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Sigma delta modulators importance is unambiguous in many applications. Since they are inherently non-
linear systems, they are often approximately linearized to allow for thederivation of their theoreticalNoise-
Transfer-Function (NTF). SDMNTF is used for both analyzing and synthesizing them.Although linearization
is the standard approach for its derivation, there do exist SDM architectures to which it cannot be applied.
The aim of this paper is twofold: To provide a general framework for deriving the NTF for all SDM architec-
tures, and, to use it to evaluate the accuracy of the standard theoretical NTF approximation for those SDM
architectures accepting linearization. To this end, we introduce a new magnitude-only transfer-function
modeling framework for SDMarchitectures,which is based on output noise spectrumandproduces a stable
LTI NTF approximation model. This framework is based on a phase reconstruction and a rational transfer-
function fitting step, using the Vector Fitting algorithm. To show its applicability, we used it to derive NTF
models for SDMs at system level and at RTL. Finally, the generality of our approach is demonstrated by
deriving experimental NTF for a class of SDMs without standard linearized models.

� 2019 Elsevier GmbH. All rights reserved.
1. Introduction

Advancement in digital CMOS IC technology has resulted in
powerful digital circuits dominating modern electronics systems
and even replacing traditional analog operations. The interface to
the physical world, however, requires the use of digital-to-analog
(DAC) and analog-to-digital data converters (ADC). When high res-
olution data conversion is needed, Sigma-Delta modulators (SDM)
are an excellent choice in many cases [1–4]. Many other systems
also rely on SDMs, including fractional-N PLLs [5–8], all-digital
transmitters [9–11], class-D power amplifiers [12–14], signal
converters [15–17], etc.

SDM is a non-linear feedback loop with a filter and a quantizer
as shown in Fig. 1. The purpose of the SDM is to pass the input sig-
nal to its output, representing it with the resolution of the quatizer,
which can be 1 or more bits, and with the minimum possible qual-
ity loss [18]. It typically samples the input signal at a rate much
higher than the Nyquist rate corresponding to the signal’s band-
width and shifts the power of the quantization error(noise) outside
of the useful frequency band. The ratio between the SDM sampling
rate and the Nyquist rate is known as the oversampling ratio (OSR).

It is essential to have an analytical system model of the SDM
and use it to analyse or design the SDM’s input–output behaviour.
For this purpose, it is a common practice to replace the quantizer (a
stongly nonlinear element) with a linear ’approximately-equiva
lent’ block formed of a static gain k and an additive noise source,
as in Fig. 2. Furthermore, in most cases it is assumed that k ¼ 1
and the additive noise is white [18].

This approximate linearization leads to the equivalent two-
input single-output system,

Y zð Þ ¼ STF zð ÞX zð Þ þ NTF zð ÞW zð Þ; ð1Þ
where X zð Þ and W zð Þ are the z-Domain transforms of the input sig-
nal and the additive white noise. The Signal Transfer Function (STF)
and Noise Transfer Function (NTF) are given by

STF zð Þ ¼ L zð Þ
1þ L zð Þ ð2Þ

and

NTF zð Þ ¼ 1
1þ L zð Þ : ð3Þ

Based on (1) the output is composed of the input weighted by
STF zð Þ and the quantization noise component NTF zð ÞW zð Þ, both of
which are functions of the loop filter L. Typically, L is selected so
that STF is very close to unity and NTF is very close to zero within
the useful signal bandwidth, and, the loop is stable [18,19].

Apart from this approach, other techniques have been proposed
for the analysis and modeling of SDM operation inluding quasi-
linear analysis [20,21], state-space models with nonlinear dynam-
ics [22], limit cycle analysis [23], parallel decomposition [24], etc.
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Fig. 1. System diagram of an SDM.

Fig. 2. Linear SDM model where the quantizer is replaced by a static gain k and an
additive error(noise) signal w.

Fig. 3. The noise shaping procedure of an SDM, illustrated for a) a bandstop and b) a
highpass NTF. The difference between input and the output of the quantizer is a
white noise signal, which is shaped by the NTF.
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All these approaches are also approximate and their accuracy
depends on the parameters of the particular SDM studied.

Since the definition and derivation of NTF is necessary, an alter-
native approach, using only input–output data, was proposed in
[25,26]. In this setting, SDM behaviour is modeled as a black box
by an autoregressive moving average model with exogenous inputs
(ARMAX). The SDM is excited with an odd random-phase multisine
and the resulting frequency domain output samples are fitted to
the model [25–27].

Inspired by the above methodology in [25], this work intro-
duces a new approach in defining and deriving the NTF of SDM,
based on a magnitude-only modeling technique. Instead of using
ARMAX, the introduced approach models NTF directly as a stable
rational transfer function. It assumes an internal white noise
source of unit power, as noise input, while the SDM is excited by
a single sinusoidal signal. First the power spectral density of the
output noise is calculated and filtered to reconstruct the phase.
Then, the resulting complex-valued spectral samples are used to
determine the magnitude response of the SDM NTF at a predeter-
mined set of frequencies. Finally, these frequency samples are used
in the popular Vector Fitting algorithm [28], which delivers a
rational transfer function fitting the samples in magnitude.

The contributions of this work are 1) a framework for
magnitude-only modeling of transfer functions using the Vector
Fitting algorithm and the phase reconstruction procedure, 2) appli-
cation of this framework to deriving the NTF of SDMs, and 3) com-
parison of the derived NTF with the theoretical linearized models
and verification of the last ones.

The paper is organized as follows: Section 2 describes proper-
ties of conventional SDMs that are used in the proposed methodol-
ogy. In Section 3, the proposed approach for magnitude-only
modeling is presented and the reader is introduced to the Vector
Fitting algorithm. Section 4 provides system-level and RTL simula-
tions using both conventional SDMs and SDMs not accepting the
simple linearization. Section 5 concludes the discussion.

2. SDM Properties

In order to generate an output signal with low quantization
noise floor within the frequency range of interest, Sigma-Delta
Modulation relies on two fundamental properties, oversampling
of the input signal and quantization error spectrum shaping. Over-
sampling results in output noise power spectral density reversely
proportional to the OSR, i.e.,
SW ¼ D2

12 � bandwidth � OSR ; ð4Þ

under the assumption that the quantization error is approximately
uniformly distributed white noise for realistic input signals [18].
Here, D is the step of the quantizer.

In-band output noise is further reduced by shaping the output
quantization noise power, via NTF, outside the frequency band of
interest. To this end, the magnitude of the NTF is small within
the frequency band of interest (in-band) and equivalently, the
magnitude of the loop filter, L zð Þ is large because of (2), also imply-
ing that the STF is close to unity. This error shaping procedure is
illustrated intuitively in Fig. 3[29].

SDM synthesis is equivalent to the selection of an NTF that max-
imizes the signal-to-quantization-noise ratio (SQNR) [18] in the
frequency band of interest, while ensuring stability and reasonable
hardware complexity. NTF design is typically done by appropri-
ately placing its zeros and poles, separately. Note that the designer
should also consider the loop filter stability and the need for the
NTF to be a causal filter, in order for the SDM to be realizable [29].

Besides the conventional SDM in Fig. 1, several alternative
architectures have been proposed and used in state-of-the-art sys-
tems, providing trade-offs between hardware complexity and
noise suppression. Of great interest are the MASH SDMs, providing
low hardware implementation complexity [30,31], and the
recently introduced Multi-Step Look-Ahead SDMs, providing
higher stability range and better noise suppression with a small
hardware overhead [32].

The aforementioned properties are used in the following section
to establish our modeling methodology.
3. Magnitude-only modeling of SDM NTF

Designing and verifying SDMs is a critical and usually cumber-
some process when the requirements are stringent, typically in
many signal generation and processing systems like advanced fre-
quency synthesizers, data converters etc [33]. Having a model of
the SDM transfer functions is necessary to estimate the total beha-
viour of the overall system to which the SDM is a part. However,
the definition and derivation of the NTF especially is not trivial,
as NTF is a conceptual filter which cannot be excited directly or
indirectly.

The proposed approach defines and derives the NTF of the SDM
based on frequency-domain fitting and leveraging the whiteness
property of the SDM quantization noise, while avoiding cumber-
some time-domain system identification for SDMs with binary out-
puts [34].

The resulting model has the same output noise PSD as the
SDM and it is derived entirely from frequency domain magni-
tude data, since the phase of the NTF input signal is unavailable.
Furthermore, unlike prior work on magnitude-only macromodel-
ing [35,36], which require the solution of constrained minimiza-
tion problems and doubling of the model order complexity, the
proposed framework solves repeatedly linear systems. This



Fig. 4. Derivation of the equivalent NTFmin ejx
� �

with reconstructed phase.
lmin n½ � ¼ 2u n½ � � d n½ �.
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results in both higher computational efficiency and convergence
rate.

Assumption: The quantization error is white noise with unit power
spectral density, i.e. SW ejx

� � ¼ 1.
The assumption along with the definition of NTF imply that the

PSD of the output noise, Sn ejx
� �

, is such that

jNTF ejx
� �j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sn ejxð Þ
q

: ð5Þ

Note that the assumption of SW ejx
� � ¼ 1 is made only to sim-

plify the mathematical expressions and notation. To account for
any values of D and OSR, and so for SW ejx

� �
– 1, one can follow

the steps of the proposed approach and divide the derived model
function by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW ejxð Þ

p
.

The function jNTF ejx
� �j of x 2 0;p½ � is derived in numerical

form via simulation of the SDM and the data are used in the phase
reconstruction stage of our approach. Following, a frequency
domain model is derived using the Vector Fitting algorithm.

3.1. Phase reconstruction

Phase reconstruction is the first stage of the proposed approach.
It supplements the available magnitude-only data from (5) with
artificial phase following the minimum phase and all-pass deconvo-
lution method [37].

If NTF is a minimum-phase rational transfer function, its phase
is uniquely defined by its magnitude and it coincides with the
generated phase data. If instead NTF is of non-minimum
phase, the proposed approach yields data that correspond to a
minimum-phase function with the same magnitude.

Let us consider a stable sequence p n½ � and its z-transform P zð Þ. If
ln(P zð Þ) has a power series expansion converging within the unit
circle, then the complex cepstrum of p n½ � exists and can be
expressed as in [37].

p n½ � ¼ pmin n½ � � pap n½ �: ð6Þ
The Fourier transform of (6) implies that P ejx

� �
is the product of

a minimum phase and all-pass component, i.e.:

P ejx
� � ¼ Pmin ejx

� � � Pap ejx
� �

: ð7Þ
Consider NTF ejx

� �
in the place of P ejx

� �
. Since NTFap ejx

� ��� �� ¼ 1,
the minimum phase component, NTFmin ejx

� �
has the same magni-

tude with NTF ejx
� �

. Using the available magnitude of the NTF ejx
� �

,
we determine the minimum phase component of the NTF, using
the procedure illustrated in Fig. 4.

Summarizing the procedure for the phase reconstruction, first
jNTF ejx

� �j is estimated at a set of frequencies
xk 2 0;p½ �; k ¼ 0;1; . . . ;Ns � 1, using simulation or measurements
and (5); then, the values NTFmin ejxk

� �
; k ¼ 0;1; . . . ;Ns � 1 are

derived as in Fig. 4 [37]. Sequence NTFmin ejxk
� �

has the right
amplitude and a reconstructed phase.

3.2. z-Domain vector fitting for SDM

The Ns frequency response samples H ejxk
� �

; k ¼ 0; . . . ;Ns � 1,
derived using the procedure in the previous subsection, are fed
to the z-Domain version of the Vector Fitting algorithm [38], which
is denoted by VF for simplicity.

VF fits a pole-residue model (8) to the samples in the least
squares sense, i.e.,

NTFmin zð Þ �
XN
n¼1

Rn

z� pn
þ R0: ð8Þ
Residues Rn and poles pn may be real or complex conjugate
pairs, while R0 is real. Model order N is selected a priori. In our case,
One option is to select N equal to the order of the SDM loop filter
L zð Þ.

The algorithm is comprised of two steps, the pole relocation and
the residue identification.

In the pole relocation step, the poles pn;n ¼ 1;2; . . . ;N are
derived. Since the direct least squares solution of (8) is a nonlinear
problem, an iterative procedure is used instead, which is a special
case of the Steiglitz-McBride method [39]. Here, the model in the
right hand side of (8) is expressed as N zð Þ=D zð Þ with its numerator
and denominator having the following form:

N zð Þ ¼
XN
n¼1

�cn
z� an

þ �c0; D zð Þ ¼
XN
n¼1

�dn

z� an
þ 1: ð9Þ

Quantities �cn; �dn; an;n ¼ 1; . . . ;N are real or come in complex
conjugate pairs and �c0 is real. Note that N zð Þ;D zð Þ share the same
poles and therefore the poles of the model in (8) are in fact the
zeros of D zð Þ.

Multiplication of the error NTFmin zð Þ � N zð Þ=D zð Þ with D zð Þ and
substitution from (9) yields the minimization problem 1:

XN
n¼1

�dn

z� an
þ 1

" #
NTFmin zð Þ �

XN
n¼1

�cn
z� an

þ �c0

" #
� 0: ð10Þ

By selecting an initial set of parameters an, (10) becomes linear
in �dn; �cn and �c0 and it is solved using least squares. Parameters �dn

and an are used to compute the zeros of D zð Þ which are then used
as the updated values for an.

This results in a new minimization problem (10). Parameters an

are called the relocated poles. The above procedure is repeated for a
predefined number of iterations with an typically converging to
certain values [40]. The poles pn of the model are selected as the
last set of relocated poles an.

The resulting model is required to be stable, so if an iteration
results in an unstable relocated pole an, i.e. janj > 1, this pole is
replaced by 1=a�

n [41].
In the residue identification step, parameters Rn; n ¼ 0; . . . ;N of

(8) are derived. Since the poles of the model are found in the pole
relocation step, (8) can be solved for the residues in the least-
squares sense. For the reader’s convenience, an overview of the
algebraic details of the algorithm is presented in the Appendix.

3.3. Numerical considerations

The problems in (8) and (10) are solved using linear least
squares. The non-smooth spectral data, exhibiting large amplitude
variations, used as input samples of the VF algorithm, make the
least squares systems (8) and (10) prone to errors. To combat the
above obstacle, our approach includes the following pre-
processing steps:

1) Filtering of the spectral data: The spectral data are not smooth
and neighbouring samples may vary several dBs in magnitude. To
reduce the effect of these variations, the samples are filtered using
The number of samples is typically much larger than the model order N.
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a zero phase lowpass filter. In addition, a non-uniform selection of
the sampling frequencies with emphasis on the in-band (low-
noise) frequencies can help further deriving a more accurate
model.

2) Frequency Weighting: Solving the problem in (10) using regu-
lar least squares implies a uniform treatment of all frequencies
independently of the actual power spectral density function of
the noise. This results in good approximation in frequencies with
strong noise but poor approximation in low-noise bands, typically
in the in-band of the SDM. To address this issue, frequency weight-
ing is used. This is done by multiplying both sides of (10) and (8)
with vector w,

w ¼ diag w1; . . . ;wNsf g; ð11Þ
where every weighting coefficient wi corresponds to a single fre-
quency sample and is set equal to the reciprocal of the sample’s
magnitude.
Fig. 5. Comparison of the derived NTF with the theoretical NTF based on the
linearized SDM and with the measurements. Measurements appear decimated for
demonstration purposes.
4. Simulations and results

In this section the proposed modeling approach is illustrated
using a number of examples. Since it is applicable to all SDM archi-
tectures, we demonstrate its efficacy on both conventional and
MSLA SDMS at system level and at RTL.

In all examples, a sinusoidal input within the useful bandwidth
of the SDMs is applied and the output noise spectrum is obtained
by subtracting the input signal from the SDM output 2. The choice
of sinusoidal excitation signals for SDM NTF excitation is standard in
the literature [18,42]. The derived results are compared with the the-
oretical estimates based on linearization of the SDMs. The experi-
ments are executed on a quad-core i7 machine at 2:7 GHz with 8-
GB RAM, running MATLAB 2017b.

4.1. System-level lowpass SDM

Consider a single-bit output, lowpass SDM, with third order NTF
and OSR of 128. The modulator is implemented at system level
using the Delta-Sigma Toolbox [43]. The NTF is designed using
optimal placement of zeros. A sinusoidal signal of 0:1 amplitude
is used for excitation. We choose the frequency (divided by the
sampling frequency) of the sinwave, to be 0:0006 rad/s. The simu-
lation provided 217 SDM output data samples.

Order N ¼ 3 is chosen for the VF model and the maximum num-
ber of iterations is set to 30. The spectral data were filtered and fre-
quency weighting was applied, as described in the previous
section.

The frequency response of our NTF model is depicted in Fig. 5,
along with the available data and the theoretical NTF. There is very
good agreement between our model and the theoretical NTF, in
almost all frequencies.

4.2. System-level bandpass SDM

Here, we apply the proposed approach to a bandpass SDM with
OSR of 128, 4-th order NTF and with normalized central frequency
of about 0.63 rad/s. The modulator is implemented at system level
using the Delta-Sigma Toolbox and it is excited by a sinusoidal
signal of amplitude 0.1 inside the bandwidth of the filter. The
NTF is designed with optimal zero placement. SDM simulation
produces 217 output data samples.

Similarly to the lowpass SDM case, the spectral data are filtered
and frequency weighting is applied as well, emphasizing the
2 STF is considered unity with the bandwidth of the SDM.
in-band noise shaping dynamics. Order of N ¼ 4 is selected for
the VF derived NTF model.

Fig. 6 illustrates the accuracy of the derived NTF model with
respect to the theoretical NTF and the measured data. It is shown
that our approach generalizes well to the bandpass class of SDMs.
The model is in very good agreement with the theoretical transfer
function.
4.3. RTL implementation of bandpass MSLA SDM

An advantage of the proposed approach is its direct applicability
to all SDM architectures due to its black-box nature. In this subsec-
tion the test case is a hardware implementation of a bandpass
MSLA SDM.

Note that there is no established analytical model for the MSLA
SDM NTF [32]. Therefore, the proposed approach provides a way to
define and derive the NTF. To demonstrate the application, we
choose a single-bit-output MSLA SDM with k ¼ 3 look-ahead steps,
8-th order bandpass filters and OSR equal to 128, [32].

A general form of MSLA SDM architecture is shown in Fig. 7. In
contrast to conventional SDMs, the MSLA has multiple loop filters
and a multi-input quantizer [32]. In our case of k ¼ 3 look-ahead
steps, there are 4 loop filters and a 4-input single-bit output quan-
tizer. Each loop filter consists of 3 FIR (finite impulse response) fil-
ters and a single IIR (infinite impulse response) filter. The 4-input
single-bit output quantizer is a static function and it is imple-
mented as a LUT. A detailed theoretical analysis, derivation and
parametrization of this MSLA SDM architecture can be found in
[44].

The hardware implementation of the loop filters was done
using high-level design techniques that generate HDL code. The
LUT entries that implement the quantizer are pre-calculated
using MATLAB and partitioned in 38-sub LUTs to reduce the
required address bits for each sub-LUT. The LUT entries complex-
ity depends on the number of bits used for the representation of
the quantizer’s input. By following the optimization steps
described in [44], we were able to use 6-bit logic for the quan-
tizer input and 32-bit fixed-point arithmetic for the FIR and IIR
filters of each loop filter.



Fig. 6. Comparison of the derived NTF with the theoretical NTF based on the
linearized SDM and with the measurements. Measurements appear decimated for
demonstration purposes.

Fig. 7. MSLA SDM effiecient-form system diagram.

Table 1
MSLA SDM hardware resources.

Resource MSLA SDM

Max. output rate [Msamples/s] 13.3
Slice LUTs [Used Util.] 23,342/11.45%

Slice Registers [Used/Util.] 1,665/0.41%
F7 Muxes [Used/Util.] 2,331/2.29%
F8 Muxes [Used/Util.] 650/1.28%
DSP Blocks [Used/Util.] 205/24.40%

Fig. 8. Comparison of our model accuracy with the collected spectrum data. Please
note that the output noise spectrum data are decimated before plotting, for
demonstration purposes.

Fig. 9. Comparison of our model accuracy with the collected spectrum data. Zoom-
in of the MSLA SDM spectral data.
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The MSLA SDM was implemented for a Xilinx Kintex-7 KC705
Evaluation Kit target device. Table 1 summarizes the hardware
resources used for the FPGA implementation.

The output data of the MSLA SDMwere collected by digital sim-
ulation, after placement and routing. A sinusoidal signal generated
by a 24-bit direct digital synthesizer (DDS) with amplitude 0.25
and normalized frequency 0:628� p rad/s is used as stimulus. Four
million output samples were collected and used for the NTF mod-
eling of the SDM. The model order in the VF algorithm was set to
N ¼ 12 and spectrum data filtering and weighting was applied.
The magnitude response of the derived NTF model is shown in
Fig. 8 in comparison to the square root of the measured output
noise spectrum of the MSLA SDM. For better illustration, Fig. 9
demonstrates the in-band response of the derived NTF model. It
appears that the model captures the output noise shaping of the
modulator in the entire frequency band with accuracy.
5. Conclusion

An approach for the estimation of the SDM NTF which is appli-
cable to all SDM architectures and demonstrates good accuracy
was presented. By definition, the SDM NTF is a conceptual filter
and its input is not available. Thus, we introduced a magnitude-
only modeling framework able to derive stable LTI models for
the NTF. It is based on the approximation that the quantization
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noise is a white and uses output noise spectrum data. For a set of
benchmark SDM implementations, we used the proposed approach
to verify linearized SDM models used in the literature. Finally, by
applying our approach to the class of single-bit MSLA SDMs, we
proved that it generalizes to different SDM architectures for which
linearized models do not exist. In future work, we intend to apply
our modeling framework to multi-bit quantization schemes as
well.
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Appendix A

Eq. (10) can be formulated as the linear system

Ax ¼ b: ð12Þ
Assuming for now that (at the current iteration) all relocated poles,
a0; . . . ; aNs�1 are real, we define

A ¼
a0

..

.

aNs�1

2664
3775 ð13Þ

where

ak ¼ 1
zk � a1

; . . . ;
1

zk � an
; 1;

�H zkð Þ
zk � a1

; . . . ;
�H zkð Þ
zk � an

� �
for k ¼ 0; . . . ;Ns � 1,

x ¼ �c1; . . . ; �cN; �c0; �d1; . . . ; �dN
� 	T

and

b ¼ H z0ð Þ; H z1ð Þ; . . . ;H zNs�1ð Þ½ �T

with zk ¼ ejxk .
The matrices in Eq. (12) contain complex valued entries but x

must be real-valued. We consider real-domain arithmetic prefer-
able, therefore for its numerical solution, (12) is transformed into
an approximately equivalent form

Re Af g
Im Af g

� �
x � Re bf g

Im bf g

� �
: ð14Þ

Note that the system H zð Þ derived by VF must have a real
impulse response [39], which is the case if and only if
H z�ð Þ ¼ H� zð Þ. To achieve this, �c0 is constrained to take only real
values; in addition, if an ¼ aþ ja0 is a pole of the system, then its
complex conjugate, anþ1 ¼ a� ja0 is also a relocated pole of the sys-
tem and their parameters �cn; �cnþ1 and �dn;

�dnþ1 should also be com-
plex conjugates pairs, respectively.

Following the above, if one or more relocated poles are com-
plex, we reform system (12). Suppose for example that relocated
pole a1 is complex. Then,
ak ¼ 1
zk � a1

;
1

zk � a�1
; . . .

� �
and

x ¼ �c1; �c�1; . . . ;
� 	T

are redefined for k ¼ 0; . . . ;Ns � 1 as

ak ¼ 1
z� a1

þ 1
z� a�

1


 �
; j

1
z� a1

� 1
z� a�1


 �
; . . .

� �
and

x ¼ Re �c1f g Im �c1f g . . .½ �;
which gives the VF parameters �c1; �c2. Note that the change of repre-
sentation for dn;dnþ1 is similar. By repeating this change of repre-
sentation for all entries of the system and solving the equivalent
system as in (14), we get a real impulse response.

At each iteration, the new set of relocated poles is computed as

a ¼ eig bA � b̂cT
n o

ð15Þ

where bA ¼ diag a1; a2; . . . ; aNð Þ contains the relocated poles an of the

previous iteration, b̂ is a column vector of ones and cT is a row vec-
tor containing the residues �dn.

Again, in the case of complex conjugate relocated poles an; anþ1,
the entries of the matrices in (15) are constrained to be real by

modifying their representation. bA becomes a block diagonal matrix
with block elements

Re a1f g �Im a1f g
Im a1f g Re a1f g

. .
.

2664
3775

Similarly, b̂ is defined in the block form as

b̂n ¼ 2; 0; . . .½ �T

and c with blocks

cTn ¼ Re �d1
� 


; Im �d1
� 


; . . .
� 	

respectively.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.aeue.2019.152936.
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