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Abstract— Background: Antimicrobial resistance is a major 

public health threat, and new agents are needed. Computational 
approaches have been proposed to reduce the cost and time 
needed for compound screening.  

Aims: A machine learning (ML) model was developed for the 
in silico screening of low molecular weight molecules.  

Methods: We used the results of a high-throughput 
Caenorhabditis elegans methicillin-resistant Staphylococcus 
aureus (MRSA) liquid infection assay to develop ML models for 
compound prioritization and quality control.  

Results: The compound prioritization model achieved an AUC 
of 0.795 with a sensitivity of 81% and a specificity of 70%. When 
applied to a validation set of 22,768 compounds, the model 
identified 81% of the active compounds identified by high-
throughput screening (HTS) among only 30.6% of the total 
22,768 compounds, resulting in a 2.67-fold increase in hit rate. 
When we retrained the model on all the compounds of the HTS 
dataset, it further identified 45 discordant molecules classified as 
non-hits by the HTS, with 42/45 (93%) having known 
antimicrobial activity.  
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Conclusion: Our ML approach can be used to increase HTS 
efficiency by reducing the number of compounds that need to be 
physically screened and identifying potential missed hits, making 
HTS more accessible and reducing barriers to entry.  
 
Index Terms— antimicrobial drug resistance, high-throughput 
screening, in silico screening, machine learning  

 

I. INTRODUCTION 
NTIMICROBIAL resistance represents a significant 
public health concern and is projected to result in up 
to 10 million deaths annually by 2050, according to 

estimates from the World Health Organization (WHO) [1-3]. 
The ongoing emergence of new resistance mechanisms and 
multidrug-resistant bacteria is compounded by the stagnation 
in the development of new antibiotics due to scientific 
challenges and market inefficiencies [4, 5]. 
Antimicrobial drug discovery typically involves in vitro 
screening of compound libraries for antimicrobial activity, 
followed by further in vitro/in vivo testing for toxicity and 
refinement through structure-activity relationship (SAR) 
analysis [6]. Virtual libraries of compounds have been 
designed using robust chemical transformations [7, 8] and 
consist of billions of compounds that have never been 
synthesized or screened previously. While advancements in 
automation and high-throughput screening (HTS) have made it 
feasible to screen libraries containing over a million 
compounds [9], the scale of the chemical search space 
provided by these libraries exceeds the capabilities of HTS 
[10]. As a result, this expansion of the chemical search space, 
along with the high cost of HTS, has led to the use of 
computational approaches and machine learning (ML) for 
high-throughput antibiotic discovery [11].  
HTS in whole-animal infection models is a powerful tool for 
identifying compounds with antibacterial activity and low host 
toxicity [12] but is costly and challenging to automate [13]. In 
this study, we employed the results of a combined in vivo and 
in vitro high-throughput Caenorhabditis elegans methicillin-
resistant Staphylococcus aureus (MRSA) liquid infection 
assay [14] to develop and evaluate an ML model for an in 
silico approach to screen drug compounds. In this host-
pathogen infection model, anti-S. aureus compounds can 
prolong the survival of worms exposed to MRSA in a 384-
well liquid assay format. As a metric readout, the screen used 
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Sytox staining to differentiate between live and dead worms. 
Sytox is a cell-impermeable die that stains dead worms but not 
live worms. The compounds in wells that caused a reduction 
in Sytox staining were considered hits. Efficacious compounds 
could prolong nematode survival by inhibiting S. aureus 
directly as antibacterial compounds, inhibit bacterial 
virulence, or modulate nematode host defenses. The process 
was labor intensive in terms of establishing a screening 
pipeline and follow-up evaluation of the hit compounds.   
Our ML model has the potential to decrease the time and cost 
associated with whole-animal HTS by reducing the chemical 
search space and the number of compounds requiring in vivo 
HTS. Furthermore, we demonstrate that this approach could 
be used for quality control and identification of compound hits 
missed during HTS.  

II. MATERIALS AND METHODS 
High throughput liquid assay. We used data from a high-

throughput C. elegans-MRSA liquid infection assay as 
previously described [15]. The assay used robotic pinning to 
dispense 100 nL of investigational compounds into a 384-well 
plate format along with methicillin-resistant S. aureus 
(MRSA) strain MW2 and synchronized young adult glp-
4::sek-1 C. elegans. After a 5-day incubation period at 25°C, 
worms were washed free of bacteria and stained with Sytox to 
distinguish live from dead worms using automated microscopy 
and Cellprofiler image analysis. Investigational compound 
libraries were made available by the Institute of Chemistry and 
Cell Biology (ICCB) at Harvard Medical School. Worm 
survival was measured for each well by calculating the ratio of 
Sytox worm area to bright field worm area. Hits were 
identified by calculating a Z-score:  

𝑍 =
𝑥 − 𝜇
𝜎  

where x is the survivability score of each well, µ is the 
mean of the survivability scores from all the wells, and σ is the 
standard deviation of the survivability scores from all wells. 
All compounds were screened in duplicate, and a hit was 
defined as a compound with 𝑍 ≥ 2	in both screens, as 
previously described [15]. A threshold of	 𝑍 ≥ 2	ensures that 
hits are compounds with activity at least two standard 
deviations above the mean, indicating a significantly stronger 
activity compared to the other compounds on the plate. The 
assay and the compound screening are described in detail in 
[14, 15].   

Featurization and model development. For each 
molecule, we calculated physiochemical compound properties 
such as the topological surface area [16], the exact molecular 
weight, the number of valence electrons the molecule has, the 
number of heteroatoms, and the partition coefficient (logP) 
[17]. Physiochemical drug properties have been associated 
with drug toxicity [18] and are widely used as input features in 
ML models for virtual drug screening [19].  

We represented the molecular substructures of the 
compounds as vectors using the Mol2vec unsupervised ML 
model [20]. Mol2vec uses the Morgan algorithm [21] to 
represent chemical substructures and applies the Word2vec 

algorithm [22] on the corpus of compounds by considering 
compound substructures derived from the Morgan algorithm 
as “words” and compounds as “sentences.” We trained the 
unsupervised Mol2vec model using more than 20 million 
chemical compounds from the ZINC12 database [23], with 
replaced uncommon identifiers using a Skip-gram 
architecture, a window size of 10, generating 100-dimensional 
embeddings of Morgan substructures. We used this pre-trained 
Mol2vec model for the featurization of our high-throughput 
screening (HTS) hit data, creating a high-dimensional 
embedding of the screened compounds where related 
functional groups and molecules are close in the generated 
vector space.  

To explore the differences in the molecular properties of hit 
and non-hit compounds in the dataset, we conducted a series 
of boxplot analyses using descriptors associated with 
Lipinski's Rule of Five descriptors (Ro5) and specifically the 
molecular weight, partition coefficient (logP), number of 
hydrogen bond acceptors, and number of hydrogen bond 
donors. The Ro5 descriptors assess the drug-likeness of 
compounds based on their molecular properties [24]. 

To predict if a compound is likely to have antimicrobial or 
antivirulence activity against S. aureus or not, we trained a 
Balanced Random Forest classifier. A Random Forest 
classifier is an ensemble classifier that fits decision trees on 
various random sub-samples of the dataset and aggregates the 
predictions of the decision trees by majority voting [25]. A 
Balanced Random Forest classifier is an ensemble classifier 
for imbalanced data [26].  For each iteration, a bootstrap 
sample from the minority class and the same number of cases 
from the majority class are drawn and provided to the tree. 
The predictions of the ensemble are then aggregated to 
provide the final prediction [26]. 

 The HTS hit data is an extremely imbalanced dataset as a 
small minority of the compounds screened were identified as 
hits. To balance our data and get a more representative split 
for training and validation, we split the dataset in a stratified 
fashion by creating splits with the same percentage of hits as 
in the complete set.  

Compound prioritization model. For the compound 
prioritization model we trained a Balanced Random Forest 
classifier [26]. To calculate the model hyperparameters, we 
used a stratified 10-fold cross-validation on the training 
dataset and estimated the optimal sampling ratio (number of 
samples in the minority class/number of samples in the 
majority class after resampling) and the number of trees per 
forest. We used the recall (sensitivity) score to evaluate the 
performance of the cross-validated model.   

We split our dataset into a training and a validation set 
using a 70%-30% ratio. We used 70% of the HTS data to train 
the ML model and 30% to estimate the performance of the 
model and evaluate its generalizability on new data that were 
not used during training. We evaluated the performance of the 
compound prioritization ML model by calculating the 
sensitivity and specificity of the model for the validation 
dataset. Sensitivity and specificity were defined as:  

This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2024.3434340

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:57:52 UTC from IEEE Xplore.  Restrictions apply. 



3 
TCBB-2023-12-0805  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 × 100% 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁 × 100% 

where TP (true positives) is the number of compounds 
correctly identified by the model as hits, based on the HTS 
results; TN (true negatives) is the number of compounds 
correctly identified by the model as non-hits, based on the 
HTS results; FP (false positives) is the number of compounds 
incorrectly identified by the model as hits, which are non-hits 
according to the HTS; and FN (false negatives) is the number 
of compounds incorrectly identified by the model as non-hits, 
which are hits according to the HTS.  

We selected sensitivity and specificity as the most 
appropriate metrics to evaluate the performance of the 
compound prioritization ML model due to their relevance in 
balancing the identification of true positives (hit compounds) 
and true negatives (non-hit compounds). In our use case, 
specificity is critical for reducing the number of non-hit 
compounds that proceed to costly and time-consuming in 
vitro/in vivo validation. Meanwhile, sensitivity ensures that 
most of the true hit compounds are retained in the subset for 
further testing, thereby minimizing the risk of missing 
potential therapeutic candidates. 

To assess the robustness of our model, we performed y-
randomization by randomly shuffling the response variable in 
the training dataset while keeping the feature variables 
unchanged [27]. This process was repeated 100 times, and the 
model performance was evaluated for each iteration to 
determine if the performance of our model was significantly 
better than that of the randomized models. 

To define the region within the chemical space where the 
model is anticipated to deliver accurate predictions, we 
performed applicability domain (AD) analysis as described in 
[28, 29]. We used t-distributed stochastic neighbor embedding 
(t-SNE) to visually represent and compare the feature space of 
the training and validation dataset. Compounds that fall within 
the boundary of the training dataset are considered to fall 
within the applicability domain of the model. 

Quality control model. To identify compounds that may 
have been misclassified as non-hits by the HTS, we trained a 
separate Balanced Random Forest classifier after performing 
minority class augmentation by generating stereoisomers of 
the hit compounds. This resulted in a much larger number of 
compounds being defined as hits for the purpose of training, 
creating a more balanced dataset. We fit the classifier using all 
the compounds of the HTS dataset, and we used the resulting 
model for the in silico screening of the same dataset.  

 We did not calculate classification performance 
metrics for the quality control ML model, as it was trained on 
the full dataset and was solely used for the identification of 
possible hits that were misclassified by the HTS. To evaluate 
the performance of this model and verify if the discordant hits 
had antimicrobial activity, we performed a literature review of 
the identified discordant hits.  

The training and evaluation of the ML models was 
performed using sklearn v0.24.2 [30] and processing of the 

molecules using rdkit v2021.03.5 [31]. We used T-distributed 
Stochastic Neighbor Embedding (t-SNE) [32] to visualize our 
results in 2-dimensions. 

III. RESULTS AND DISCUSSION 

High-throughput screening dataset 
The ML model in this study was trained on a C. elegans-

MRSA HTS dataset of 82,286 compounds and extracts, which 
were tested in duplicate for their ability to protect C. elegans from 
MRSA-mediated killing [14]. The diversity of the screen included 
U.S. Food and Drug Administration (FDA)-approved drugs, 
commercially available libraries, and aqueous fractions from 
plants and microbes. After removing compounds and extracts that 
could not be represented by the simplified molecular-input line-
entry system (SMILES) notation [33], duplicate compounds, and 
compounds that were identified as potential hits in only one of the 
two replicates, the HTS data set consisted of 75,891 unique 
compounds with 335 (0.44%) being designated as hits (𝑍 ≥ 2). 
The boxplots presented in Supplementary Figure 1 illustrate 
the distribution and variation of the Ro5 descriptors within the 
hit and non-hit compound groups. To estimate the performance 
of the ML model and evaluate its generalizability on new data 
that were not used during training, we divided the dataset into 
training and validation sets using stratified sampling and created 
splits with the same percentage of hits as in the complete set. The 
training dataset included 53,123 compounds with 234 (0.44%) 
hits, and the validation dataset included 22,768 compounds with 
101 (0.44%) hits. The validation dataset provided an unbiased 
estimate of the performance and generalizability of the model as 
it was not used for fitting the model. 
 
Selection of compound prioritization machine learning model 

The hit rate in whole-animal C. elegans HTS is typically low, 
with less than 0.5% of compounds identified as hits [13, 34], 
leading to high screening costs and long lead times for screening 
campaigns [35]. The imbalanced nature of the datasets, i.e., the 
fact that there is a very small number of hit compounds compared 
to the total number of compounds screened,  presents a challenge 
for the classification performance of ML algorithms [36]. When 
facing imbalanced scenarios, standard classifiers such as logistic 
regression, support vector machines (SVM), and decision trees 
often provide suboptimal classification results, with good 
coverage of the majority classes while distorting the minority 
[37]. To overcome these challenges, we used a Balanced Random 
Forest classifier, which samples the training data in each iteration 
by drawing a sample from the minority class and the same 
number of cases from the majority class [26], thus balancing the 
training data of each iteration. 10-fold cross-validation yielded an 
optimal sampling ratio of 100% (number of samples in the 
minority class over the number of samples in the majority class 
after resampling) and 360 trees per forest. The maximum depth 
hyperparameter was set to “None”. 

We compared the performance of the Balanced Random Forest 
classifier with that of an SVM and a Random Forest classifier, 
and the detailed metrics are shown in Supplementary Table 1.  

To verify that the model selected is anticipated to deliver 
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accurate predictions for the compounds of the validation set, 
we performed AD analysis. AD analysis ensures that the 
model is used within the same chemical space it was trained 
on. As seen in Supplementary Figure 2, the chemical spaces 
of the training and validation datasets overlap significantly. 
This overlap indicates that the compounds in the validation set 
fall within the same chemical space as those used to train the 
model, demonstrating that the model is suitable for predicting 
the activity of the validation compounds. 

 
Fig. 1. ROC curve of the hit classification model in the 
validation set. 
 
Evaluation of the compound prioritization machine learning 
model 

The compound prioritization model achieved an area under the 
receiver operating characteristic (ROC) curve (AUC) of 0.795 
(Fig 1), with a sensitivity of 81% and a specificity of 70%.  In 
total, 6,966 compounds were classified as potential hits by our 
ML model in the validation set, and among these compounds 
were 82 of the 101 compounds identified as hits using the 
traditional HTS C. elegans-MRSA model. Meanwhile, our model 
classified concordantly 15,783 out of 22,667 non-hit compounds 
in the validation dataset.  The sensitivity of the model was 81% 
(82/101) and it indicates the effectiveness of our approach in 
identifying hit compounds and ensuring that most potential 
therapeutic candidates were captured. On the other hand, the 
specificity reflects the ability of the model to correctly exclude 
70% (15,783/22,667) of the non-hit compounds, thereby 
minimizing unnecessary screening efforts. Additionally, we 
calculated the model performance metrics for each compound 
library in the validation set. The ML model had a median per-
plate sensitivity of 89% (IQR 72%-100%) and a median per-plate 
specificity of 62% (IQR 51%-71%). Detailed metrics are shown 
in Supplementary Table 2.  

Finally, the y-randomization test showed that the performance 
of the randomized models was significantly lower than that of the 
original model. The mean sensitivity and specificity for the 
randomized models was 49.5% and 49.2%, respectively, 
compared to 81% and 70% for the original model. This 
significant decrease in performance metrics for the randomized 
models indicates that the observed high performance of our 
original model is not due to random chance but is instead 
reflective of its ability to accurately capture the underlying 

relationships in the data. 

 
 
Fig. 2A. The complete chemical space of the validation 
dataset.  
 

 
Fig. 2B. The reduced chemical search space after removing 
the compounds that were identified as non-hits by our machine 
learning model. 

 
Iterative protocol for compound prioritization  

The results from the previous section suggest a practical 
iterative protocol using our ML model to reduce the number of 
compounds in the C. elegans-MRSA HTS platform [38, 39].  In 
step one, a fraction of a set of compounds to be tested is subjected 
to screening using the C. elegans HTS procedure. In step two, the 
results from this partial screening are used to train the ML model. 
In step three, the remaining compounds are analyzed in silico to 
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identify a subset of potential hits. In step four, the potential hit 
compounds are tested in the C. elegans model. In this scenario, 
the 15,802/22,768 compounds that were classified as non-hits by 
the model would be excluded from further in vitro/in vivo 
screening with the expectation of identifying approximately 81% 
(82/101) of the hit molecules, thus reducing the number of 
compounds to be screened from 22,768 to 6,966, a very 
significant decrease with respect to time, effort, and cost. 

Figure 2A depicts the complete chemical space of the 
validation dataset, while Figure 2B depicts the reduced chemical 
search space after removing the compounds that were identified 
as non-hits by our ML model. By screening only these 6,966 
prioritized compounds (30.6% of the compounds), the high-
throughput C. elegans-S. aureus screening assay would have 
identified 82/101 hits (81% of the active compounds). In a similar 
ML approach, Dreiman et al. [35] used cell-free and cell-based 
HTS datasets available through PubChem and showed that by 
training a random forests model with 35% of the data, they could 
predict 55%-80% of the active compounds. Likewise, Paricharak 
et al. [39] performed a similarity search using circular and HTS 
fingerprints in a large proprietary HTS dataset of 1.3M 
compounds and retrieved diverse compounds belonging to the top 
0.5% of their HTS campaign by retrospectively screening ~1% of 
their compound collection. However, their performance was 
inferior in cell-based assays compared to cell-free assays. Our 
study extends these approaches to whole-animal HTS, and our 
results expand these previous reports, using a much smaller 
number of hit compounds from a C. elegans-S. aureus liquid 
infection assay. 

The use-case scenario of the prioritization model described 
above would have decreased the number of compounds screened 
by 69.3%, resulting in a hit rate of 1.17% (82/6,966), which is 
2.67 times higher than the original hit rate. Our ML approach for 
compound selection has the potential to make resource-intensive 
HTS techniques, such as whole-animal HTS, more facile and 
accessible and reduce the barrier to entry for academic and 
resource-constrained groups while also extending the chemical 
space that can be explored. 
 
Identification of missed hit compounds using machine 
learning 

HTS assays are subject to random and systemic variability due 
to differences in biological activity, random errors, differences 
between reagent lots, compound concentration, uneven 
temperature, and failed compound or reagent transfer [40-42]. 
Various statistical methods are commonly used to identify hits in 
HTS and reduce the impact of these errors, but no single method 
is optimal for every assay [42]. To identify compounds that may 
have been misclassified by the C. elegans-MRSA HTS described 
above, we retrained the ML model on all the compounds of the 
HTS dataset. This model identified 17 384-well plates with 
possible hits that were not identified by the HTS. We evaluated 
the HTS quality for these plates by calculating the Z-factor, which 
is a dimensionless statistic used for assay quality assessment and 
can indicate whether there is adequate separation between 
positive and negative controls [43]. These plates had a mean Z-
factor of -0.98 (SD: 1.39), indicating that there was no separation 

band between the positive and negative controls, and thus the 
results of the HTS in these plates could not be trusted. The Z-
factor of each plate and the number of compounds with published 
biological activity in the literature are provided in Table 1. Our 
quality control model allows for the real-time evaluation of 
results so the part of the library that did not meet technical 
standards can be identified and rescreened.  
 

TABLE 1 
Z-factor and number of compounds with published biological 
activity in the literature for the plates identified by the quality 
control model. 
Library Plate HTS Z' (A) HTS Z' (B) Discordant 

hits (N) 
Verified as 
active in 
literature 
(N) 

Chembridge3 1585 -2.6241408 0.31067307 1 0 

ChemDiv5 1711 0.41737861 0.0180734 1 0 

NINDS2 1920 0.42185919 0.37378134 3 3 

NINDS3 1921 -0.1353595 -0.1407361 2 2 

NINDS4 1922 0.05531238 -1.3998514 8 8 

NINDS5 1923 0.14255031 0.0521821 2 2 

Biomol lCCB3 1990 -0.8503376 0.00191202 1 1 

Biomol4 2090 0.14117253 -0.0675108 6 6 

Prestwick2 2095 -3.0531884 -3.1146967 2 2 

Prestwick2 2096 -1.8546921 -3.6324069 3 3 

Prestwick2 2097 -0.8341563 -1.7144365 4 4 

Prestwick2 2098 -3.8852087 -3.4002068 2 2 

LOPAC1 3260 -0.3247594 -0.9053192 2 2 

LOPAC1 3261 -0.4595694 0.587314 1 1 

LOPAC1 3263 -0.1902764 0.48519967 1 1 

NCC1-2012 3393 -1.6607249 -3.6364711 4 3 

NCC1-2012 3394 -0.9455457 -1.48888 2 2 

 
Analysis of discordant results 
In the set of 75,891 unique compounds screened, the ML model 
classified 45 molecules, which were classified as non-hits by the 
whole-animal HTS, as hits. We reviewed the published data 
related to these compounds, and for 42/45 of the discordant 
molecules, we found published results supporting their 
antimicrobial activity. A detailed list of these compounds and the 
related literature is summarized in Table 2. Of these 42 
compounds, 37 are known antibiotics of various classes. 
Specifically, we identified 12 cephalosporins (2 first generation, 1 
second generation, and 9 third generation), 7 macrolides, 6 
fluoroquinolones, 4 rifamycins, 2 antitumor compounds with 
antibiotic activity, 2 topical antibiotics, 1 aminoglycoside, 1 
aminocoumarin antibiotic, 1 ionophore antibiotic, and 1 
penicillin. All these antibiotic compounds have published 
evidence of anti-staphylococcal activity, while 11 of them have 
documented anti-MRSA activity (Table 2). 

Of the 5 non-antibiotic compounds, 2 are known disinfectants, 
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1 is an antineoplastic agent, 1 is a protease inhibitor, and 1 is an 
FDA-approved antihypertensive agent.  Upon further literature 
review, we found that 4 out these 5 compounds possess anti-
staphylococcal and anti-MRSA activity [44-46]. Specifically, the 
disinfectants chlorhexidine and methylbenzethonium chloride, 
although toxic for systemic use, are both effective against S. 
aureus [44, 45]. Also, the antihypertensive agent (candesartan 
cilexetil, PubChem CID: 2540) has been tested and was shown to 
have antimicrobial and specifically anti-S. aureus activity [46]. 
Finally, the antineoplastic/antimetabolite agent (floxuridine, 
PubChem CID: 5790) has inhibitory and anti-virulence activity 
against S. aureus [47], and a recent report by Sharma et al. also 
revealed strong synergy between cefoxitin and floxuridine against 
MRSA [48].  

 
Fig. 3. 2D Structures of compounds 1-3.  
(1) PubChem CID: 20864422,  
URL: https://pubchem.ncbi.nlm.nih.gov/compound/20864422#section=2D-
Structure,  
(2) PubChem CID: 1327345, URL: 
https://pubchem.ncbi.nlm.nih.gov/compound/1327345#section=2D-Structure ,  

(3) PubChem CID: 51619, URL: 
https://pubchem.ncbi.nlm.nih.gov/compound/51619#section=2D-Structure 

 
 

TABLE 2 
Compounds identified by the quality control model with 
published biological activity in the literature.  
PubChem 

CID Name Compound type Anti-SA & anti-MRSA Activity 

135550179 Rifampin Rifamycin Liu et al. [49] 

23675312 Cephapirin sodium 
1st generation 
cephalosporin Ster et al. [50] 

23675322 Cefazolin sodium 
1st generation 
cephalosporin Pant et al. [51] 

23672568 Cefamandole sodium 
2nd generation 
cephalosporin Coppens et al. [52, 53] 

6398970 Cefdinir 
3rd generation 
cephalosporin 

Giordano et al. [54] 
 

6321411 Cefixime 
3rd generation 
cephalosporin Bergeron et al. [55] 

2713 Chlorhexidine Disinfectant Hayden et al. [45] 

101526 
Moxifloxacin 
hydrochloride Fluoroquinolone Lemaire et al. [56] 

12971800 Ceftriaxone sodium 
3rd generation 
cephalosporin Lowe et al. [57] 

23672566 
Cefotaxim sodium 
salt 

3rd generation 
cephalosporin Aldridge K.E. [58]  

5379 Gatifloxacin Fluoroquinolone Blondeau et al. [59] 

135749824 Rifapentine Rifamycin Karau et al. [60] 

4539 Norfloxacin Fluoroquinolone Gade et al. [61] 

72111 Rifaximin (Xifaxan) Rifamycin Jiang et al. [62] 

5479527 Cefotaxim sodium 
3rd generation 
cephalosporin Aldridge K.E. [58] 

23670319 
Cefuroxime sodium 
salt 

3rd generation 
cephalosporin Rasmussen et al. [63] 

23581806 CID 23581806 
3rd generation 
cephalosporin 

PubChem Bioassay Record for AID 
720641 [64] 

60196280 Ceftriaxone 
3rd generation 
cephalosporin Lowe et al. [57] 

11957499 Calcimycin 
Ionophore 
antibiotic Westhead J.E. [65] 

23695850 Fusidin 
Topical 
antibiotic Ayliffe et al. [66] 

23670321 AKOS015994666 
3rd generation 
cephalosporin Rasmussen et al. [63] 

5790 Floxuridine Antineoplastic Yeo et al. [47], Sharma et al. [48] 

5702003 LSM-1590 
Antitumor 
antibiotic Jacobs et al. [67] 

5746 Mitomycin 
Antitumor 
antibiotic Jacobs et al. [67] 

4583 Ofloxacin Fluoroquinolone Fu et al. [67] 

149096 Levofloxacin Fluoroquinolone Fu et al. [67] 

23690471 Sodium fusidate 
Topical 
antibiotic Ayliffe et al. [66] 

56208 Sarafloxacin Fluoroquinolone Asadipour et al. [68] 

5480431 (Z)-roxithromycin Macrolide Rayner et al. [69] 

443953 
Erythromycin 
ethylsuccinate Macrolide Rayner et al. [69] 

5702238 
Methylbenzethonium 
chloride Disinfectant Bearden et al. [44] 

6915744 Roxithromycin Macrolide Rayner et al. [69] 

84029 Clarithromycin Macrolide Rayner et al. [69] 

12560 Erythromycin Macrolide 
Rayner et al. [69] 

447043 Azithromycin Macrolide 
Rayner et al. [69] 

135549317 Prestwick3_001109 Rifamycin Karau et al. [60] 

6473883 Dirithromycin Macrolide Rayner et al. [69] 

54723343 
Novobiocin sodium 
salt Aminocoumarin Walsh et al. [70] 

2540 Candesartan cilexetil Antihypertensive Xu et al. [46] 

118796988 
CHEBI:95195 
(Roxithromycin) Macrolide Rayner et al. [69] 

25102585 flucloxacillin sodium Penicillin Leder et al. [53] 

439647 
Tosylphenylalanyl 
chloromethyl ketone 

Protease 
inhibitor   

 
 

Antibacterial activity of compounds 
We also evaluated the activity of the 3 remaining compounds 

identified by the ML model for which there are no published 
reports of antimicrobial activity (Figure 3). This was carried out 
using the S. aureus strain MW2 (SA-MW2) in vitro by 
performing broth microdilution to calculate the minimum 
inhibitory concentration (MIC) [71]. To assess in vivo 
antibacterial efficacy, the compounds were evaluated using the 
wax moth caterpillar Galleria mellonella infection model [72, 
73]. 
 

Compound 1 (C26H25N3O6S, IUPAC: ethyl 3-[[2-[(2-oxo-3,4-
dihydro-1H-quinolin-6-yl)sulfonylamino]-2-
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phenylacetyl]amino]benzoate, PubChem CID: 20864422) 
consists of three chemically active parts; ethyl benzoate (ester), 2-
amino-2-phenylacetamide, and 2-oxo-1,2,3,4-
tetrahydroquinoline-6-sulfonamide. Compound 1 did not exhibit 
direct anti-MRSA activity (MIC  > 256 µg/mL against MRSA 
isolate MW2). On the other hand, Compound 1 significantly 
prolonged larval survival in the G. mellonella infection assay 
(Figure 4A; LD50 = 24 h at 3 mg/kg, Kaplan-Meier p = 0.0428), 
suggesting that it modulates host defenses, disrupts S. aureus 
virulence, or is a prodrug that needs to be metabolized by a host 
metabolic enzyme to generate an active antimicrobial compound. 
If Compound 1 functions as an antimicrobial prodrug, it seems 
most likely that the 2-oxo-1,2,3,4-tetrahydroquinoline-6-
sulfonamide moiety is the antimicrobial component since many 
sulfonamides are known to inhibit the growth of bacteria by 
disrupting the synthesis of folic acid [74], and sulfonamide 
derivatives have been extensively studied for their anti-S. aureus  
activity [75, 76]. 

 
 
Fig. 4. Galleria Mellonella survival assay. Survival rate of 
compound 1 (A), compound 2 (B) and compound 3 (C). 

 
Compound 2 (C11H6F3NO2S, IUPAC: (5Z)-5-[[2-

(trifluoromethyl)phenyl]methylidene]-1,3-thiazolidine-2,4-dione, 
PubChem CID: 1327345)  demonstrated weak inhibitory activity 
against S. aureus strain MW2 with an MIC of 32 µg/mL but had 
no efficacy in prolonging larval survival in the G. mellonella-S. 
aureus infection assay (Figure 4B; LD50 = 48 h at 3mg/kg, 

Kaplan-Meier p = 0.166). Compound 2 consists of two 
chemically active parts: trifluoromethyl benzene and thiazolidine-
2,4-dione (TZD). Previous studies have revealed that compounds 
containing the 2,4-thiazolidinedione ring exhibit potent 
antimicrobial activity, particularly against drug-resistant bacteria 
such as S. aureus. [77-80].  

Compound 3 (C46H62N4O11 IUPAC: 
[(7S,11S,12R,13S,14R,15R,16R,17S,18S)-2,15,17,32-
tetrahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-1'-(2-
methylpropyl)-6,23-dioxospiro[8,33-dioxa-24,27,29-
triazapentacyclo[23.6.1.14,7.05,31.026,30]tritriaconta-
1(31),2,4,9,19,21,25(32),26,29-nonaene-28,4'-piperidine]-13-yl] 
acetate, PubChem CID: 51619) inhibited the growth of S. aureus 
in vitro with an MIC of 16 µg/mL but did not show any evidence 
of efficacy in the G. mellonella survival assay, possibly due to 
compound cytotoxicity (Figure 4C; LD50 = 48 h at 3mg/kg, 
Kaplan-Meier p = 0.342). Compound 3 is a structural isomer of 
rifabutin (PubChem CID: 135398743), which is an FDA-
approved rifamycin. Similar to other rifamycins, rifabutin exerts 
its antimicrobial action by inhibiting bacterial RNA polymerase 
and is primarily used as an anti-tuberculous agent against M. 
avium as well as an adjunctive therapy for resistant Acinetobacter 
[81]. Rifabutin also has comparable in vitro activity to that of 
rifampin against staphylococcal biofilms [82]. A recent study by 
Kumar et al. using a rat model also demonstrated its potential as 
an alternative to rifampin for the management of MRSA 
periprosthetic joint infection when used in conjunction with 
vancomycin  [60]. These findings have sparked new interest in 
rifabutin as an anti-MRSA compound, but clinical trial data on its 
efficacy against MRSA are lacking [83].  

To summarize this section, the three compounds identified as 
potential antimicrobial compounds by the ML model, but for 
which there are no published reports of antimicrobial activity, 
contain components that are similar to compounds known to 
exhibit antimicrobial activity (Compounds 1 and 2) or is an 
isomer of a known antimicrobial compound (Compound 3).   

IV. CONCLUSION 
The results of our study show that ML models are effective 

at identifying compounds with antimicrobial activity, which 
may have been overlooked by traditional HTS methods, 
especially the C. elegans HTS platform. The model achieved 
an AUC of 0.795 with a sensitivity of 81% and a specificity of 
70%. When pseudo-prospectively applied to a validation set of 
22,768 compounds, the model was able to identify 81% of the 
active compounds by screening only 30.7% of the total 
compounds, resulting in a 2.67-fold increase in hit rate 
compared to the original hit rate.  

Our ML approach effectively overcomes the challenges 
presented by imbalanced HTS hit data. Of the 45 discordant 
molecules classified as non-hits by the HTS but as hits by the 
ML model, 42 (93%) have known antimicrobial activity, while 
the 3 unknown compounds revealed either in vitro or in vivo 
activity against MRSA. Importantly, the use of ML models 
also appears to identify potentially toxic compounds such as 
chlorhexidine and methylbenzethonium chloride that possess 
anti-S. aureus activity, something that could not have been 
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possible with the use of the G. mellonella survival assay due 
to compound toxicity. This ability to identify chemical classes 
and compounds that exhibit antimicrobial activity but may be 
toxic can be used to guide the synthesis and/or testing of less 
toxic isomers for further evaluation. Furthermore, ML models 
may also be able to overcome other limitations inherent in 
HTS methods, such as solubility issues, thus providing an 
additional level of insight into the discovery of new 
antimicrobial compounds. 

In summary, our ML approach can be used to complement 
HTS methods, including whole-animal HTS, by making HTS 
more widely accessible and efficient by significantly 
decreasing the number of compounds that need to be screened. 
This approach expands previous reports and highlights the 
potential of ML in the field of compound prioritization and 
drug discovery. 
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