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ABSTRACT A comprehensive nonlinear analysis of autonomous and periodically forced fully-differential,
negative-resistor LC oscillators is presented. Through nonlinear transformations in the state space, it is
shown that oscillators within this class exhibit qualitatively similar dynamical behavior in terms of their
limit cycles and bifurcation curves, at least within an open region containing the origin. The case of
autonomous, complementary BJT oscillators is used to validate the qualitative analysis and demonstrate a
general approach of how to numerically extend the bifurcation curves away from the equilibrium point and
determine the oscillatory conditions. When external periodic force is present, we focus on the special case
of periodically multiplicatively-forced fully-differential, negative-resistor, LC oscillators and use Harmonic
Balance techniques to derive analytical expressions estimating the locking range in the weak injection
regime. The results are used to calculate the locking range of a harmonically forced complementary BJT
oscillator yielding explicit expressions closely aligned with experimental measurements, thus verifying the
validity of the analysis.

INDEX TERMS Bifurcation analysis, injection-locked frequency dividers (ILFDs), locking range (LR),
nonlinear oscillators, harmonic balance, synchronization, frequency dividers.

I. Introduction
Frequency dividers are widely used in communication ap-

plications and constitute an important building block of phase-
locked loops (PLLs) [1]. Their primary function is to divide
an input frequency by an integer, which serves as the input to
further layers operating at lower frequencies [1], [2]. While
digital implementations are possible, analog injection-locked
frequency dividers (ILFDs) offer an alternative due to their
lower power consumption [1], [2]. In particular, differential
LC dividers constitute a very common architecture [3].

ILFDs can be mathematically viewed as periodically forced
limit cycle oscillators. The analysis of the autonomous
systems, i.e. without external excitation, in terms of their
design parameters is crucial for identifying the regions on
the parameter space where oscillations occur. The study of
the qualitative changes in the behavior – e.g. creation and

destruction of fixed points, limit cycles, strange attractors or
stability changes – of a dynamical system, as its intrinsic
parameters are varied, is known as bifurcation analysis in
the applied mathematics literature [4]–[6]. This concept is
closely related to identifying similarities in the behavior of
different systems within certain parameter regions, formally
known as topological equivalence, and has been central to
the study of dynamical systems since the time of Poincaré [6].
Various bifurcation analyses have been successfully applied to
ecological [7], mechanical [8], optical [9], [10] and electronic
[1], [11], [12] systems, as well as to fusion plasmas [13]
and neuroscience [14], in order to analyze the dynamical
complexity. Regarding autonomous differential LC oscilla-
tors, although bifurcation analysis has been conducted for the
specific MOS architecture [1], which involves a particular
type of cubic nonlinearity, it has not been demonstrated that
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the mechanism governing the creation and destruction of
oscillations is qualitatively consistent across all nonlinear
circuits in this class. This in turn, gives a theoretical and a
quantitative –when the bifurcation curves are numerically
computed for the exact system– guide for appropriately
selecting the parameters of the systems that will be utilized
as a divider.

Due to the nonlinear nature of synchronization [15], [16],
the range of input frequencies for which phase locking occurs
in a periodically forced limit cycle oscillator is restricted,
typically referred to as the locking range (LR). Various
methods have been proposed to estimate the LR under
weak injection conditions. These include Adler’s equations
[17], averaging methods [18]–[27], qualitative analyses [1],
first-order approximations of phase reduction models [2],
[28]–[31], perturbation methods [32] and harmonic balance
methods [33]–[45]. The latter class of methods generalizes
the results of Adler [17], enabling analytical estimation of
the locking range in a straightforward manner.

In this work, we begin with the study of autonomous
differential LC oscillators and demonstrate that, through
appropriate nonlinear transformations, their dynamical be-
havior is qualitatively the same, at least in a neighborhood
of the origin. Utilizing the complementary BJT oscillator
as an example, we numerically determine the bifurcation
curves, verifying and extending the qualitative analysis away
from the origin. The computation of the curves also provides
insight into the appropriate selection of parameters for the
system when used as a divider. Subsequently, we present
a general methodology to estimate the locking range when
differential LC oscillators are forced by an arbitrary periodic
perturbation, utilizing the harmonic balance technique. This
approach, unlike other possible methodologies, enables the
deduction of quantitative, analytical results that can be used
as a first order estimation during the design of a divider.
The application of this method to estimate the locking range
(LR) of the complementary BJT ILFD, depicted in Fig. 2,
demonstrates close correspondence with the experimental
measurements of the implemented circuit in Fig. 7. Our
analysis complements and generalizes the results presented
in [46] for the particular case of the BJT oscillator.

The paper is organized as follows. In Section II, we show
that all differential LC oscillators demonstrate the same
qualitative dynamical phenomena and determine numerically
the bifurcation curves for the complementary BJT oscillator.
In Section III, we analyze the periodically forced differential
LC oscillators and derive analytical expressions for the
locking range. In Section IV, we conclude the paper.

II. Bifurcation Analysis of Differential LC Oscillators
Consider the equivalent model of the differential LC

oscillator in Fig. 1. It is comprised of the LC resonator (tank)
and the negative resistance modeled by the voltage-controlled
current source ic = I0f(v/Vr), where Vr is a voltage
normalization parameter and I0 has current dimensions.

R

L

C

+

i (t) = I (t) f ( /V )
c 0 r

-

FIGURE 1. Equivalent model of a general class of nonlinear LC oscillators
- also operating as frequency dividers when properly injected with periodic
signal via I0(t).

Note that ic is proportional to I0, which is constant if the
oscillator is autonomous and time-dependent (I0 = I0(t)) if
the oscillator is externally forced. Thus, in the present Section,
where we analyze the dynamical behavior of the free-running
model of Fig. 1, I0 is constant, while in Section III, the
injection of an external periodic signal will be modeled as
an explicit dependence of I0 on the time t.

Function f : R → R is assumed to be odd and at least
three times continuously differentiable, i.e., f ∈ C3(R,R),
with f ′(0) > 0 and f (3)(0) < 0 (i.e. compressive). Without
loss of generality we further assume that f ′(0) = 1 implying
that f(x) = x− cx3 +O(x5) with constant c > 0.

Let i be the inductor’s current. The dynamical system
describing the model is

C
dv

dt
= −i+ I0f(v/Vr)

L
di

dt
= v −Ri.

(1)

Setting ω0 = 1/
√
LC and introducing the change of variables

x =
v

Vr
, y =

Ri

Vr
and τ = ω0t, (2)

system (1) is transformed to the dimensionless equivalent
one,

ẋ = −Qy +QGf(x)

ẏ =
1

Q
(x− y),

(3)

where

Q =
1

R

√
L

C
, G =

RI0
Vr

. (4)

System (3) possesses the symmetry x → −x, y → −y,
since f is odd. As a result, taking into account that f(0) = 0,
we conclude that (0, 0) is a trivial equilibrium of the system.
These properties motivate us to consider transforming it into
a standard form to study the local and global bifurcations.
To this end, the change of variables is introduced

x1 = 3Q
√
Gcx

x2 = 9Q2
√
Gc
(
−Qy +QGf(x)

)
τ̃ =

τ

3Q
,

(5)

transforming system (3) into
ẋ1 = x2

ẋ2 = µ1x1 + µ2x2 − x2
1x2 − x3

1 +O(x5
1).

(6)

where the normal-form parameters µ1 and µ2 are defined as

µ1 = 9Q2(G− 1), µ2 = 3(Q2G− 1). (7)
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Truncating the O(x5
1) terms in (6), results in the parity

symmetric Bogdanov-Takens normal form, which is invariant
under the transformation (x, y) → (−x,−y) (Z2 symmetry)
[5], [6], whose dynamics is known in the literature and is
studied in the following. At the same time, we transform
the results concerning the bifurcation curves of the normal-
form parameters (µ1, µ2) back to the more important design
parameters (G,Q), ensuring consistency with the numerical
analysis for the specific nonlinearity f arising from the
architecture discussed in the next subsection. Henceforth,
when referring to (6) we will mean the truncated system. A
typical (generic) bifurcation diagram of (6) with respect to
the µ1, µ2 parameters is shown in Fig. 3 (a).

For µ1, µ2 < 0 the origin is the unique equilibrium of the
system, which is stable. At µ2 = 0, µ1 < 0 (corresponding
to G < 1, Q2G = 1), the origin becomes unstable and
a stable limit cycle, corresponding to a small-amplitude
oscillation, emerges. Thus, a supercritical Hopf bifurcation
[4]–[6], denoted by H(1) in the parameter plane, occurs. For
µ1 < 0, µ2 > 0 the limit cycle is the unique attractor and the
origin the unique repeller of the system [4]–[6]. At µ1 = 0
(corresponding to G = 1), the origin becomes a saddle and
a pair of symmetric, with respect to the origin, unstable
equilibria is created [4], [6]. This suggests that a pitchfork
bifurcation [4]–[6], denoted by F

(1)
+ in the parameter plane,

has occurred. The symmetric equilibria are unstable for
parameter values µ2 > µ1 > 0. At µ1 = µ2 (corresponding to
2G− 3 = −1/Q2) they become stable, while simultaneously,
two symmetric, with respect to the origin, unstable cycles
are created around them [4], [6]. This scenario is the
inverse of the supercritical Hopf bifurcation discussed at
µ2 = 0 and µ1 = 0, and corresponds to a subcritical Hopf
bifurcation, denoted as H(2) in the parameter plane. The two
unstable cycles form a homoclinic loop, i.e. a closed orbit
of infinite period, at parameter values µ2 = 0.8µ1 +O(µ

3/2
1 )

(corresponding to 12− 7G = 5/Q2) [4]–[6], [47]. The locus
of all such (µ1, µ2) is denoted by P in the parameter plane
and corresponds to a homoclinic bifurcation. As a result, for
parameter values µ1 > µ2 > pµ1+O(µ

3/2
1 ) > 0, p ≈ 0.752,

the stable limit cycle and the symmetric stable equilibria
are the attractors of the system, while the unstable limit
cycle is the unique repeller [4]–[6], [47]. The oscillatory
behavior is destroyed at µ2 = pµ1 + O(µ

3/2
1 ), p ≈ 0.752,

(corresponding to G(1 − 3p) + 3p = 1/Q2) when the two
cycles (stable and unstable) collide and disappear. This
scenario corresponds to a typical saddle-node bifurcation,
denoted by K in the parameter plane [4]–[6], [47]. As system
(6) is a versal deformation [4]–[6], higher-order terms of f
do not qualitatively change the dynamics in an open region of
the origin. This suggests that, there exists a disk centered at
(x1, x2) = (0, 0), at least within which all systems resulting
from an LC resonator and a differential element, including
the MOS implementation of Fig. 2 as described in [1], which
is characterized by a cubic nonlinear function f , exhibit the
behavior discussed previously for normal-form parameters

(µ1, µ2) close to (0, 0), or equivalently, for (G,Q) parameters
close to (1, 1). The contribution of higher-order terms shapes
the bifurcation curves, particularly in regions distant from the
point (µ1, µ2) = (0, 0), and numerical analysis, as described
in the following subsection that considers the exact form
of the nonlinearity f , is needed to continue the curves and
identify other possible bifurcations.

Concluding the discussion on the normal form (8), we
note that the parameters (µ1, µ2) determine the dynamical
characteristics of the autonomous system (8). Although in
the parameter region defined by H(1) and K (cf. Fig. 3),
the circuit can operate as an oscillator, the characteristics
of the oscillations are not identical, as the autonomous
frequency and the rate of convergence—quantified by the
Floquet exponents—depend on the parameters (µ1, µ2) (cf.
the relevant discussion in the next subsection). Additionally,
as the parameters vary between the curves H(1) and K, the
basin of attraction of the stable limit cycle—namely, the set
of initial conditions (x1(0), x2(0)) for which self-sustained
oscillations occur—changes. Specifically, when (µ1, µ2) lie
between the curves H(1) and K, the initial conditions must
lie outside the unstable cycle(s) for oscillatory behavior to
manifest. Similar considerations apply to the equilibria and
their corresponding convergence speed as well.

Application to the Complementary BJT Oscillator
Consider the oscillator in Fig. 2 (with vi = 0) consisting

of two complementary BJT cross-coupled pairs [46]. It is
modeled abstractly as in Fig. 1 and therefore its dynamics is
captured by system (3) with,

f
(
v/Vr

)
= tanh

(
v

2Vt

)
, I0 = γICQn4

, Vr = 2VT , (8)

where γ = g(αF ), αF = βF /(βF + 1) is the common-base
forward short-circuit current gain and γ → 1 as αF → 1.
The current I0, as expected for an autonomous oscillator,
is independent of the time t and in fact coincides in this
case (ignoring the losses due to αF < 1) with the collector’s
current.

Fig. 3 (b) shows the bifurcation diagram of system (3) in
terms of the design parameters (G,Q). The super/sub-critical
Hopf (H(1,2)) bifurcation curves and the pitchfork (P ) can
be analytically computed as,

H(1) : Q2G = 1, P : G = 1,

H(2) :
(
G,Q2

)
=

(
r

tanh r
,

tanh r

r
(
1− tanh2 r

)), r > 0
(9)

As explained in the previous subsection, the qualitative
analysis guarantees the existence of the bifurcation curves and
establishes their linear behavior in a neighborhood of the point
(Q,G) = (1, 1). Away from this point, the bifurcations cease
to be linear and need to be computed numerically, e.g. via [48].
As shown in 3 (b), the continued curves of the nonlinear
system (3) locally match the linear ones of the normal
form (6) near the point (µ1, µ2) = (0, 0) and, as expected,
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FIGURE 2. LC oscillator consisting of two complementary BJT
cross-coupled transistors.

coincide locally with the curves presented in [1] for the MOS
implementation characterized by a cubic nonlinear function
f . However, the numerical computation of these curves also
extends the qualitative behavior analyzed in the previous
subsection to the entire parameter space. Thus, the creation
and destruction of oscillations are quantitatively determined.
We could argue that the qualitative local behavior extends
to the whole parameter space whenever the nonlinearity f
has exactly three fixed points, including, as special cases, the
MOS implementation in [1] and the BJT shown in Fig. 2.

FIGURE 3. (a) Bifurcation diagram with respect to normal-form parameters
µ1, µ2 around the point (µ1, µ2) = (0, 0). (b) Bifurcation diagram with
respect to design parameters Q,G for the circuit in Fig. 2. The blue line
corresponds to a supercritical Hopf bifurcation (H(1)), the vertical red line
to a pitchfork (F (1)), the green to a subcritical Hopf (H(2)), the magenta to
a homoclinic bifurcation (P ) and the orange to a saddle-node (K). Points
(A), (B), (C), and (D) correspond to each of the four phase plots shown in
Fig. 4.

Qualitatively different phase plots of the system (3) are
shown in Fig. 4, for parameter values (G,Q) resulting in
a stable limit cycle. Each of the four subfigures in Fig. 4
corresponds to a pair (G, Q) lying in one of the four regions
(containing the points A, B, C, and D, respectively) defined
by the curves H(1), F

(1)
+ , H(2), P , and K in Fig. 3(b), where

the system (3) admits self-sustained oscillations.
In (a), the phase space consists of a stable limit cycle

and a repeller, the origin, as the parameters lie between
the curves H(1) and F

(1)
+ of Fig. 3 (b). Inside the region

defined by the curves F
(1)
+ and H(2) two unstable equilibria

have emerged due to a Pitchfork bifurcation, as depicted
in (b). These fixed points gain stability giving rise to two
unstable cycles in the region defined by the curves H(2) and
P –(c)–, which in turn collide forming a bigger unstable
cycle in the region between P and K, as shown in (d). The
two cycles –stable and unstable one– finally collide at K.
Notably, the qualitative local analysis discussed about the
normal is extended on the whole parameter space, as the
previous analysis suggests. We remark, as in the analysis
of the normal form (6), that although the system (3) admits
self-sustained oscillations in each of the four cases, the basin
of attraction of the stable limit cycle—namely, the set of
initial conditions (x1(0), x2(0)), or equivalently, the set of
initial capacitor voltage and inductor current pairs, for which
oscillations are observed— coincides with the entire phase
space, except for the origin, i.e., with (x1, x2) ̸= (0, 0),
only in the first case. Therefore, this parameter region is
suitable for operation as a divider with weak injection, as
it is unlikely for the state-space vector (x, y) to converge to
any equilibrium (formally, the measure of the complement
of the basin of attraction is zero).

The effects of parameters G and Q on the Floquet
multiplier µ and on the oscillation frequency ω of the principal
limit cycle, i.e., the stable cycle of Fig. 4, are illustrated in Fig.
5. The curves emerge at different values of the parameter G,
corresponding to points (G,Q) lying on the Hopf curve H(1)

of Fig. 3. At the birth of the limit cycle, the Floquet multiplier
µ always equals 1. Based on the qualitative analysis of the
normal form (6) and the discussion on Figs. 3 and 4, the
principal oscillation is destroyed when the point (G,Q) lies
on the K curve of Fig. 3, where a saddle-node bifurcation
occurs. From the perspective of the Floquet multiplier, at
this point µ assumes the value 1, as demonstrated for the
log10 Q = 0.1 case. The same pattern holds for the remaining
three curves, although the bifurcation occurs at significantly
higher values of the parameter G.

For a fixed G < 1, i.e. , between the H(1) and F
(1)
+

curves of Fig. 3, increasing Q results in the output frequency
becoming less dependent on the parameter G. For sufficiently
large Q (e.g., Q > 8), the output frequency equals the
ideal frequency 1 (normalized). The output signal v becomes
closer to sinusoidal (with reduced harmonic content), but the
Floquet exponent also increases, implying slower convergence
towards to self-sustained oscillation, or locking in the case of
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a frequency divider, as the rate of convergence is proportional
to µ. Thus, for sufficiently large Q, the resistor R in the model
(1) effectively appears in parallel with the L and C elements,
a remark that will be utilized in analyzing the oscillator’s
operation under external excitation as a divider.

Finally, note that the presented analysis characterizes
qualitatively a much larger class of LC oscillators with a
single tank and differential active element, including, as a
special case, the MOS architecture established in [1]. The
extension of the bifurcation curves to the whole parameter
space can be achieved numerically in a similar manner for
any nonlinear function f and, thus, any such oscillator.

FIGURE 4. Phase portraits of system (3) describing the BJT
implementation for parameters (G,Q) where (3) admits a stable limit cycle
based on the bifurcation curves in Fig. 3. Blue: attractors, red: unstable
entities, circles: nodes, crosses: saddles. Points (A), (B), (C), and (D) in the
parameter space of Fig. 3 correspond to the respective phase plots.

III. Nonlinear Analysis of the Injection Locked Frequency
Divider

In this section, the operation of the general signal-injected
oscillator-model in Fig. 1, as a frequency divider, is analysed.
The corresponding system-level diagram appears in Fig. 6.
The external forcing affects directly the term I0(t) making
it time-dependent and, in turn, causing ic = I0(t)f(v/Vr)
to be explicitly time-dependent as well. We express I0(t) =
Γg (ωint;A), which can be considered as an one-parameter
family of functions, where the normalized (with respect to
Vr) amplitude of the forcing A is the parameter and ωint
represents the argument. We adopt the above notation in order
to stress that the two variables, A and ωint, are treated as
conceptually different. Function g can be considered as a (non-
linear) transformation of the injected signal AVr cos (ωint).
We assume that g (· ;A) is 2π-periodic for every A and
satisfies g(ωint; 0) = 1 for all t–i.e., in the absence of any
forcing, the current I0(t) equals its DC value. So, I0 has
angular frequency ωin, normalized amplitude (with respect to
Vr) A and Γ corresponds to the dc current value considered
in Section II in the absence of external injection.

(a)

(b)

FIGURE 5. The effects of G and Q parameters on the Floquet multiplier
and the (normalized) frequency of the limit cycle. Blue: log10 Q = 0.1.
Orange: log10 Q = 0.4. Yellow: log10 Q = 0.6. Magenta: log10 Q = 1.

FIGURE 6. System diagram of the generic ILFD captured in Fig. 1.

We assume that Q is large enough, typically around 10,
and that G satisfies G < 1, Q2G > 1, i.e. the parameters
lie between the H(1) and F

(1)
+ curves of Fig. 3. As shown

in Section II, the free-running oscillator (1) has a natural
frequency very close to ω0 = 1/

√
LC and, as a result, we

can approximate the equivalent model in Fig. 1, with the
resistor R being in parallel with the L,C elements. The
current to voltage natural frequency response of the filter is
now expressed, with the assumption of large Q, nearby the
resonance frequency ω0, as

H(jω) =
H0

1 + j2Q∆ω
ω0

, ∆ω = ω − ω0, (10)

where H0 is a constant with Ω dimensions. Assuming a
general divide-by-N operation (N > 1), the abstract circuit
in Fig. 1 has the system level model of Fig. 6, where
ωin = Nωout. To establish the equivalence, we first note
that the voltage-controlled current source ic(t), modeling the
negative resistance, is the product of two distinct terms: the
dimensionless nonlinear function f(v/Vr) and the current
I0(t) = Γg (ωint;A), where g is a function of the injected
voltage. These two terms are represented independently in
Fig. 6 in order to distinguish the nonlinearity f from the
explicit time-dependence. Their product, ic, is then the input
of the filter R, L, C composed by the passive elements
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H , whose output v, is the input of the nonlinear function f ,
resulting in the closed loop.

Since the value of Q is assumed large enough (and G <
1), the limit cycle is almost completely harmonic and the
unique attractor. Thus, at steady state, the output voltage v
is expressed as,

v = VrB cos (ωoutt+ θ), (11)

for some B > 0 and θ ∈ [0, 2π). Expanding the periodic
signal g(ωint;A) in Fourier series we have,

g(ωint;A) = a0(A) + 2

∞∑
n=1

an(A) cos (nNωoutt)

+ 2

∞∑
n=1

cn(A) sin (nNωoutt),

(12)

where

an(A) =
1

2π

∫ 2π

0

g(ϕ;A) cos (nϕ)dϕ

cn(A) =
1

2π

∫ 2π

0

g(ϕ;A) sin (nϕ)dϕ.

(13)

Similarly, since f(v/Vr) is even with respect to the argument
ϕ = ωoutt+ θ, by expanding we get,

f(v/Vr) = b0(B) + 2

∞∑
n=1

bn(B) cos (nωoutt+ nθ), (14)

where

bn(B) =
1

2π

∫ 2π

0

f (B cosϕ) cos (nϕ)dϕ. (15)

The parity of f implies b2n = 0 and thus the series in
(14) contains only odd terms. Multiplying (15) with (12) we
obtain,

g · f = 2a0(A)

∞∑
m=1

b2m−1(B) cos
[
(2m− 1) (ωoutt+ θ)

]
+ 2

∞∑
n=1

∞∑
m=1

an(A)b2m−1(B)
[
cos
(
αn,m(t)

)
+ cos

(
βn,m(t)

)]
+ 2

∞∑
n=1

∞∑
m=1

cn(A)b2m−1(B)
[
sin
(
αn,m(t)

)
+ sin

(
βn,m(t)

)]
,

(16)

where we set

αn,m(t) =
(
nN − (2m− 1)

)
ωoutt− (2m− 1)θ, (17)

and

βn,m(t) =
(
nN + (2m− 1)

)
ωoutt+ (2m− 1)θ. (18)

Our assumption for large Q implies that the bandpass
filter H rejects all intermodulation products away from ω0.
Considering that ωout lies sufficiently close to ω0, the indices
m and n of the terms in the double summation in (16) that
pass through the filter must satisfy nN − (2m− 1) = ±1 ⇒
m = (nN + 1∓ 1) /2. The cases nN + (2m − 1) = ±1
lead to no solution, since the corresponding frequencies are
rejected by H . Let S denote the set of integers to which n

belongs, so that m is also an integer. If N is even, then n
is unconstrained and traverses all positive integers. If N is
odd, then S contains only the even positive integers.

Based on the preceding discussion, the terms in (16) that
pass through the filter are given by

2a0(A)b1(B) cos (ωoutt+ θ)

+ 2
∑
n∈S

[
an(A)bnN−1(B) cos (ωoutt− (nN − 1)θ)

+ an(A)bnN+1(B) cos (ωoutt+ (nN + 1)θ)

]
+ 2

∑
n∈S

[
cn(A)bnN−1(B) sin (ωoutt− (nN − 1)θ)

− cn(A)bnN+1(B) sin (ωoutt+ (nN + 1)θ)

]
.

(19)

Writing (19) in phasor form and applying the filter H , we
derive the following complex equation

VrBejθ =
2H0Γ

1 + 2jQ∆ω
ω0

{
a0(A)b1(B)ejθ+

∑
n∈S

[
an(A)

(
bnN−1(B)e−j(nN−1)θ + bnN+1(B)ej(nN+1)θ

)
− jcn(A)

(
bnN−1(B)e−j(nN−1)θ − bnN+1(B)ej(nN+1)θ

)]}
(20)

where ∆ω is evaluated at ωout, namely ∆ω = ωout − ω0.
Separating the real and imaginary parts and dividing them,
we get

∆ω(θ) =
ω0

2Q

P (θ)

D(θ)
. (21)

The functions P (θ) and D(θ) are given by the relations

P (θ) =
∑
n∈S

dn(B)
(
an(A) sin (nNθ) + cn(A) cos (nNθ)

)
(22)

and
D(θ) = b1(B)a0(A)

+
∑
n∈S

sn(B)
(
an(A) cos (nNθ)− cn(A) sin (nNθ)

)
,

(23)

where the coefficients sn, dn are expressed as,

sn(B) = bnN+1(B) + bnN−1(B)

dn(B) = bnN+1(B)− bnN−1(B).
(24)

The maximum two-sided output referred locking range for
the divide-by-N operation is given by,

∆̂ωmax =
ω0

Q
max

θ∈[0,2π)

P (θ)

D(θ)
. (25)

We remark that the condition ∆ω ≤ ∆̂ωmax is necessary and
sufficient for (20) to admit a solution. Riemann-Lebesgue
Lemma [49] ensures that limn→∞ an, bn, cn = 0 so that
terms in (22) of high index can be ignored in practical
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TABLE 1. Output-referred Locking Range estimation for even N and even

I0(t) = Γg(ωint;A).

Number
of

Terms
Locking Range Estimation ×Q/ω0

1 Term
|a1d1|√

a20b
2
1 − a21s

2
1

2 Terms max
θ∈[0,2π)

a1d1 sin (Nθ) + a2d2 sin (2Nθ)

b1a0 + a1s1 cos (Nθ) + a2s2 cos (2Nθ)

k Terms max
θ∈[0,2π)

a1d1 sin (Nθ) + · · ·+ akdk sin (kNθ)

b1a0 + a1s1 cos (Nθ) + · · ·+ aksk cos (kNθ)

calculations and a truncated Fourier series be utilized. Further,
if for a given N , the terms decrease fast enough, one can
consider only the first term in (22) and approximate ∆ω by

∆ω =
ω0

2Q

C1 sin (nNθ) + C2 cos (nNθ)

C3 + C4 cos (nNθ) + C5 sin (nNθ)
, (26)

where n = 1 or n = 2,

C1 = an(A)dn(B), C2 = cn(A)dn(B), (27)

and

C3 = a0(A)b1(B), C4 = an(A)sn(B), C5 = −cn(A)sn(B).
(28)

In particular if I0(t) is even, then cn = 0 and assuming
|C4/C3| < 1, (26) has a maximum for cos (nNθ) = −C4/C3

which results in the approximate two-sided output referred
locking range

∆̂ωmax =
ω0

Q

|C1|√
C2

3 − C2
4

. (29)

We note that based on the equations (22) and (23),
the approximation of (29) with even I0 is equivalent to
approximating the injected signal g as having only one
harmonic. However, it still provides a better approximation
than Adler’s equation, since the full nonlinear function f is
considered in the derivation instead of its linear approximation.
If more terms are considered in the series (22) then the
maximum can be found numerically in a straightforward
manner. We note that in practical calculations, under the
assumption of weak injection, the amplitude B in the previous
relations, can be approximated by the (normalized) free-
running amplitude. Table 1 summarizes the approximation
using the first k terms in (22) for the maximum locking range
in the case of even N , where we have dropped the explicit
dependence of a, b, s, and d on A and B. Modifications for
the cases of odd N and arbitrary I0 are straightforward.

As discussed in Section II, the parameters (G,Q) influence
the characteristics of the limit cycle and, consequently, the
maximum locking range. Although this topic lies beyond the

scope of the present work, an interesting direction for future
research would be to investigate this dependence, based on
the proposed analysis, for optimization purposes.

Application to the Complementary BJT ILFD
In particular, if one considers the circuit of Fig. 2, then (8)

implies that bn(B) corresponds to the n-th Fourier coefficient
in the expansion of tanh (B cos (θ)) and an(A), cn(A) to the
n-th Fourier coefficients of g(ωint;A) = exp (AVr cos (ωint)).
Thus, an(A) = In(A), cn(A) = 0 where In(·) denotes the
n-th modified Bessel function of the first kind. In the case
N = 2, (29) is in agreement with the result in [46].

Fig. 8 compares the theoretical results, considering different
numbers of terms in the summations in (25) (c.f. Table 1),
with the experimentally measured input-referred LR using
the implementation shown in Fig. 7. We note that the input-
referred LR is twice that of the output-referred LR. For this
reason, the formulae in (29) and Table 1 are multiplied by two.
Adler’s line, which has been included for comparison, has a
slope equal to the parameter G for a differential LC oscillator.
The parameters of the ILFD in Fig. 2, as implemented in Fig.
7, were selected such that the free-running frequency equals
f0 = 128 MHz, Q = 10, G < 1 and Q2G > 1, which, as
theoretically expected, results in an almost harmonic free-
running oscillator. More specifically, the values of the passive
elements are L = 25nH, C = 62pF and the parasitic resistor
R was measured around 2Ω. The bias current equals 2mA,
resulting in G = 0.08. The NPN transistor model is HFA3134,
while the PNP transistor model is HFA3135, characterized
by β = 200 and β = 125, respectively1. The measurement
of the experimental locking range was performed using a
brute-force approach. Specifically, the Lissajous figure on
the oscilloscope, between the injected voltage signal and the
voltage across the capacitor, was used to determine whether
locking occurred—equivalently, whether the curve was closed
or not. For different values of the injected amplitude, A, the
injected frequency fin was gradually increased (decreased)
from 2f0 = 256MHz until synchronization was destroyed,
resulting in the maximum (minimum) input frequency that
achieves 2 : 1 locking, i.e., an output frequency equal to
half of the input frequency. The difference between these
frequencies equals the experimental input-referred locking
range (LR), shown in Fig. 8.

Considering only one term (equivalent to (29)), for small
injection voltages, the locking range is accurately estimated by
the analytical expression (29). This first-order approximation,
however, deviates from the measurements as the injection
voltage increases, providing a conservative estimation. Con-
sidering two terms, the theoretical curve approximates both
the qualitative and quantitative aspects of the experimental
results. Further, this validates the strong decreasing nature
of the higher-order terms in the summations (22), (22), as
explained in Section III. Thus, at the first stage of the design

1More information about their characteristics can be found at the following
link to the datasheet [link].
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(29) can be used to provide a worst-case estimation and, if
better accuracy is needed at larger injection voltages, more
terms (only two) from Table 1 can be used.

If we considered a different architecture of a differential
LC divider, then we would follow the same procedure. It
can be described as follows:

• Determine the nonlinearity f and consider an inductor
such that Q is at least 10 (as demonstrated, the
qualitative behavior is similar). Ensure that Q2G > 1
and G < 1.

• Determine I0, or equivalently g, and the set S, based
on N .

• Compute the coefficients an, cn from (13), bn from (15)
and thus sn, dn from (24).

• To obtain a first-order estimate consider only the first
term in (22) and (23). Maximize (26) where the Ci

coefficients are given by (27) and (28). If I0 is even,
(29) holds.

• If better accuracy is needed, consider more terms in
the summation of P,D in (22), (23), and numerically
maximize (25). If N and I0 are even, Table 1 applies.

FIGURE 7. Experimental implementation of the circuit shown in Fig. 2 for
measuring the LR.

IV. Conclusions
Considering a general class of differential LC oscillators,

we first conducted a bifurcation analysis regarding the design
parameters and discussed the conditions necessary for a stable
limit cycle to exist. We demonstrated that all oscillators within
this class exhibit the same qualitative behavior, at least in
a neighborhood of the origin. By using the complementary
BJT oscillator as an example, we showed how the bifurcation
curves of such an oscillator are numerically extended, deduc-
ing, thus, quantitative oscillatory conditions and validating
the qualitative general results. Subsequently, we investigated
the harmonically forced oscillator as a frequency divider.
We introduced a comprehensive nonlinear approach based
on the Harmonic Balance technique to estimate analytically
the locking range under weak injection conditions. The

FIGURE 8. Theoretical and measured two sided input-referred
locking-range considering the circuit in Fig. (2) and divide by 2 operation.
Free running frequency f0 = 128 MHz and Q = 10.

final formulae are easily evaluated and can be viewed as
a generalization of Adler’s equations. The application of this
methodology to the complementary BJT oscillator yielded
results closely aligned with the measurements, complementing
the approach presented in [46].
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