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ABSTRACT MAGINAV (MAGnetic Inertial NAVigation) algorithm provides accurate estimation of
velocity, attitude and position in long-term. It is utilized in a specialized pedestrian navigation system that
consists of a three-axis accelerometer, a three-axis gyroscope, and a three-axis magnetometer mounted
on the shoe of a walking human. MAGINAV compensates for the attitude error, accumulated over time
by using a second attitude estimation obtained by fusing the measurements of the accelerometer and the
magnetometer Instead of employing a complex Attitude Heading Reference System (AHRS), MAGINAV
utilizes the computationally efficient TRIAD algorithm, alongside two popular algorithms for zero-velocity
detection and magnetic-disturbance detection respectively. The proposed algorithm undergoes testing in an
outdoor environment using low-cost commercial inertial and magnetic field sensors. Remarkably, it achieves
exceptional long-term accuracy, with a position error that is less than 0.25% of the total distance in a
20-minute walk spanning 1.3km.

INDEX TERMS Accelerometer, attitude estimation, gyroscope, magnetometer, inertial navigation, Kalman
filter, TRIAD.

I. INTRODUCTION
Satellite-based navigation systems (GPS,GLONASS etc.)
have established their dominance in the field. These systems
come in different grades, offering varying levels of accuracy
to suit diverse applications, ranging from low-cost com-
mercial implementations to high-end industrial and military
ones. However, despite the quality of high-end systems, all
satellite navigation technologies share inherent drawbacks.
They exhibit limited refresh rates, are ineffective in indoor
environments, and are vulnerable to jamming. In response
to these limitations, alternative navigation technologies have
emerged over the past few decades.

Inertial navigation systems (INS) utilize inertial sensors,
namely accelerometers and gyroscopes, to calculate the
attitude, velocity, and position of moving objects. Initially
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developed for rocket guidance during World War II, they
have found widespread use in marine, aerospace, military,
and even commercial applications. The advent of micro-
electro-mechanical (MEM) inertial sensors in recent years
has further expanded their usage. With their small size and
low cost, MEM inertial sensors have been integrated into
numerous consumer devices like smartphones and activity
trackers contributing to the growth of inertial navigation
applications.

Pedestrian navigation, specifically using inertial sensors,
has gained significant attention in recent years. Many studies
have employed miniature inertial sensors mounted on the
human body and proposed various algorithms to estimate the
individual’s attitude, velocity, and position [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. A key aspect
of designing such systems revolves around compensating
for the substantial error characteristics inherent in inertial
sensors [15], [16].
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Most pedestrian inertial navigation systems employ
shoe-mounted inertial sensors and the zero velocity update
method to improve the accuracy of attitude, velocity, and
position estimates [1], [2], [3], [6], [9]. Specifically, these
systems utilize a zero velocity detection algorithm to identify
the stance phase of human walking, during which the velocity
of the shoe is zero. This information is then used to estimate
the velocity, attitude, and position errors, typically through a
Kalman filter.

While the zero velocity update method yields accurate
results over short time periods, the use of low-cost sensors can
lead to accumulated errors over time, significantly degrading
long-term navigation accuracy. The dominant source of
position error arises from attitude errors caused by gyroscope
noise, offset drift, and residual calibration errors [15].

For applications where cost is not a concern, expensive,
factory-calibrated gyroscopes are used to minimize attitude
errors. However, in commercial applications where cost is
a critical factor, a popular approach involves combining
the zero velocity update method with an Attitude Heading
Reference (AHR) algorithm. Typically, these algorithms uti-
lize measurements from a three-axis magnetometer to derive
an accurate long-term attitude estimate. Several different
AHR algorithms have been proposed [14], [17], [18], [19],
[20], [21], [22], [23], employing estimation [21], [22], [23],
optimization [18], or filtering [17], [19] techniques. Despite
the significant improvement in attitude estimation offered
by existing AHR algorithms, their computational complexity
poses challenges for applications with limited computational
power.

This paper presents MAGINAV [24], a computation-
ally efficient pedestrian navigation algorithm that offers
long-term accuracy using inertial and magnetic field sensors.
Specifically, MAGINAV utilizes a three-axis accelerometer,
a three-axis gyroscope, and a three-axis magnetometer
mounted on the shoe of a walking human to estimate their
velocity, attitude, and position. The algorithm is based on the
widely adopted zero velocity update method and introduces a
computationally efficient attitude estimation scheme utilizing
the TRIAD algorithm and measurements from both the
accelerometer and the magnetometer.

The performance evaluation of the MAGINAV algorithm
is done by using low-cost MEM inertial and magnetic field
sensors. The sensors were calibrated and their sensitivity
axes were aligned using theMAG.I.C.AL. methodology [25],
requiring no specialized equipment. The algorithm’s accu-
racy and efficiency were assessed through a 20-minute,
1.3km walk in a suburban environment. The performance of
MAGINAVwas compared to similar algorithms based on two
popular and highly cited AHR systems. Notably, MAGINAV
achieved an extremely small position error, accounting for
less than 0.2% of the total distance walked.

The remainder of this paper is structured as follows.
Section II provides a detailed presentation and analysis of
the proposed system. The experimental setup, along with the

performance evaluation of the proposed system, is presented
in Section III. Finally, Section IV draws the conclusions of
the study.

II. THE PROPOSED INERTIAL NAVIGATION SYSTEM
This section presents the proposed pedestrian inertial nav-
igation system and provides a detailed analysis of each
functional block. The following notation is used throughout
the paper and is introduced first.

A. NOTATION AND ASSUMPTIONS
Different notations have been used in the literature to describe
basic kinematic quantities such as velocity, acceleration, and
position. In this work, we adopt the notation from [16], where
a kinematic quantity x is denoted as xγβα , with α representing
the object frame, β representing the reference frame, and
γ denoting the resolving frame.

When referring to the measurement of an inertial or
magnetic sensor, the object frame and the reference frame are
fixed and correspond to the sensor’s coordinate frame and the
inertial frame, respectively. For simplicity, a measurement is
denoted as yγ .
The orthogonal, frame transformation matrix, transform-

ing the resolving frame of a kinematic quantity from α to β,
is denoted as Cβα .

The Cross Product Matrix of a vector x =
[
x1 x2 x3

]T ,
is defined as [26]

[x ×] =

 0 −x3 x2
x3 0 −x1

−x2 x1 0


The notation used in the rest of this work is summarized in

Table 1. Additionally, the following assumptions are made:

1) The three sensors are fixed on the same rigid platform,
which is mounted on the shoe of a walking person.

2) Each sensor is individually calibrated, and their sensi-
tivity axes are aligned.

3) The three sensors are sampled simultaneously with a
common, constant sampling rate τs.

4) At the start of the experiment, the sensor platform is
stationary and free from magnetic disturbance.

B. TOP-LEVEL SYSTEM ARCHITECTURE
The architecture of the proposed inertial navigation system
is depicted in Figure 1. This system utilizes measurements
from a three-axis accelerometer, denoted as fb, a three-axis
gyroscope, denoted as ωb, and a three-axis magnetometer,
denoted as mb, to estimate the velocity v, position p and
attitude C of a walking human.
For each sensor measurement, the system obtains an initial

attitude estimate CK using the gyroscope measurement.
To correct the accumulated attitude error over the long
term, the system employs a second independent attitude
estimate derived from the accelerometer and magnetometer
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TABLE 1. Notation.

measurements. This is achieved by applying the TRIAD
algorithm when a zero velocity condition (ZV = 1 in
Figure 1) is detected and there is no magnetic disturbance
(D = 1 in Figure 1). The resulting second attitude estimate
is denoted as CFM , and it updates the attitude estimate CGFM
accordingly (see Figure 1).
The next step involves deriving an initial velocity estimate

vK and position estimate pK . This is accomplished by utiliz-
ing the corrected attitude CGFM along with the accelerometer
measurement and applying the kinematic equations.

Finally, the zero velocity update method is employed to
further enhance the velocity, attitude, and position estimates.
This method is implemented using a Kalman filter and
is applied whenever a zero velocity condition is detected
(ZV = 1 in Figure 1).

C. ZERO VELOCITY DETECTION
The zero velocity detection algorithm plays a crucial role
in pedestrian navigation systems that utilize shoe-mounted
sensors as part of the widely adopted zero velocity update
method. In the proposed system, the zero velocity information
is utilized for implementing the zero velocity update method
(see Section II-I) and deriving a long-term accurate attitude
estimate using measurements from the magnetometer and
accelerometer (see Section II-F).
Zero velocity detection algorithms utilize data from

inertial sensors along with information about the human
walking pattern to detect the stance phase of walking
[2], [6], [27], [28]. More advanced algorithms incorporate

additional sensors, such as pressure sensors, to enhance the
accuracy of zero velocity detection [4]. Various review papers
compare the performance characteristics of existing zero
velocity detection algorithms [2], [27]. In practical navigation
scenarios, different zero velocity detection algorithms tend to
exhibit similar performance [2].
In our system, we employ the accelerometer measure-

ment fb and the gyroscope measurement ωb to detect zero
velocity based on the algorithm introduced in [27].

The first step involves calculating the mean value of the
accelerometer measurements ¯fb(k) using a rolling window of
size N :

¯fb(k) =
1
N

(k+N−1)∑
k

fb(k) (1)

To determine if a zero velocity condition is present at
time k , we compute the quantity:

T (k) =

(k+N−1)∑
k

(
1
σ 2
a

∥∥∥∥fb(k) − g
f̄b(k)

∥f̄b(k)∥

∥∥∥∥2 +
1
σ 2
g

∥ωb(k)∥2
)
(2)

where σ 2
a and σ 2

g are the noise variances of the accelerometer
and gyroscope, respectively, and g is the gravitational
acceleration.

According to [27], we define:

ZV (k) =

{
1, T (k) < γz

0, otherwise
(3)

where γz is a threshold parameter. In (3), ZV (k) = 1 indicates
the existence of a zero velocity condition.

Special attention should be given to parameterizing
the zero velocity detection algorithm. The error variances
σ 2
a and σ 2

g , as well as the threshold value γz,used by the
algorithm to determine the zero velocity condition must
be carefully selected and fine-tuned to achieve optimal
performance.

D. MAGNETIC DISTURBANCE DETECTION
To perform attitude determination using the accelerometer
and magnetometer measurements via the TRIAD algorithm,
it is necessary for both sensors to remain stationary and
free from magnetic disturbance. The stillness condition is
met during the stance phase of human walking when the
shoe makes contact with the ground. On the other hand,
identifyingmagnetic disturbances is more challenging as they
can unpredictably distort the Earth’s magnetic field.

In this work, we utilize the magnitude of the measured
magnetic field, denoted as mb, to detect magnetic distur-
bances. We exploit the fact that in the absence of magnetic
disturbance, the magnitude of the measured magnetic field,
mb, should be equal to that of the Earth’s magnetic field,
mearth. Assuming that the magnetometer is placed away
from magnetic disturbances when the experiment begins,
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FIGURE 1. Architecture of the proposed pedestrian inertial navigation system.

and considering the sensor’s noise and measurement errors,
we can express this relationship as:

∥mearth∥ ≈ ∥mb(0)∥ (4)

To determine the presence of magnetic disturbance,
we introduce a tolerance parameter mthr. We define:

D(k) =

{
0, |∥mearth∥ − ∥mb(k)∥| > mthr

1, otherwise
(5)

If the difference between the magnitudes exceeds the
threshold value mthr, we have D(k) = 0, indicating the
presence of magnetic disturbance. Conversely, if no magnetic
disturbance is detected, we have D(k) = 1.

E. ATTITUDE ESTIMATION USING KINEMATIC EQUATIONS
AND GYROSCOPE MEASUREMENTS
The standard kinematic equations are employed to obtain
an initial estimate of the attitude of the sensors’ platform.
We begin by calculating the attitude at time t , denoted as
C i
b(t) ∈ SO(3). To achieve this, we can express [16]:

˙C i
b(t) = C i

b(t)[ω
b
ib(t) ×] (6)

Based on (6) and assuming that the angular velocity of
the platform remains constant during the short time period
between consecutive samples, [t, t + τs], we have:

C i
b(t + τs) = C i

b(t)exp
(
[ωbib(t) ×]τs

)
(7)

Using (7), we can approximate the attitude at time kτs based
on the gyroscope measurement ωb(k):

C i
b(kτs) ≈ C i

b((k − 1)τs) (I3 + [ωb(k) ×]τs) (8)

Equation (8) implies that the estimated attitude at time kτs,
denoted as C i

b(kτs), is influenced by the accumulated noise
from all previous gyroscope measurements. In the proposed
system, we utilize the output attitude C(k − 1) as feedback
to reset the accumulated error when a more accurate attitude
estimate becomes available (either from the zero velocity

update method or the TRIAD algorithm). Hence, according
to (8), we define:

CK (k) ≜ C(k − 1) (I3 + [ωb(k) ×]τs) (9)

F. ATTITUDE ESTIMATION USING THE TRIAD ALGORITHM,
AND ACCELEROMETER AND MAGNETOMETER
MEASUREMENTS
In INS, attitude is commonly calculated using the gyroscope
and equation (9), or a different approximation of (7).
However, this approach leads to the accumulation of attitude
errors which is significant in the long term. In this section,
we utilize the TRIAD algorithm [29], [30] to calculate a
second estimate of the attitude using the accelerometer’s and
the magnetometer’s measurements.

Let a1, a2, b1, and b2 be four 3 × 1 unit vectors, and let
R be a matrix in SO(3) such that a2 = Ra1 and b2 = Rb1.
Given these four vectors as inputs, the TRIAD algorithm
derives R. It is convenient to consider the TRIAD algorithm
as a function of the four vectors, i.e.:

R = TRIAD(a1, b1, a2, b2) (10)

A more detailed description of the TRIAD algorithm is
given in Appendix A.

Now, consider the measurements of the accelerometer,
fb(kc), and the magnetometer, fb(kc), at discrete time
k = kc > 0. We assume that at time kc, the sensors are still
(ZV = 1 in Figure 1), and no magnetic disturbance is present
(D = 1 in Figure 1). Utilizing the measurements of these two
sensors and the TRIAD algorithm, we obtain the following
estimate:

CFM (kc) = C(0) TRIAD (fb(0),mb(0), fb(kc),mb(kc)) (11)

Here, C(0), fb(0), and mb(0) are captured at the beginning
of the experiment when the sensors are still and free from
magnetic disturbance.
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G. ATTITUDE DERIVATION BY FUSING THE TWO ATTITUDE
ESTIMATES AND THE ZERO-VELOCITY UPDATE
The attitude, C , is calculated using the attitude estimates
CK and CFM in combination with the correction term, δC .
The operation of the proposed algorithm can be divided into
3 states, as shown in Table 2, based on the results of the
zero velocity detection ZV , and the magnetic disturbance
detection, D, algorithms.

TABLE 2. Operation states.

In State 1, the attitude is derived using the kinematics equa-
tions and (9). During State 2, the zero velocity update method
is utilized to compensate for gyroscope measurement errors.
Finally, in State 3, themeasurements of the accelerometer and
the magnetometer are used to derive an accurate estimation of
the attitude using the TRIAD algorithm. Thus, the attitude C ,
for each operation state is as follows:

C(k) =


CK (k), State 1
δC CK (k), State 2
CFM , State 3

(12)

H. VELOCITY AND POSITION ESTIMATION USING
KINEMATIC EQUATIONS AND ACCELEROMETER
MEASUREMENTS
To obtain an initial estimate of the velocity and position,
we define the intermediate attitude CGFM according to
Figure 1 as follows:

CGFM (k) =

{
CFM (k), if ZV = 1 and D = 1
CK (k), otherwise

(13)

Next, we transform the accelerometer’s measurement
(naturally expressed in the sensors’ platform frame) to the
inertial frame using CGFM (k):

fi(k) = CGFM (k)fb(k) (14)

We eliminate the effect of gravity acceleration on the
accelerometer measurement, by defining:

a(k) = fi(k) + gi (15)

where gi represents the 3×1 gravitational acceleration vector
expressed in the inertial frame. The discrete-time position and
velocity vectors are calculated as follows:

vK (k) = vK (k − 1) + a(k)τs (16)

pK (k) = pK (k − 1) +
1
2
(vK (k) + vK (k − 1))τs (17)

I. ZERO VELOCITY UPDATE METHOD
The zero velocity update method is utilized by a Kalman
filter, similar to the one presented in [16]. This filter utilizes
the measurements from the accelerometer and gyroscope to
estimate the errors in velocity, attitude, and position, as well
as the offset of the two sensors.

In [16], the author employs a 15 × 1 Kalman filter state
vector, denoted as xzv, defined as follows:

xzv =
[
δψT δvT δpT baT bgT

]T (18)

Here, δψ represents the 3×1 attitude error in Euler angles,
δv is the 3 × 1 velocity error, δr is the 3 × 1 position
error, ba denotes the 3 × 1 accelerometer offset vector, and
bg represents the 3×1 gyroscope offset vector. By employing
the kinematic equations and assuming small errors in the
accelerometer and gyroscope measurements, we obtain the
following state propagation model for the Kalman filter,
similar to [16]:

xzv(k + 1) = 8zv(k)xzv(k) + wzv(k) (19)

In Equation (19), wzv is assumed to be a white noise
sequence, and 8zv(k) is given by:

8zv(k) =


I3 03 03 03 Cτs (k)
F(k) I3 03 Cτs (k) 03
03 I3τs I3 03 03
03 03 03 I3 03
03 03 03 03 I3

 (20)

In Equation (20), F(k) is defined as [−fi(k) ×] τs, and
Cτs (k) = CGFM (k)τs.
When a zero velocity condition is detected, the velocity

output of the kinematic equations (as described in
Section II-H) should ideally be zero. However, due to sensor
imperfections, a small velocity error persists even when the
sensors’ platform is stationary. This velocity error is used as
a measurement of the velocity error, denoted as δv, in the
Kalman filter. Thus, the measurement equation of the filter
takes the following form:

zzv(k) = uK (k) = Hzvxzv(k) + vzv(k) (21)

In Equation (21), vzv is a white noise sequence, and Hzv is
defined as:

Hzv =
[
03 I3 03 03 03

]T (22)

It is crucial to initialize the diagonal covariance matrices
Qzv and Rzv properly to achieve high performance. Let
σ 2
a and σ 2

g denote the variances of the accelerometer
and gyroscope noise, respectively (assuming similar noise
characteristics along each axis). Additionally, let σ 2

ba and σ
2
bg

represent the variances of their offsets as they drift over time.
The covariance matrix Qzv is formed as follows:

Qzv=diag
([
σ 2
g 11×3 σ

2
a 11×3 01×3 σ

2
ba11×3 σ

2
bg11×3

])
τs

(23)
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Similarly, the measurement covariance matrix Rzv is
formed by assuming the variance of the velocitymeasurement
in the presence of a zero-velocity condition, denoted as σ 2

v :

Rzv = σ 2
v I3 (24)

Note that the attitude correction term δψ is expressed in
Euler angles. By employing the small-angle approximation,
the corresponding rotation matrix is defined as:

δC = [δψ×] (25)

III. PERFORMANCE EVALUATION
In this section the performance of the proposed algorithm
is evaluated through experimental measurements. However,
since a key point of this work is the introduction of the attitude
estimation scheme of Section II-G, we first analyze the
long-term performance of this scheme both from a theoretical
and a simulation point of view.

A. ATTITUDE ERROR
A qualitative representation of the attitude error evolution
over time of the proposed estimation scheme is shown in
Figure 2.
As observed, during State 1, the attitude error accumulates

and grows over time. This is expected and supported by (9).
Assuming a small error in the measurement ωb(k), i.e.
ω̂b(k) = ωb(k) + δωb(k), we have

ĈK (k) ≜ C(k − 1)
(
I3 + [ω̂b(k) ×]τs

)
= C(k − 1)

{
I3 +

(
[ω̂b(k) ×] + [δωb(k) ×]

)
τs
}

= CK (k) + C(k − 1)[δωb(k) ×]τs (26)

Thus, according to (26), in every new gyroscope’s sample,
a small error is added to the estimated attitude making it
unreliable in long-term.

In State 2, the zero velocity update method prevents
the error from further increasing by compensating for the
measurement error during the zero-velocity phases of the
human walking. However, this correction is insufficient to
compensate for the accumulated attitude error, leading to
a significant rise in the long term (as demonstrated in
Section III using real sensor measurements).
In State 3, the attitude is calculated using TRIAD algorithm

and remains bounded. This happens because the TRIAD
algorithm relies only on the measurements of the accelerom-
eter and the magnetometer at time k and at the beginning
of the experiment. Consequently, the error of the TRIAD
algorithm is related only to the momentarily measurement
error of the two sensors at these particular time periods as
shown in [31]. Therefore, during State 3, an accurate and
independent attitude estimate is obtained.

Figure 2 illustrates that when accurate estimates of the
attitude are frequently available, the attitude error does not
significantly increase over time, resulting in a long-term
accurate attitude estimation. In the case of pedestrian navi-
gation, frequent attitude corrections are typically possible in

FIGURE 2. Qualitative representation of the attitude error using the
introduced estimation scheme. The three operation states are denoted as
S1, S2, and S3, respectively.

outdoor environment where there is no magnetic disturbance.
However, even in the case of indoor environment (where
building materials disturb the magnetic field) the navigation
accuracy could benefit from sporadic attitude corrections
when the proposed attitude estimation scheme is used.

To further demonstrate how the proposed attitude estima-
tion scheme performs in long-term we set up a simulation in
MATLAB. More specifically, we consider the measurements
of a three-axis accelerometer, a three-axis gyroscope and a
three-axis magnetometer attached on a still rigid object in a
constant, uniform magnetic field. Ideally, the measurements
of the three sensors should be constant and the object’s
attitude should be equal to its initial attitude. We add white
noise and a small constant bias to the three sensors and
simulate 5 hours of measurements. The added noise and bias
levels for the three sensors are selected to match those of a
typical commercial sensor (see Table 3).

In Figure 3 the attitude error (expressed in the error of
the three Euler angles) when the attitude is calculated by
using just the gyroscope’s measurements is compared to the
attitude error when the proposed method is employed and
the attitude is corrected every 5 seconds using the TRIAD
algorithm.1 When just the gyroscope is used, the error rises
over time leading to a large navigation errors. However, when
the proposed attitude estimation scheme is used, the attitude
error is small and bounded even after long time periods.

B. EXPERIMENTAL RESULTS
To evaluate the proposed inertial navigation algorithm,
we utilized a low-cost LSM9DS1 system in package (SiP) by
STMicroelectronics as the inertial measurement unit (IMU).
The LSM9DS1 SiP consists of a three-axis accelerometer,
a three-axis gyroscope, and a three-axis magnetometer.
The LSM9DS1 sensor chip was selected because it is a
representative example of a low-cost consumer grade sensor.

1Since the object is supposed to be still and in a constant, uniform
magnetic field, the TRIADmethod can be applied for every sensors’ sample.
However, we use it every 5 seconds to simulate a real walking scenario.
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FIGURE 3. Roll (a), pitch (b) and yaw (c) error of the estimated attitude
using just the gyroscope’s measurements compared to the one using the
proposed algorithm.

Some significant performance specifications of the IMU
are presented in Table 3. Similar to the case of many
commercial low-cost sensors, its noise and bias instability
characteristics are not announced by the manufacturer. Thus
we use several hours of sensors’ measurements and employed
the Allan variance [32], [33] to calculate the output noise
density and bias instability of the three sensors. In Table 3
these values are marked with a ‘‘*’’ and indicate the average
value of the three axis of each sensor.

We tested the proposed algorithm by conducting a walk
around the campus of the National Technical University of
Athens, Greece, which lasted for 20 minutes and covered
a distance of approximately 1.3 km. Figure 4 shows the
walk path, including important landmarks. The path includes
several sources of magnetic disturbance, such as buildings
and parking areas.

TABLE 3. Basic performance characteristics of the accelerometer (A),
gyroscope (G), and magnetometer (M) included in the LSM9DS1 SiP.

FIGURE 4. Walk path inside the campus of the National Technical
University of Athens, Greece.

FIGURE 5. Reconstructed walk path using accelerometer and gyroscope
measurements and the zero velocity update method.

Initially, we demonstrate the long-term accuracy of the
proposed system by comparing it to existing pedestrian
navigation systems that solely utilize the zero velocity update
method. We reconstructed the walk path using only the
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FIGURE 6. Reconstructed walk path using the measurements of both
inertial and magnetic sensors, the zero velocity update method, and the
proposed attitude correction scheme.

FIGURE 7. Reconstructed walk path with highlighted important accuracy
characteristics.

accelerometer and gyroscope measurements along with the
zero velocity update method. As depicted in Figure 5,
the calculated attitude drifts after a few meters, and the
reconstructed walk path significantly deviates from the
reference path.

Figure 6 illustrates the reconstructed walk path using
measurements from all three sensors along with the proposed
algorithm. It is evident that the reconstructed path success-
fully tracks the reference path in the long term.

Figure 7 highlights certain accuracy characteristics along
the reconstructed path:

The actual path forms a closed loop, starting and ending
at exactly the same point. As shown in Figure 7, the
reconstructed path exhibits an error of 3.08m from the starting
point to the ending point. This performance is impressive,
as the error is below 0.25% of the total walking distance. The
high refresh rate and measurement accuracy of the proposed
system enable the identification of walking patterns. Figure 7

FIGURE 8. Reconstructed walk path using the measurements of both
inertial and magnetic sensors, the zero velocity update method, and the
proposed attitude correction scheme.

demonstrates this by easily identifying a road crossing and
a zig-zag pattern while walking. A closer inspection of
the reconstructed trajectory reveals the position correction
introduced by both the attitude correction scheme and the
zero velocity update method in three consecutive steps.

We compared the proposed algorithm with existing pedes-
trian navigation algorithms in terms of accuracy and compu-
tational efficiency using two popular, highly cited attitude and
heading reference system (AHRS) algorithms. We combined
the zero velocity update method, as described in [16], with
Madgwick’s AHRS [18] and Mahony’s AHRS [17] attitude
estimation algorithms similar to [34]. We reconstructed the
walking path shown in Figure 4 using the three algorithms.

Figure 8 provides a comparison of the three algorithms
in terms of accuracy and long-term stability. The proposed
algorithm outperforms both the Madgwick’s AHRS and
Mahony’s AHRS based algorithms, as it successfully tracks
the reference path throughout the entire walking distance. The
algorithm based on Madgwick’s AHRS accurately tracks the
reference path and experiences slight drift only during the last
250m, while the Mahony’s AHRS based algorithm appears
to be less resilient to the magnetic disturbances along the
walking path.

Table 4 presents a comparison of the three algorithms in
terms of computational efficiency. We executed the three
algorithms in MATLAB on a typical quad-core, 8GB RAM
PC. Since all three algorithms are based on the same Kalman
filter framework to implement the zero velocity update
method, the computational burden primarily stems from the
attitude estimation algorithm. To ensure a fairer comparison,
we executed each algorithmfive times using the same dataset,

TABLE 4. Mean execution time of the proposed algorithm compared to
the mean execution time of the algorithms based on Madgwick’s AHRS
and Mahony’s AHRS.
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and the mean execution time of all algorithms is presented
in Table 4.

IV. CONCLUSION
This work presented a long-term accurate pedestrian nav-
igation algorithm utilizing low-cost inertial and magnetic
field sensors. To address the gyroscope’s residual calibration
errors and offset drift, a novel approach for attitude correction
was introduced, combining the measurements of a three-axis
magnetometer and a three-axis accelerometer. Simulation and
experimental results demonstrated that the proposed algo-
rithm greatly improves the long-term navigation accuracy
compared to using the standard zero velocity update method
alone.

APPENDIX A
TRIAD ALGORITHM
Assume two pairs of 3 × 1 unit vectors, (a1, b1) and (a2 =

Ra1, b2 = Rb1) where R ∈ SO(3), TRIAD algorithm
derives R. To this end, it begins by constructing two triads
of orthonormal vectors as follows

c1 = a1, c2 = (a1 × b1) /∥a1 × b1∥

c3 = (a1 × (a1 × b1)) /∥a1 × b1∥

and

d1 = a2, d2 = (a2 × b2) /∥a2 × b2∥

d3 = (a2 × (a2 × b2)) /∥a2 × b2∥

Then, R is derived as

R = [d1 d2 d3] [c1 c2 c3]T
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