,24,64,87], being able to categorize high definition
images. Additionally, the simulation level as well as the circuit area for the layout and chip
implementations (or for [39] an estimation), if provided, can be found in Table 7.

3.2. Neuromorphic Systems

Traditional computing systems based on the von Neumann architecture are facing
many problems related to power efficiency (high power consumption) and memory lim-
itations [102,103]. Indeed, the amount of data to be processed is ever increasing and it
is necessary for new computing paradigms. To address these problems, an emerging
approach which demonstrates promising results in computing hardware is that of neu-
romorphic systems [107,108]. This design methodology is inspired by synaptic plasticity
in the brain, which is capable of in-memory computing and is suitable for multi-valued
or analog arithmetic. The basic building blocks for the implementation of neuromorphic
systems are analog spike-based circuits and memristors. There are also design flows which
are based on Gaussian function circuits; an example is shown in Figure 39.

Neuromorphic computing represents a novel paradigm for non-Turing computation
that aims to reproduce aspects of the ongoing dynamics and computational functional-
ity found in biological brains. This endeavor entails an abstraction of the brain’s neural
architecture that retains an amount of biological fidelity sufficient to reproduce its func-
tionality while disregarding unnecessary detail. Models of neurons, which are considered
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the computational unit of the brain, can be emulated using electronic circuits or simulated
using specialized digital systems. Analog designs offer power and area efficiency, which is
necessary for large parallel neuron arrays. On the other hand, digital counterparts provide
reconfigurability (FPGA), portable or scaled Hardware Description Language (HDL) de-
signs (from one technology to another), invariance to process, variance and temperature
(PVT), a simpler design of complex functions and fast design of high-level architectures.

All the applications, the simulation level of the designs and the use or not of mem-
ristive devices are summarized in Table 8. A spike-based circuit with a configurable
stop-learning feature for always-on online learning applications is presented in [17]. The
Bump circuit used (VW Bump) is a necessary building block for the implementation of the
Delta-rule (a learning algorithm), which compares the rate of the neuron spikes to a target
value. A high accuracy Spiking NN (SNN) based on an error-triggered learning rule with
the aforementioned stop-learning capability is explained in [18]. The Bump circuit here
(VW Bump) is used in order to indicate the stop-learning and/or the weight update mecha-
nism. A stochastic learning rule based on the stochastic nature of memristors is proposed
in [52]. The VW Bump is used similarly with [18]. An SNN architecture is realized in [53]
based on synaptic elements and mixed-mode circuits. The VW Bump compares the rate of
the neuron spikes to a target value and outputs the direction of the weight update. All the
previous designs [17,18,52,53] are based on memristive devices and the simulation results
are extracted from the circuit’s schematic. A mixed-mode neuromorphic processor for the
discrimination of EMG signals is presented in [54]. The EMG signals are converted into
spikes using a delta encoding scheme. Here, the VW Bump is used for the weight update
mechanism, similarly to the previous implementations [17,18,52,53]. This architecture does
not include memristive devices and its performance is verified on a manufactured chip.
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Figure 37. A generic Radial Basis Function Neural Network architecture.
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Figure 38. A hardware friendly implementation of the Support Vector Machine algorithm (learning
and classification).

Table 7. Analog-hardware ML algorithm summary. * tested on LTSpice. ** Estimated.

Implementation No. of Dimensions Simulation Level Area

[4] SVR algorithm 2 Schematic -

[11] RBF NN 1 Chip 0.013 mm2

[12] RBF NN 8 Chip 21.12 mm2

[14] RBF NN - Chip -

[15] MLP/RBFN 1280 × 720 pixels Chip 0.140 mm2

[16] LVQ or RBF NN 16 Chip -

[24] RBF NN N * Layout 10 µm2 per bump

[28] RBF NN 2 Chip 0.060 mm2

[39] SOM 3 Schematic ** 0.24 mm2

[41] SVM algorithm 64 Chip -

[42] SVDD algorithm 2 Schematic -

[45] Deep ML engine 8 Chip 0.36 mm2

[61] RBF NN 2 Chip 2.250 mm2

[62] SVM algorithm 2 Schematic -

[64] Vector Quantizer N Chip -

[66] Pattern-matching classifier 16 Chip 20.25 mm2

[67] Similarity evaluation 4 Chip -

[68] Pattern-matching classifier 16 Chip 16,500 µm2
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Table 7. Cont.

Implementation No. of Dimensions Simulation Level Area

[81] RBF NN - Chip 68,400 µm2

[87] GRBF NN N Schematic -

[94] RBF NN 2 Chip -

[99] Vector Quantizer 16 Chip 4.95 mm2

[101] RBF NN 32 Chip 1 cm2

Table 8. Neuromorphic Systems Summary.

[17] [18] [52] [53] [54]

Application Stop Learning Error-Triggered Learning Rule Stochastic Learning Neuromorphic Computing EMG

Memristive devices YES YES YES YES NO

Simulation Level Schematic Schematic Schematic Schematic Chip

DPI
     I/V 
Converter

Buffer
     Sym

     Sampler

  X bar F.E.
       and 
normalization

UP Events

DOWN Events

VW BumpTargets

VNrn

UP
DOWN
STOP

Out

Figure 39. An example of a neuromorphic network high level architecture based on the VW Bump.

3.3. Smart Sensor Systems

A typical sensor is a device, sub-system or machine that can detect changes in an
environment and it can also send this information to a related electronic system or a simple
processor which will derive meaning from these data (signal detection, signal processing,
data validation, etc.) [109]. In the case of a smart sensor system, multiple sensors are
included [110,111]. Their operating properties can be set by an embedded microprocessor.
All the smart sensors have four main functions—measurement, configuration, verification
and communication. This means that, apart from a microprocessor, it is necessary to include
a wireless communication system. There is a necessity for application-specific integrated
circuits, which will be part of smart sensor systems. Except for the implementation of
analog front-end, which consists of analog signal conditioning circuitry, there is a need for
circuits which will be used for back-end acceleration [103].

Smart sensor systems are based on analog signal processing because they collect real-
time data from the environment. Analog signals are easier to process, best suited for audio
and video transmission, have a higher density and can present more refined information.
Additionally, they provide a more accurate representation of changes in physical phenom-
ena, such as sound, light, temperature, position, or pressure. The drawbacks are the fact
that they are prone to generation loss, are subjected to noise and distortion, as opposed to
digital signals, which have much higher immunity and are generally lower quality signals
than analog signals. In the case of digital circuits, there is a need for DAC/ADC converters
and they suffer from round-off noise due to quantization.

Gaussian function circuits are used as a building block for the implementation of the
detector in smart sensor systems. Specifically, two exemplary implementations exist in
the literature [19,20], to the best of the author’s knowledge, and their characteristics are
summarized in Table 9. The first [19] is a mixed-mode real-time anomaly detection system
for sensor stream statistics, shown in Figure 40. This system is operational in any type
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of sensor without the need for pre-training on the sensor’s data. The probability density
function (PDF) learner, which is a part of the implemented system, consists of parallel
connected Gaussian function circuits which realise the kernel density based statistics
estimation. The second [20] is a fully analog edge detection circuit directly integrated to a
photodiode, shown in Figure 41. The edge detection is performed on the analog output of
the photodiode greatly reducing the power consumption and the need for data transfer.
Here, the output of the active pixel sensor (APS) is directed to the Gaussian function circuit,
which provides a high output current if the pixel is an edge and a low otherwise. In
comparison with [19], this implementation [20] is tested on a fabricated chip with an area
per pixel of 225 µm2.

Table 9. Smart Sensor Systems Summary.

[19] [20]

Application Anomaly detection Edge detection

Type of sensor General Photodiode

Fully Analog NO YES

Type of Gaussian function Extra components Current-mode circuits

Power Consumption 75 µW 0.9 µW per pixel

Simulation Level Schematic Chip

Area - 225 µm2 per pixel

Sample 
  Bank

DAC

DAC

DAC

EN/RST

EN/RST

EN/RST

   PDF 
Learner

HOLD

HOLD

HOLD

...
Control 
 Logic

Psample

...

ADCVsample

HOLD

Figure 40. A mixed-mode anomaly detection system.
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Photodiode

APS

BumpTX
Bit Line

Pixel

Figure 41. An edge detection circuit directly connected to a photodiode.

3.4. Fuzzy and Neuro-Fuzzy Systems

Fuzzy systems are based on fuzzy logic, which provides the theory of modeling
real-world phenomena, which are inherently vague and ambiguous [112]. This theory
provides all the tools (fuzzy techniques) for processing and mathematical representation.
A neuro-fuzzy system is based on a fuzzy system, which is trained by a learning algorithm
derived from NN theory [113,114]. Therefore a neuro-fuzzy system can be represented as a
special multilayer feedforward NN and can be used as a universal approximator. Moreover,
it can be interpreted as a system of fuzzy rules. It also uses fuzzy logic criteria for increasing
the size of a NN. NNs are used to tune membership functions of fuzzy systems that are
employed as decision-making systems for controlling equipment.

Except from software-based implementations, there are many realizations of mem-
bership functions, which are based on Gaussian function circuits. The fuzzy/neuro-fuzzy
systems, which are realized based on these membership functions are categorized accord-
ing to the application example. Most of them are mixed-mode implementations which
took advantage of both analog and digital circuits. The existing categories include con-
trollers [72,74,79,80,85,88], object recognition inference [82–84] or neural perception [31]
engines or processors [22], function approximators [71,75] and a min–max network [21].
The presented controllers are hardware-friendly implementations based on classic fuzzy
control theory, an example is shown in Figure 42. Specifically, References [74,79,80] de-
sign a Takagi–Sugeno based controller and [72] realize a Type-2 fuzzy controller. The
object recognition applications [22,31,82–84] are based on neuro-fuzzy logic, an example
is shown in Figure 43. In particular, a fuzzy system pre-processes the input data for the
following perceptron (a single NN layer with an activation function). Both function ap-
proximators [71,75] combine different membership functions to produce more complex
nonlinear functions. The min–max network [21] uses the Gaussian function circuits in the
fuzzification block prior to the min–max operators.

Fuzzyfication

    Fuzzy
Knowledge
     Base

    Decision 
     Making

Defuzzification
Crisp I/P Crisp O/P

Figure 42. A generic Fuzzy controller block diagram.
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Figure 43. An example of a shallow Neuro-Fuzzy Radial Basis Function Neural Network.

In Table 10 we summarize the category, the complexity, the simulation level and the
area of each implementation. The fuzzy rules complexity ranges from 4 to 50. A system
with 50 rules is considered a high complexity system [113,114]. Almost all of the designs
are tested on fabricated chips, except from [21] and the chip area varies from 0.08 mm2 to
50 mm2.

Table 10. Neuro-fuzzy Systems Summary.

Application Complexity
(Fuzzy Rules) Simulation Level Area

[21] Min-Max Network - Schematic -

[22] Processor 50 Chip 13.5 mm2

[31] Neural Perception Engine - Chip 49 mm2

[71] Function Approximator 15 Chip 32 mm2

[72] Controller 9 Chip 0.32 mm2

[74] Controller 4 Chip -

[75] Function Approximator 25 Chip -

[79] Controller 25 Chip 0.08 mm2

[80] Controller - Chip -

[82] Inference Engine 8 Chip 0.765
mm2

[83] Inference Engine - Chip 50 mm2

[84] Inference Engine 27 Chip 50 mm2

[85] Controller 16 Chip 0.1 mm2

[88] Controller 13 Chip 16.2 mm2
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4. Summary and Discussion

Throughout the years, there have been many different analog implementations of
the Gaussian function, using various design techniques. These circuits are implemented
targeting specific characteristics, for example low power consumption, area efficiency, high
computation speed, better tunability or increased similarity with the theoretical response.
Unfortunately, reliable documentation can be provided only for the power consumption,
the number of transistors and the minimum operational bias current. The rest are not given
by most of the research teams. Based on Section 2, a summary containing five architectures
for each characteristic is presented in Tables 11–13.

Table 11. Gaussian Function Circuits performance summary and comparison. *Additional current sources.

Ref. Category Power Consumption Power Supply Minimum Ibias Operation Region No of Transistors

[5] Bulk-controlled 3.9 nW 0.6 V 1 nA sub-threshold 11

[27] Bulk-controlled 6 nW 0.6 V 5 nA sub-threshold 10

[32] Bulk-controlled 3.3 nW 0.6 V 3 nA sub-threshold 14

[55] Bulk-controlled 4 nW 0.6 V 3 nA sub-threshold 10

[95] Extra components 18.9 nW 3 V 1 nA sub-threshold * 14

Table 12. Gaussian Function Circuits performance summary and comparison. * Power consumption for the entire System.

Ref. Category Power Consumption Power Supply Minimum Ibias Operation Region No of Transistors

[9] Differential pair - 1.3 V - above and sub-threshold 4

[20] Other implementations * 0.9 µW per pixel 1.8 V - above threshold 8

[26] Floating gate 214 µW 3.3 V - above or sub threshold 5

[64] Floating gate - - 5 µA sub-threshold 5

[100] Other implementations - 5 V 1 µA above threshold 5

Table 13. Gaussian Function Circuits performance summary and comparison. *Additional current sources.

Ref. Category Power Consumption Power Supply Minimum Ibias Operation Region No of Transistors

[5] Bulk-controlled 3.9 nW 0.6 V 1 nA sub-threshold 11

[6] Bulk-controlled - 5 V 2 nA sub-threshold 10

[55] Bulk-controlled 4 nW 0.6 V 3 nA sub-threshold 10

[95] Extra components 18.9 nW 3 V 1 nA sub-threshold * 14

[97] Extra components - 5 V 2.6 nA above or sub-threshold * 9

Table 11 includes the implementations with the lowest power consumption. The power
consumption ranges from 3.3 nW to 6 nW using bulk-controlled transistors [5,27,32,55],
except from [95], which adds a CMFB circuit, which consumes 18.9 nW. They are all
compact implementations, consisting of 10 to 14 transistors with a power supply at only
0.6 V [5,27,32,55] (except [95]) and their transistors operate in the sub-threshold region. All
five designs are also fully electronically tunable.

Table 12 includes the implementations with the smallest number of transistors. The
number of transistors ranges from 4 to 8 but without tunability in the Gaussian curve’s
characteristics, except from [64]. These compact implementations are designed using
floating gate transistors [26,64], differential pairs [9] or other designs techniques [20,100]
with a power supply ranging from 1.3 V to 5 V. The transistors of [20,100] operate in the
above threshold region, while [64] operates in the subthreshold region. The design of [26]
can operate in either the sub or the above threshold region and [9] has transistors operating
in both regions.
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Table 13 includes the implementations with the smallest minimum operational bias
current. These bias currents vary from 1nA to 3nA while being fully electronically tunable.
Moreover, small bias currents are directly related to the operation of transistors in the sub-
threshold region. The number of transistors is relatively low (9 to 14). However, in the case
of [95,97], the schematic is simplified by replacing current mirrors with current sources.

Architectures based on the translinear principle have many advantages and draw-
backs. Translinear circuits have high frequency operation, high parameters’ tunability, low
supply voltage, lower-power consumption, low noise, low third order intermodulation
distortion, low total harmonic distortion, the immunity to body effects, extended dynamic
range, compactness, design modularity, and low circuit complexity. Despite the fact that
translinear circuits have efficient realization of many analog nonlinear signal processing
functions with small quantities of MOS transistors, in the case of the Gaussian function
curve’s implementation three separate components are required (absoluter, squarer and
exponentiator circuits). Therefore, the number of transistors is higher compared to other
architectures. The trade-off lies between the accuracy in the realization of the Gaussian
function curve and the architecture’s complexity. Circuits based on the translinear princi-
ples offer higher quality Gaussian function curves (compared to the theoretical Gaussian
function) since they implement the exact mathematical equations, at the expense of using
extra transistors.

Bulk-controlled designs reduce the need for extra transistors by using the fourth-
terminal (Bulk terminal) to offer the desired tunability. The bulk-controlled transistor also
deals with voltage threshold limitations and the whole topology is biased easier with lower
power supply (based on sub-threshold region techniques). An additional advantage of
connecting a parameter voltage to the bulk-terminal of differential pairs is that the bulks
are no longer connected to the power supply rails, thus reducing any possible supply noise.
Consequently, this circuit has better power supply rejection ratio. Possible drawbacks
include higher leakage currents, lower computation speed, approximate behavior of the
Gaussian function and necessity for triple-nwell technology.

Circuits built with floating-gate transistors use an extra terminal just like bulk-controlled
architectures. This terminal, except from the desire tunability, also provides a non-volatile
data storage capability. As a result, these implementations are relatively compact. How-
ever, FGMOS implementations require a high power supply voltage, which leads to higher
power consumption. Moreover, the incorporation of FGMOS presents challenges in the
aspect IC fabrication.

Gaussian function circuits based on differential pairs are compact and have design
modularity. They operate at low speeds, limited parameters’ tunability, high supply voltage
and high-power consumption. These designs are used as a simple solution to realize a
Gaussian function curve. Architectures using extra components achieve higher tunability
at the cost of higher complexity (area) and power consumption.

Despite the numerous works in the literature about the implementations and the
applications of the Gaussian function circuits, analog realizations have not yet been es-
tablished in commercial or real-world applications compared to digital or software-based
ones. Therefore, to further motivate new researchers to implement new analog realizations,
development should be focused on the advantages of analog-hardware implementations.
New computing paradigms should lead to a new domain of smart industry based on
low-power consumption, area efficiency, high computation speed and parallelization. This
way, analog accelerators should gain popularity and create a stable dipole between them
and digital ones. In this case, hardware (both analog and digital) implementations will
gain a new role in the artificial intelligence domain and new demanding applications will
be developed in the future.

5. Conclusions

This paper has provided a review of Gaussian function circuits’ architectures, oper-
ating principles and applications. Furthermore, a number of the commonly used design
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architectures for current correlators, differential blocks, current-mode circuits, analog
computational circuits and sub-threshold region methods have been discussed in detail
with possible tradeoffs. In the context of current applications, state-of-the-art high-level
implementations have been subsequently described to illustrate challenges in their realiza-
tion together with different approaches and techniques. Collecting and providing all the
referred architectures and applications, it is necessary to upgrade these implementations
and design new, high-speed, ultra-low power, area efficient and accurate Gaussian function
circuits, which can be used as building blocks in different wearable or portable applications.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC Analog to Digital Converter
APS Active Pixel Sensor
CCII Current-controlled Current-conveyor Second Generation
CMFB Common Mode Feedback
DAC Digital to Analog Converter
DML Deep Machine Learning
EMG Electromyography
FGMOS Floating-gate MOSFET
GRBF Gaussian Radial Basis Function
HDL Hardware Description Language
I-V Current to Voltage
LPF Low Pass Filter
LVQ Learning Vector Quantizer
ML Machine Learning
NN Neural Network
OTA Operational transconductance Amplifier
PDF Probability Density Function
PVT Process, Variation, Temprature
RBF Radial Basis Function
RBFN Radial Basis Function Network
SNN Spiking Neural Network
SOM Self Organized MAP
SVDD Support Vector Domain Description
SVM Support Vector Machine
SVR Support Vector Regression
VGA Variable Gain Amplifier
VW Variable Width
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