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Abstract— This paper introduces the MAGnetometer-Inertial
sensors Calibration and ALignment (MAG.I.C.AL.) methodology
for unified calibration and joint axes alignment of three-axis mag-
netometer, three-axis accelerometer, and three-axis gyroscope.
MAG.I.C.AL. compensates for all linear time-invariant distor-
tions such as scale-factor, cross-coupling, and offset, including
the soft-iron and hard-iron distortions of the magnetometer.
It introduces a new, computationally efficient, least-squares-based
iterative algorithm for the calibration of the magnetometer and
the accelerometer. It aligns their axes and introduces a new way
to calibrate the gyroscope based on their joint data. MAG.I.C.AL.
is implemented in a 15-step sequence achieving fast convergence
and high accuracy without using any external piece of equipment
and without requiring external attitude references. Simulation
and experimental results using low-cost sensors are presented
to support the accuracy, efficiency, and the applications of the
algorithm.

Index Terms— Accelerometer, axes alignment, calibration,
gyroscope, hard-iron, inertial sensors, joint calibration,
magnetometer, navigation, soft-iron.

I. INTRODUCTION

INERTIAL sensors, accelerometers and gyroscopes, are
combined with magnetometers in a wide range of appli-

cations. For example, in [1] and [2] the three sensors are
combined in pedestrian navigation applications. Two heading
estimation algorithms based on their joint data are presented
in [3] and [4]. Many applications where the three sensors
are combined can be found in the literature, from low-cost
commercial systems to high-accuracy marine, aerospace and
military systems.

Especially in the case of low-cost systems, micro-electro-
mechanical (MEMS) inertial sensors are usually preferred due
to their significantly lower cost and small size. However,
a major disadvantage of MEMS inertial sensors is their
large error characteristics [5]. So, in order to use them in
applications where accuracy is important, such as navigation,
a calibration procedure that compensates for the deterministic
part of their error is required.
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Similarly to the inertial MEMS sensors, low-cost mag-
netometers also suffer from significant measurement errors.
Apart from the sensor’s manufacturing imperfections, the mea-
sured magnetic field is strongly distorted by nearby magnetic
materials. Surrounding electronic components and the sensor’s
enclosure are a common source of such distortions. Getting
an accurate magnetic field measurement requires a calibration
procedure to compensate for both sensor’s measurement error
and the distortions caused by nearby objects.

In the case of low-cost inertial and magnetic sensors, fac-
tory calibration or after-production calibration using expensive
equipment is not an option as it would raise the sensor’s cost
significantly. Thus, a calibration method that is not based on
any external equipment is highly preferred.

For 3-axis accelerometer calibration, most authors take
advantage of the fact that the measured magnitude of the
specific force is constant when the sensor is still, indepen-
dently of its orientation. The work in [6] proposes an off-line
calibration method based on maximum likelihood estimation.
In [7] an algorithm based on least-square method is proposed.
In [8] the authors propose a solution based on the Levenberg-
Marquardt algorithm to improve the calibration accuracy. The
authors in [9] use a nonlinear parameter estimator based
on the unscented transformation to calculate the calibration
parameters. In [10], calibration parameters are calculated by
solving a nonlinear optimization problem.

Gyroscope calibration is a more complicated problem as no
convenient rotation reference is available. Some authors use
special equipment in order to calibrate a gyroscope [11]–[13].
In [14], the authors use the earth’s rotation as reference,
an approach suffering from the MEMS gyroscope rela-
tively high noise levels. In [15] the rotation of a calibrated
accelerometer is used as a reference in a least squares problem
formulation. Authors in [16] use a calibrated magnetometer in
a Kalman filter estimation problem to calculate the calibration
parameters.

For 3-axis magnetometer calibration, the magnetic field of
the earth is most commonly used as reference. In [17]– [21]
the authors derive the calibration parameters by solving a max-
imum likelihood estimation problem. A least-squares based
iterative algorithm for magnetometer calibration is proposed
in [22]. In [23], the authors formulate the magnetometer
calibration as a state estimation problem which can be solved
using Kalman filtering.

In most navigation or heading estimation applications the
measurements of the three (accelerometer, gyroscope, mag-
netometer) are combined to give a more accurate result.
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This gives rise to the need of alignment between the axes
of the three sensors. In [24] and [25], magnetometer’s axes
are aligned with those of the accelerometer. The authors
in [26] and [23] use a gyroscope to align magnetometer and
inertial sensors. An algorithm for calibration and axes align-
ment between a gyroscope and an accelerometer is proposed
in [27].

The calibration of inertial and magnetic sensors, and the
alignment of their axes is required in all relevant applications.
However, most of the previous works deal only with the
calibration of either a single sensor or the alignment between
a pair of them.

This work introduces the MAG.I.C.AL. methodology to
jointly calibrate and align the axes of all three sensors (3-axis
accelerometer, 3-axis gyroscope and 3-axis magnetometer) in
a simple 15-steps sequence, achieving high accuracy without
requiring any special piece of equipment.

Specifically, MAG.I.C.AL. calibrates the 3-axis accelerom-
eter and the 3-axis magnetometer independently, aligns their
axes and uses their calibrated measurements to accurately
calibrate the 3-axis gyroscope without the need of a turn-table.

MAG.I.C.AL. introduces a new calibration algorithm for the
magnetometer and the accelerometer, and, a new calibration
approach and the corresponding algorithm for the gyroscope.
MAG.I.C.AL. also improves in computational efficiency and
convergence rate compared to existing techniques.

The paper is organized as follows. In sections II and III
magnetometer and accelerometer calibration algorithms are
described respectively. Section IV addresses the axes align-
ment between an accelerometer and a magnetometer.
Section V describes the gyroscope calibration algorithm.
In section VI, MAG.I.C.AL. methodology is described as a
complete calibration and axes alignment procedure. Finally,
evaluation of the proposed algorithm using experimental data
and conclusions are presented in sections VII and VIII.

II. MAGNETOMETER CALIBRATION

The 3-axis magnetometer’s calibration is based on the fact
that the measured magnitude of the magnetic field should
be independent of the magnetometer’s orientation. This is
formulated as an optimization problem which is solved using
a novel least-squares based iterative algorithm achieving fast
convergence and computational efficiency.

A. Hard-Iron and Soft-Iron Distortions

A magnetometer measures the strength and the direction of
the local magnetic field. The measured field is a combination
of the earth’s magnetic field and an additive field created by
magnetic objects attached to the same reference frame as the
sensor. This additive field is called hard-iron distortion and
causes a permanent bias in the sensor’s output.

In addition, magnetometer’s measurement is distorted by
nearby materials attached to the sensor’s frame that influ-
ence the magnetic field but don’t generate a magnetic field
themselves, most commonly metals. This type of distortion
is called soft-iron distortion, and, along with the hard-iron
distortion are the most important error contributors in the
measurements.

B. Measurement Model

Taking into account the hard-iron and soft-iron distortions
which are the two dominant sources of distortion, the sensor’s
measurement can be modeled as [18], [21], [24], [28]

ym = Ts f Tcc (Tsi m + hhi ) + hb + ε (1)

where ym is the 3 × 1 measurement vector, Ts f is a 3 × 3
diagonal matrix representing the linear scale-factor error,
Tcc is a 3 × 3 matrix representing the cross-coupling error
which arises from the misalignment of the sensor’s axes.
Tsi is a 3 × 3 matrix representing the soft-iron distortion,
m is the 3 × 1 true magnetic field vector, hhi is the 3 × 1 bias
vector due to the hard-iron distortion, hb is the 3 × 1 sensor’s
bias vector and ε is the measurement’s random error.1

Setting Tm � Ts f TccTsi and hm � Ts f Tcchhi +hb, the mag-
netometer’s measurement model becomes

ym = Tmm + hm + ε (2)

C. Calibration Algorithm

The purpose of the calibration algorithm is to estimate the
calibration parameters Tm and hm in order to minimize the
measurement error �ε� while assuming a constant magnitude
for the measured magnetic field. Thus, given N measurements,
the problem of calibrating a magnetometer can be posed as the
following optimization problem

minimize
Tm ,hm

mk ,k=1,2,...,N

N�

k=1

�ymk − Tmmk − hm�2

subject to �mk� = 1, k = 1, 2, . . . , N (3)

All norms in this paper are two-norms unless it is indicated
otherwise. In (3), without loss of generality, we assume the
magnitude of the magnetic field is one. A penalty function
corresponding to (3) is

J =
N�

k=1

�
�ymk − Tmmk − hm�2 + λ

�
�mk�2 − 1

�2
�

(4)

where λ is a positive constant. It should be selected to balance
the contribution of the two summands.2

Minimizing (4) using gradient descent or Newton-Raphson
methods require a good initial estimate of the unknowns Tm

and hm , otherwise they are very slow in convergence, if they
converge at all. Finding an initial estimate is not trivial due
to the uncertainty of soft-iron and hard-iron distortions; the
authors in [18] and [24] propose a linear least-squares problem
in order to find one. In [22] a solution to (3) by means of
iterations of a least-square problem is proposed which excels
in computational efficiency and convergence.

Similarly to [22], we propose an iterative solution to (3)
based on the solution of a linear least-squares problem.
We start with rewriting (2) in matrix form for all measurements

Y = LG + E (5)

1ε is assumed to be a zero mean random variable.
2Typically it is selected to be in the order of �Tm�.



PAPAFOTIS AND SOTIRIADIS: MAG.I.C.AL.–A UNIFIED METHODOLOGY FOR MAGNETIC & INERTIAL SENSORS CALIBRATION & ALIGNMENT 8243

where

Y = �
ym1 ym2 ... ym N

�
, L = �

Tm hm
�

G =
�

m1 m2 ... mN

1 1 ... 1

�
and E = �

ε1 ε2 ... εN
�

The system (5) has 3 × N equations. Assuming an initial
estimate of a full rank matrix G, every iteration of the
algorithm begins with deriving Tm and hm minimizing the
total squared error �ET E�2

F . From least-squares method [29]
we have

L = Y GT (GGT )−1 (6)

Using the updated values of Tm and hm and (2) we define

m̃k = T −1
m (ymk − hm), k = 1, 2, . . . , N (7)

where we assume that Tm is invertible. This is a rational
assumption as a non-invertible Tm would imply that not all
three axes are expressed in the output of the sensor.

Since the magnitude of the magnetic field is independent
of the measurement, and set to one for convenience, we
update mk as

mk = m̃k

�m̃k� (8)

As a metric of convergence we use the value of the penalty
function J in (4).

The magnetometer calibration algorithm is summarized
in Algorithm 1.

Algorithm 1: Magnetometer Calibration

Step 1: Initialize mk = ymk�ym k� , k = 1, 2, . . . , N

and form matrix G

Step 2: Solve for L using least-squares:
L = Y GT (GGT )−1

Step 3: Extract Tm and hm from L

Step 4: m̃k = T −1
m (ymk − hm), k = 1, 2, . . . , N

Step 5: Update G using mk = m̃k�m̃k� , k = 1, 2, . . . , N

Step 6: Calculate J

Step 7: Repeat steps 2-6 until J is sufficiently small

D. Recommended Calibration Procedure

The goal of the calibration procedure is to derive
matrix Tm and vector hm in (2) modeling the behavior of the
magnetometer.

Assuming N magnetometer’s measurements, we formulate
a system of N equations of the form of (2). An intuitive
way to calculate the minimum number N , required to derive
the calibration matrix Tm and the offset vector hm , is the
following: matrix Tm and vector hm are the same for all
equations and thus they contribute 12 (3×3+3×1) unknowns
in total. For every measurement, the (unknown) magnetic field
vector m, contributes another 3 unknowns. So, in total there
are 12 + 3N unknowns. Every measurement expressed in the
form of (2), contributes 3 scalar equations. In addition, since

Fig. 1. Recommended sequence of approximate orientations for magnetome-
ter calibration.

the magnetic field vector m is of unit norm, we get one more
scalar equation for every measurement. So, in total we have
3N + N equations. Balancing unknowns with equations gives
a minimum N = 12.

To this end, we recommend the calibration procedure
shown in Figure 1 where the sensor measures the magnetic
field by being placed in 12 different approximate orien-
tations. Specifically, in Figure 1, the (X, Y, Z) coordinate
system denotes the sensor’s body frame and the (X̃ , Ỹ , Z̃)
coordinate system denotes the calibration reference frame
which is fixed. For each orientation, as shown in Figure 1,
the respective ymk, k = 1, 2, . . . , 12 is measured. Note that
the steps in Figure 1 should not be confused with the steps of
the Algorithm 1.

Important Note: The orientation of the sensor in meant
to be approximate, no accuracy is needed. Orientation and



8244 IEEE SENSORS JOURNAL, VOL. 19, NO. 18, SEPTEMBER 15, 2019

placement of the sensor can be done by hand with an accuracy
of say +/ − 15◦ of Euler angle.

The described magnetometer calibration algorithm and pro-
cedure were tested on experimental data. The results of those
tests are discussed in section VII.

III. ACCELEROMETER CALIBRATION

The 3-axis accelerometer’s calibration algorithm exploits the
fact that measured magnitude of the specific force should be
constant when the sensor is still, independently of the sensor’s
orientation.

A. Measurement Model

Accelerometer’s measurement is modeled as [5], [30]

ya = f + Ts f f + Tcc f + ha + ε, (9)

where ya is the 3 × 1 measurement vector, f is the 3 × 1
true specific force vector, Ts f is a 3 × 3 diagonal matrix
representing the linear scale-factor error of the sensor, Tcc is
a 3 × 3 matrix representing the cross-coupling error, ha is the
3 × 1 accelerometer bias vector and ε is the sensor’s random
error.3 Defining Ta � I3 + Ts f + Tcc, where I3 is the 3 × 3
identity matrix, (9) can be written as

ya = Ta f + ha + ε (10)

B. Calibration Algorithm

A popular calibration approach ([6], [7] and others) uses
the fact that the measured magnitude of the specific force
of a still 3-axis accelerometer should be constant. Assuming
N measurements and using (10) the calibration problem
is equivalent to minimizing (11); this is typically done by
employing the gradient descent method.

minimize
Ta ,ha

fk ,k=1,2,...,N

N�

k=1

�yak − Ta fk − ha�2

subject to � fk� = 1, k = 1, 2, . . . , N (11)

A penalty function corresponding to (11) is

J =
N�

k=1

	
�yak − Ta fk − ha�2 + λ

�
� fk�2 − 1

�2



(12)

where λ is a positive constant. It should be selected to balance
the contribution of the two summands. 4

In contrast to the magnetometer case, for the accelerometer’s
calibration we can find an initial estimate of the unknowns f,
Ta and ha . Under the reasonable assumption of small scale-
factor and cross-coupling errors, an initial estimate of Ta is
the 3 × 3 identity matrix.5 In a similar way, bias vector ha is
initialized to the 3 × 1 zero vector (03×1).

3ε is assumed to be a zero mean random variable.
4Typically λ is selected to be in the order of �Ta�
5This relates to the fact that we use � fk� = 1 and the assumption that the

accelerometer’s gain has been roughly pre-adjusted so that the specific force
results in almost unit magnitude output.

Fig. 2. Magnetic inclination.

Using the aforementioned initial estimate, the gradient
descent method can minimize (12). However, as seen, opti-
mization problem (11) share the same form with (3),
the optimization problem derived for magnetometer calibra-
tion. Thus, magnetometer’s calibration algorithm can also be
used for accelerometer calibration as shown in Algorithm 2.
Algorithm 2 is typically significantly faster in convergence and
better in computational efficiency than the gradient descent
one and this why it is preferred in our proposed calibration
methodology here.

Algorithm 2: Accelerometer Calibration

Step 1: Initialize fk = yak�yak� , k = 1, 2, . . . , N

and form matrix G

Step 2: Solve for L using least-squares:
L = Y GT (GGT )−1

Step 3: Extract Ta and ha from L

Step 4: f̃k = T −1
a (yak − ha), k = 1, 2, . . . , N

Step 5: Update G using fk = f̃k

� f̃k� , k = 1, 2, . . . , N

Step 6: Calculate J

Step 7: Repeat steps 2-6 until J is sufficiently small

C. Recommended Calibration Procedure

In Subsections III-A and III-B, accelerometer’s calibration
is formulated as a mathematical problem identical to that
of the magnetometer’s calibration presented in Section II.
Thus we recommend using the calibration sequence described
in Figure 1 for accelerometer’s calibration as well.

The performance characteristics of the accelerometer cali-
bration algorithm are presented in Section VII.

IV. ACCELEROMETER-MAGNETOMETER

AXES ALIGNMENT

When accelerometer and magnetometer are combined for
applications such as heading estimation, their axes must
become aligned. A small misalignment between their axes is
initially expected not only when the two sensors are in separate
packages, but even when they are built into the same one.
To compensate for this misalignment, the constant magnetic
inclination during calibration is exploited.

A. Magnetic Inclination

Magnetic inclination (or magnetic dip, or dip angle) is
the angle between the plane of the horizon and the Earth’s
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magnetic field lines as shown in Figure 2. Magnetic inclination
varies with location. It can be defined by the inner product of
the normalized gravity and the magnetic field vectors

sin δ = gT m

�g��m� (13)

where δ is the magnetic inclination angle, g is the gravity
vector and m is the magnetic field vector.

B. Axes Alignment Algorithm

If we have a calibrated accelerometer and a calibrated
magnetometer, both fixed on a common rigid platform, we can
use them to compute the inclination angle. To do so however,
we have to align the axes of the two sensors, meaning that we
have to derive a rotation matrix R (R ∈ SO(3)) which rotates
magnetometer’s axes (x, y, z) into the accelerometer’s axes
(x, y, z) respectively. Note that for this to be possible, the two
axes (coordinate) systems must have the same orientation. The
derivation of the rotation matrix R and the inclination angle
δ is formulated as the following optimization problem

minimize
R,δ

N�

k=1

�
sin δ − f T

k Rmk

� fk��mk�
�2

subject to R ∈ SO(3)

δ ∈

−π

2
,
π

2

�
(14)

where δ is the magnetic inclination angle, f and m are
the calibrated accelerometer and magnetometer measurements
respectively and R is a rotation matrix that rotates magne-
tometer’s axes into the accelerometer’s axes. Both inclination
angle δ and rotation matrix R are unknowns.

We form the vector x = [vec(R)T δ]T
and define a penalty

function corresponding to (14) as

J (x) =
N�

k=1

�
sin δ − f T

k Rmk

� fk��mk�
�2

+ λ�RRT − I�2
F

+ μ(det R − 1)2 (15)

where λ and μ are positive constants, selected to balance
the contribution of the three summands. The gradient descent
method [31] is used to minimize (15). The gradient is

∇ J (x) =
�

∂ J (x)

∂vec(R)

T ∂ J (x)

∂δ

�T

(16)

where

∂ J (x)

∂vec(R)
= −2

N�

k=1

��
sin δ − f T

k Rmk

� fk��mk�
�

mk ⊗ fk

� fk��mk�

�

+ 4λvec
�

RRT R − R
�

+ 2μ(det (R) − 1)vec
�

adj(R)T
�

∂ J (x)

∂δ
= 2 cos δ

N�

k=1

�
sin δ − f T

k Rmk

� fk��mk�
�

and ⊗ denotes the Kronecker’s product [32].

An estimate of R for initializing the gradient descent
algorithm is the 3 × 3 identity matrix, assuming of a small
misalignment between the axes of the two sensors. Inclination
angle is initialized according to magnetic models (such as
World Magnetic Model (WMM)) for the specific location on
earth’s surface, δ = δW M M .

The accelerometer and magnetometer axes alignment algo-
rithm is described in Algorithm 3, where a and b are positive
numbers for the line search.

Algorithm 3: Accelerometer - Magnetometer Alignment
Step 1: Initialize R = I3, δ = δW M M ,
Step 2: Initialize t , a and b
Step 3: Calculate the gradient:

�x=-∇J(x)
Step 4: Choose step size:

while J (x + t�x) > J (x) + at∇ J (x)T �x
t := bt

Step 5: Update x = x + �x
Step 6: Calculate J (x)
Step 7: Repeat steps 3-6 until J (x) is sufficiently small

C. Recommended Axes Alignment Procedure

In order for Algorithm 3 to result in accurate axes alignment
between an accelerometer and a magnetometer, measurements
of both sensors in multiple orientations are required. Thus, for
axes alignment, we recommend the previously described mag-
netometer’s calibration sequence (Figure 1) using both sensor’s
measurements. The evaluation of the described algorithm is
presented in Section VII.

V. GYROSCOPE CALIBRATION

This Section introduces a new approach to gyroscope cal-
ibration and provides the associated algorithm. It applies to
the case where a 3-axis gyroscope, a 3-axis accelerometer
and a 3-axis magnetometer are fixed on the same, rigid
platform.

Assuming that the accelerometer and the magnetometer
have already been calibrated and aligned, we use them to
calculate the rotation of the platform between two still posi-
tions. The proposed approach is based on the fact that this
rotation should be identical to that derived from the gyroscope,
when the last one is also calibrated. Note that using the joint
accelerometer - magnetometer rotation as reference for the
gyroscope’s calibration, the algorithm also aligns the axes of
the gyroscope with those of the other two sensors.

Therefore, the new approach is comprised of a) the deriva-
tion of the rotation from the accelerometer and magnetometer
data, b) the parametric derivation of the rotation from the
gyroscope data, and, c) the optimization algorithm which
equates the two of them.

A. Rotation From Accelerometer and Magnetometer Data

Assume a rotation of the platform between two still posi-
tions. Let fbegin and fend be the 3 × 1 accelerometer’s
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measurement vectors before and after the rotation, while the
platform is still. Similarly, let mbegin and mend be the 3 × 1
magnetometer’s measurement vectors accordingly.

Assuming that fbegin , fend , mbegin and mend have been
derived using calibrated accelerometer and magnetometer
according to the proposed algorithms in Sections III and II,
the angle between fbegin and mbegin is the same with the angle
between fend and mend and all four vectors are of unit norm.
The above allow us to use the TRIAD algorithm [33], [34] to
find a rotation matrix R ∈ SO(3) such that R fbegin = fend

and Rmbegin = mend .
Given the unit vectors fbegin , fend , mbegin and mend ,

the TRIAD algorithm begins by constructing two triads of
orthonormal column vectors according to

a1 = fbegin , a2 = �
fbegin × mbegin

�
/� fbegin × mbegin�

a3 = �
fbegin × �

fbegin × mbegin
��

/� fbegin × mbegin�
and

b1 = fend , b2 = ( fend × mend ) /� fend × mend�
b3 = ( fend × ( fend × mend )) /� fend × mend�

The matrix R is derived as

R = [b1 b2 b3] [a1 a2 a3]T

It is convenient to consider the application of the TRIAD
algorithm as a function Ram, i.e.

R = Ram
�

fbegin , fend , mbegin, mend
�

(17)

B. Rotation From Gyroscope Data

Using K sequential gyroscope’s measurements sampled at
rate τs , we can calculate the rotation matrix representing the
sensor’s body frame rotation from time t to time t + K τs . Let
ωk = �

ωx k ωy k ωzk

�T be the kth sample of the gyroscope’s
output. Using the entries of ωk , we define the skew symmetric
matrix function


(ωk) =
⎡

⎣
0 −ωzk ωy k

ωz k 0 −ωx k
−ωyk ωx k 0

⎤

⎦ . (18)

Setting ω̄ = [ω1 ω2 . . . ωK ] ∈ R
3×K , the rotation matrix

from t to t + K τs can be approximated by the outcome of the
following function [5], [30]

Rg(ω̄) = �
I + τs
(ω̄e1)

��
I + τs
(ω̄e2)

�
. . .�

I + τs
(ω̄eK )
�

(19)

where ek is the kth normal vector in R
K .

C. Measurement Model

Gyroscope’s measurement is modeled as [5], [30]

yg = ω + Ts f ω + Tccω + hg + ε, (20)

where yg is the 3 × 1 measurement vector, ω is the 3 × 1
true angular velocity vector, Ts f is a 3 × 3 diagonal matrix
representing the linear scale-factor error of the sensor, Tcc is
a 3 × 3 matrix representing the cross-coupling error, hg is

the 3 × 1 gyroscope’s bias vector and ε is the measurement’s
random error.6 Defining Tg = I3 + Ts f + Tcc, (20) can be
written as

yg = Tgω + hg + ε (21)

D. Calibration Algorithm

Assume that the sensor’s platform rotates N times with a
short period of stillness between them. During every rotation,
the gyroscope is regularly sampled every τs seconds and the
samples are recorded. Recording begins from the still position,
just before the rotation begins, and ends at the next still
position, just after the rotation ends. We also assume that every
one of the three gyroscope’s axes is rotated significantly in at
least one of the rotations.

Let ωn
j be the j th gyroscope’s sample measured sample

(i.e. yg in (21)) during the nth rotation, n = 1, 2, . . . , N .
Using (21), we get the calibrated sample

ω̃n
j = Hg(ω

n
j − hg)

where Hg = Tg
−1. Here we assume that Tg is invertible. This

is a rational assumption as a non-invertible Tg would imply
that not all three axes are expressed in the output of the sensor.
For every rotation, we form the matrix

ω̄n =

ω̃n

1 ω̃n
2 . . . ˜ωn

Mn

�

where Mn is the number of the recorded samples during the
nth rotation. Then, using (19), for every rotation, we derive a
rotation matrix as a function of the calibration parameters Hg

and hg in (21).

Rn
g = Rg(ω̄n) (22)

Calculating the rotations using accelerometer’s and magne-
tometer’s measurements, as in Section V-A, requires measure-
ments of both sensors before and after every rotation, while
the sensors are still. Let f n

begin and f n
end be the measured

specific force vectors exactly before and after rotation n,
n = 1, 2, . . . , N . Similarly let mn

begin and mn
end be the

corresponding vectors of the magnetic field. To minimize the
effect of the sensors’ noise, we prefer to define the above
four vectors as the average of L samples. Then, using (17),
for every rotation, we derive the accelerometer-magnetometer
rotation matrix

Rn
am = Ram( f n

begin , f n
end , mn

begin, mn
end ). (23)

To calibrate the gyroscope we minimize the mean square
error between the rotation calculated using gyroscope’s mea-
surements Rn

g and the corresponding rotation calculated using
accelerometer’s and magnetometer’s measurements Rn

am . This
is done for all N rotations simultaneously, and so the cali-
bration procedure can be posed as the minimization of cost
function J (x), where

J (x) =
N�

n=1

�
�Rn

am − Rn
g�2

�
+ λ

��Hg(ωst ill − hg)
��2 (24)

6ε is assumed to be a zero mean random variable.
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and

x = �
vec(Hg)

T hg
T
�T

The positive constant λ is selected to balance the contribution
of the two summands in (24) where the second one is for
nulling the sensor’s bias. Note that ωst ill is the gyroscope’s
output (yg in (21)) when it is still (i.e. ω = 0 in (21)), also
defined as the average of M measurements to reduce random
noise.

We solve (24) using the gradient descent method with
the gradient of J (x) be numerically calculated. Assuming
small scale-factor, cross-coupling and bias errors we initialize
Hg to the 3 × 3 identity matrix and hg to the 3 × 1 zero
vector.

Gyroscope calibration algorithm is shown in Algorithm 4,
where a and b are positive numbers for the line search.

Algorithm 4: Gyroscope Calibration
Step 1: Initialize Hg = I3, hg = 03x1,
Step 2: Initialize t, a and b
Step 3: Calculate the gradient:

�x=-∇J(x)
Step 4: Choose step size:

while J (x + t�x) > J (x) + at∇ J (x)T �x
t := bt

Step 5: Update x = x + �x
Step 6: Calculate J (x)
Step 7: Repeat steps 3-6 until J (x) is sufficiently small

E. Recommended Calibration Procedure

For the gyroscope’s calibration we must calculate the cal-
ibration matrix Hg and the offset vector hg . So, in total
there are 12 unknowns. These unknowns are calculated by
minimizing (ideally zero) the cost function J (x) in (24).
Setting J (x) equal to zero is equivalent to

Rn
am = Rn

g , n = 1, 2, . . . , N (25)

and

ωst ill = hg (26)

where N is the number of rotations.
In an intuitive way, the number of rotations required can be

derived as follows. Since Rn
am and Rn

g are by default rotation
matrices, (25) contributes 3 scalar equations for each rotation.
From (26) we have another 3 scalar equations. Thus in total
we have 3N + 3 scalar equations, implying that N = 3 is the
minimum number of rotations needed to balance the unknowns
with the equations.

To achieve accurate calibration of the gyroscope using
Algorithm 4, every one of the three gyroscope’s axes must
rotate significantly in at least one of the rotations. The exact
form of the rotations is not critical otherwise. As a guidance
for choosing the rotation pattern, the sequence in Figure 3 is
recommended. In Figure 3, the (X, Y, Z) coordinate system
denotes the sensor’s body frame and the (X̃ , Ỹ , Z̃ ) coordinate

Fig. 3. Recommended sequence of approximate orientations and rotations
for gyroscope calibration.

system denotes the calibration reference frame which is fixed.
Note that the steps in Figure 3 should not be confused with
the steps of the Algorithm 4.

Important Note: All rotations are approximately 90◦
(e.g. between 60◦ and 120◦). Keeping the sensor platform still
between the rotations is important.

Gyroscope calibration algorithm is evaluated using experi-
mental data. Its performance is presented in Section VII.

VI. MAG.I.C.AL. METHODOLOGY

In this section, we describe MAG.I.C.AL. methodology
as a complete procedure for joint calibration of a 3-axis
accelerometer, a 3-axis magnetometer and a 3-axis gyro-
scope. MAG.I.C.AL. comprises of the previously presented
sub-processes for magnetometer calibration (Section II),
accelerometer calibration (Section III), accelerometer and
magnetometer axes alignment (Section IV), and gyroscope
calibration (Section V).

The 15-step MAG.I.C.AL. calibration procedure, integrat-
ing all the presented sub-processes into a unified algorithm,
is shown in Figure 4. The steps of the procedure are grouped
in Table I according to their use in each of the sub-processes.

In Figure 4, the (X, Y, Z) coordinate system denotes the
sensor’s body frame and the (X̃ , Ỹ , Z̃ ) coordinate system
denotes the calibration reference frame which is fixed.
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TABLE I

REQUIRED STEPS FOR EACH MAG.I.C.AL SUB-PROCESS

Important Note: The orientation of the sensor in meant to
be approximate. Orientation and placement of the sensor can
be done by hand with an accuracy of say +/ − 15◦ of Euler
angle. Also, all rotations are approximately 90◦ (e.g. between
60◦ and 120◦).

VII. EXPERIMENTAL RESULTS AND EVALUATION

In order to evaluate MAG.I.C.AL., an inertial measurement
unit (IMU) & magnetometer device (unified platform) was
developed based on Bosch Sensortec BNO055. The specifi-
cations of the BNO055 SoC are given in [35]. Using it we
performed the calibration sequence in Figure 4 five times and
each time we recorded the corresponding dataset. We applied
MAG.I.C.AL. to each one of the five datasets and derived five
sets of calibration parameters respectively. Then, we used the
last ones to analyze the stability and the repeatability, and
estimate the accuracy of the MAG.I.C.AL. methodology. The
results are discussed in the following subsections.

A. Convergence

In this section we examine the convergence of the
MAG.I.C.AL. methodology using the five aforementioned
datasets. Figures 5–8 present the convergence of each sub-
process of the methodology for each dataset.

As seen in Figure 5, the cost function of the accelerometer’s
calibration sub-process appears to be monotonic and requires
only a few iterations of the proposed algorithm to converge.

In Figure 6 the convergence of the magnetometer’s calibra-
tion sub-process is presented. Although the required iterations
and the shape of the cost function are very different for each
dataset, the algorithm converges monotonically for all five
datasets.

The cost function of the accelerometer’s and magnetome-
ter’s axes alignment sub-process also appears to be monotonic
as seen in Figure 7. The algorithm converges for all five
datasets.

Gyroscope calibration algorithm converges after only a few
iterations for all five datasets, as seen in Figure 8. The
corresponding cost function appears to be monotonic.

B. Measuring Distance Between Calibration Parameter Sets

Applying the calibration methodology to all five datasets,
we expect some consistency between the calibration parame-
ters derived from them. The calibration parameter sets of the
magnetometer, the accelerometer and the gyroscope are pairs
of a calibration matrix and an offset vector, (Tm, hm), (Ta, ha)
and (Tg, hg) as shown in (2), (10) and (21) respectively.

The offset vectors are defined uniquely in the proposed
algorithms, in the sense that they are independent of the true

Fig. 4. MAG.I.CAL. recommended sequence of approximate orientations
and rotations.

values of the magnetic field, the specific force and the angular
velocity respectively. Therefore, the distance between offset
vectors derived using different datasets can be defined as the
norm of their algebraic difference, i.e. d(xi , x j ) = �xi − x j�.

The normalized distance d̄ is defined as the ratio of the
average distance divided by the average norm of the vectors,
i.e. for N datasets (N = 5 here) there are

�N
2

�
pairs and d̄ is
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Fig. 5. Convergence of accelerometer calibration algorithm.

Fig. 6. Convergence of magnetometer calibration algorithm.

given by

d̄(x1, x2, . . . , xN ) =

⎛

⎝
�

1≤i< j≤N

d(xi , x j )

⎞

⎠
��N

2

�

⎛

⎝
�

1≤i≤N

�xi�
⎞

⎠
�

N

.

For the vectors sets hm , ha and hg we calculated the distance
d̄ based on the five datasets. It is

d̄(hm 1, hm 2, . . . , hm 5) = 0.0208

d̄(ha1, ha 2, . . . , ha5) = 0.0393

d̄(hg1, hg2, . . . , hg5) = 0.0480 (27)

Defining the distance between calibration matrices derived
using different datasets is more tricky because the proposed
algorithms consider the true values of the magnetic field,
the specific force and angular velocity to be unknowns. The
last ones are derived along with the calibration matrices to
minimize the random errors in (2), (10) and (21) respectively.

Observe for example in (2) that if we replace Tm with Tm Q
and m with QT m, where Q is an orthogonal 3×3 matrix, i.e.
Q ∈ O(3), the resulting measurement ym is unaltered. The
same is true for (10) and (21).

Therefore the calibration matrices are derived subject
to orthogonal multiplication uncertainty. To this end we

Fig. 7. Convergence of axes alignment algorithm.

Fig. 8. Convergence of gyroscope calibration algorithm.

define the distance between two calibration matrices (of the
accelerometer, the magnetometer or the gyroscope) derived
from different datasets as follows.

Definition 1: The distance between two 3 × 3 calibration
matrices T1 and T2 can be defined as:

D(T1, T2) = min�QT1 − T2�F

Q ∈ O(3) (28)

The minimizing matrix Q can be calculated using the orthog-
onal Procrustes Theorem [36].

Similarly to the offset vectors, the normalized distance D̄
between N calibration matrices is defined as

D̄(X1, X2, . . . , X N ) =

⎛

⎝
�

1≤i< j≤N

D(Xi , X j )

⎞

⎠
��N

2

�

⎛

⎝
�

1≤i≤N

�Xi�F

⎞

⎠
�

N

. (29)

For the calibration matrix sets Tm , Ta and Tg we calculated
the distance D̄ based on five datasets. It is

D̄(Tm 1, Tm 2, . . . , Tm 5) = 0.0287

D̄(Ta1, Ta2, . . . , Ta5) = 0.0018

D̄(Tg1, Tg2, . . . , Tg5) = 0.0222 (30)

Functions d(·, ·) and D(·, ·) represent the distance among
the offset vectors and the distance among the calibration
matrices derived from different datasets respectively. Thus,
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Fig. 9. Normalized magnitude of raw and calibrated accelerometer measure-
ments in six still orientations.

Fig. 10. Normalized magnitude of raw and calibrated magnetometer
measurements in five still orientations.

the small values of the normalized average distances (27) and
(30) indicate good repeatability of the proposed calibration
algorithm i.e. the algorithm return similar calibration parame-
ters for different dataset inputs.

C. Calibration Results

For accelerometer and magnetometer, the effectiveness of
the calibration algorithms can be deduced from the true values
of the specific force f̃ and the magnetic field m̃ having unit
magnitude. In Figures 9 and 10 the normalized magnitude
of both raw and calibrated accelerometer and magnetometer
measurements are presented.

In the accelerometer-magnetometer axes alignment algo-
rithm, except from the rotation matrix R, the algorithm also
derives the magnetic inclination angle. If both sensors are
calibrated and their axes are aligned, the calculated inclination
angle should be close to that given by magnetic models such
as World Magnetic Model (WMM) and Enhanced Magnetic
Model (EMM).

The experimental calibration measurements took place
inside the campus of the National Technical University of
Athens. According to WMM the magnetic inclination angle at
the location of the experiment is 54.6025◦. The values derived
from the axes alignment algorithm are presented at Table II.

As seen in Table II, the measured inclination angles have
a maximum deviation of 0.52% from the value given by

TABLE II

MAGNETIC INCLINATION ANGLE CALCULATED BY AXES
ALIGNMENT ALGORITHM FOR EACH DATASET

TABLE III

MEASURED ROLL ANGLE FOR 90◦ ROTATION ABOUT X-AXIS

the WMM. This indicates a fine alignment between the two
sensors.

To assess the performance of the gyroscope calibration
algorithm, we rotated the device by 90◦, about it’s x-axis
five times. The corresponding Euler angle derived from the
measurements for each rotation is presented in table III.

The measured Euler angles in Table III are very close to the
true rotation angle (90◦) indicating the good accuracy of the
proposed calibration algorithm without using any special piece
of equipment and without any external attitude reference.

VIII. CONCLUSION

In this paper we introduced MAG.I.C.AL., a novel, uni-
fied methodology and the corresponding algorithm for cal-
ibration and axes alignment of a 3-axis magnetometer,
a 3-axis accelerometer a 3-axis gyroscope. MAG.I.C.AL.
performs very well in terms of convergence, repeatability
and computational efficiency. MAG.I.C.AL. is applied by
following a simple sequence of fifteen approximate orien-
tations and rotations (possibly made by hand) without the
need of any external piece of equipment. MAG.I.C.AL. is
tested using experimental measurements. The experimental
results demonstrated good convergence and repeatability of
the algorithm and its capability of accurately determining the
calibration parameters of the three sensors. Additional material
including datasets and implementations of the algorithms are
available on the website http://magical.circuits.ece.ntua.gr.
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