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LoCoMOBO: A Local Constrained Multiobjective
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Abstract—A local constrained multiobjective Bayesian
optimization (LoCoMOBO) method is introduced to address
automatic sizing and tradeoff exploration for analog and
RF integrated circuits (ICs). LoCoMOBO applies to constrained
optimization problems utilizing multiple Gaussian process (GP)
models that approximate the objective and constraint functions
locally in the search space. It searches for potential pareto
optimal solutions within trust regions of the search space using
only a few time-consuming simulations. The trust regions are
adaptively updated during the optimization process based on
feasibility and hypervolume metrics. In contrast to mainstream
Bayesian optimization approaches, LoCoMOBO uses a new
acquisition function that can provide multiple query points,
therefore allowing for parallel execution of costly simulations.
GP inference is also enhanced by using GPU acceleration in
order to handle highly constrained problems that require large
sample budgets. Combined with a framework for schematic
parametrization and simulator calls, LoCoMOBO provides
improved performance tradeoffs and sizing results on three
real-world circuit examples, while reducing the total runtime up
to ×43 times compared to state-of-the-art methods.

Index Terms—Analog sizing, Bayesian methods, machine learn-
ing, optimization.

I. INTRODUCTION

THE CONTINUOUS advancements in CMOS-integrated
circuit (IC) technology have resulted in complex cir-

cuits with increased functionalities and low area utilization.
Although digital IC circuits push the boundaries of electronic
systems in state-of-the-art applications, analog and RF ones
remain indispensable [1]–[3]. Applications such as Internet
of Things that impose new levels of integration for sen-
sor interfaces and communication systems are shifting the
design effort toward analog IC design, with new architectures
and novel computing paradigms being put forward [4]–[6].
However, manual analog design is becoming increasingly cum-
bersome, as transistor scaling and the demands for rapid pro-
totyping lead to either prolonged design cycles or suboptimal
designs. This bottleneck in system design [7], caused by the

Manuscript received 14 April 2021; revised 22 July 2021; accepted
23 September 2021. Date of publication 19 October 2021; date of current ver-
sion 22 August 2022. This work was supported by Greece and the European
Union (European Social Fund-ESF) through the Operational Programme
“Human Resources Development, Education and Lifelong Learning” in the
context of the project “Strengthening Human Resources Research Potential
via Doctorate Research” under Grant MIS-5000432, implemented by the State
Scholarships Foundation (IKY). This article was recommended by Associate
Editor P. Li. (Corresponding author: Konstantinos Touloupas.)

The authors are with the Department of Electrical and Computer
Engineering, National Technical University of Athens, 15780 Zografou,
Greece (e-mail: ktouloupas@mail.ntua.gr).

Digital Object Identifier 10.1109/TCAD.2021.3121263

difficulty to facilitate rapid analog IC design, is addressed by
adopting electronic design automation (EDA) methodologies.

Methodologies for automated design of analog circuits
include optimization methods or topology-specific heuristics.
In the general case of optimization-based sizing, given a fixed
circuit topology and a set of associated parameters, a com-
puter software determines the optimal parameter values that
satisfy the designer’s set of specifications. This is addressed
by using either closed-form equations [8]–[11] or computer
simulations for evaluation [12]–[18]. In this work, we focus
on simulation-based optimization.

Black-box population-based algorithms have been exten-
sively studied in the context of automated analog sizing. These
include particle swarm optimization (PSO) [14], genetic algo-
rithms (GAs) [17], and simulated annealing (SA) [19] and
provide with estimates for global optima by using many eval-
uations. Their main weakness is the treatment of expensive
optimization problems, where the objective and constraint
function evaluations are time consuming. Analog automated
sizing is one such problem, since simulation for large-scale
circuits may take hours to complete. This problem is only
deteriorated in multiobjective optimization problems (MOPs),
where multiple specification requirements drive the circuit
sizing. To address this issue, surrogate-assisted optimization
methods have been proposed, which use fast to evaluate
surrogate models to reduce the number of costly evaluations.

In surrogate-assisted methods, past evaluations are modeled
and used to guide the optimization search, either by replacing
expensive function evaluations or by prescreening candidate
query points for evaluation [20]. Popular techniques include
support vector machines [21], artificial neural networks [12],
sparse regression methods [13], and Gaussian processes [20].
An important aspect of this approach is the quality of the
objective function approximations. Depending on the problem
difficulty, the employed models need large amounts of data
(acquired by simulations), which is in contradiction to the
small-data nature of the problem. Local-based surrogate meth-
ods have been put forward recently [12], providing a better
alternative to global surrogate models, since they are easier to
scale in high-dimensional problems.

Among the class of surrogate-assisted optimization meth-
ods, Bayesian optimization (BO) is the most promising one,
being studied across many disciplines, such as machine learn-
ing [22], chemical design [23], and robotics [24] . BO has been
applied to automated analog and RF circuit sizing [25]–[28]
with promising results. BO methods, in contrast to other
surrogate based ones, do not use the model to approximate
the objective function(s) over the entire search space, but make
use of the uncertainty information from Gaussian process (GP)
models to directly guide the search toward the global optimum.

BO relies on two factors to provide with the global min-
imum, a GP surrogate model, and an acquisition function
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that defines a score of utility for evaluation of each point on
the search space. By optimizing the fast-to-evaluate acquisi-
tion function, a query point for objective function evaluation
is determined. This makes BO the state-of-the-art approach
to low-budget optimization problems. However, an important
limitation stems from its difficulty to handle high-dimensional
problems and large numbers of samples. In particular, GP
models rely on the Euclidean distance to define sample cor-
relations and become impractical in high dimensions [29].
Moreover, the computational complexity for GP inference
becomes prohibitive when many simulation data need to be
used [30]. To leverage the benefits of BO in large-scale prob-
lems, extensive studies were proposed, but they are limited to
single objective or unconstrained settings.

As analog and RF circuit design reduces to exploration of
competing specifications, an efficient automated sizing frame-
work should be able to determine optimal tradeoffs while
satisfying constraints. This tradeoff exploration [31] process
provides insights for the selection of device sizes and can be
addressed using multiobjective optimizers. However, methods
that address constrained MOPs in a sample-efficient manner
have not been thoroughly studied in the context of analog
ICs. In [28], a multiobjective variant of BO, WEIBO, was
proposed to handle constrained problems, but it inherited the
problems of classical BO in terms of the curse of dimensional-
ity. In addition, in [32], an entropy-based BO, MESMOC, was
introduced to handle constrained MOPs. Both of the aforemen-
tioned algorithms are sequential in nature, which restricts them
from fully utilizing modern hardware systems to parallelize
the optimization process. In [33], an additional multiobjective
BO variant was introduced for analog circuit sizing, but it is
limited to unconstrained MOPs.

Motivated by the above, a new multiobjective BO algorithm
that handles constraints, local constrained multiobjective BO
(LoCoMOBO), is proposed in this work, to address the ana-
log and RF IC sizing problem in a sample-efficient manner.
LoCoMOBO utilizes a local-based approach that maintains
separate GP models in promising subregions of the search
space, therefore enhancing BO efficiency. This boosts the
predictive capabilities of GP models in small regions of the
search space and reduces extensive exploration. In contrast
to classical BO and other variants, LoCoMOBO is able to
provide with multiple query points; therefore, it enables the
use of parallel simulations to speed up the optimization pro-
cess. A modified Thompson sampling (TS) [34] acquisition
function is used, which ranks query points based on their con-
straint violation degree and their contributing Hypervolume.
To address the challenge of computational complexity regard-
ing training times for GP models, GPU acceleration and a
batch method to simultaneously train multiple GP models are
also used within LoCoMOBO. The experimental results using
benchmark functions and three real-world circuits suggest that
LoCoMOBO provides with better tradeoff information and
reduces the total runtime of the optimization compared to
state-of-the-art approaches.

The remainder of this article is structured as follows. Section II
provides a background on analog and RF IC sizing and a
necessary introduction to GP modeling and BO. Section III
presents LoCoMOBO and provides empirical evidence of its
benefits on a set of benchmark functions. Section IV provides
threeexperimentaloptimizationresults,ontwoCMOSamplifiers
and a low noise amplifier (LNA) circuit. Finally, Section V
concludes this article and summarizes the results.

II. BACKGROUND AND PROBLEM FORMULATION

To elucidate the benefits of LoCoMOBO, we briefly intro-
duce the circuit optimization formulation used and discuss the
concepts of GP Regression and BO.

A. Problem Formulation

Analog and RF circuit sizing can be cast to a constrained
optimization problem

min F(x), x = [x1, x2, . . . , xd]

s.t. gj(x) ≤ 0, j = 1, . . . , l

Li ≤ xi ≤ Ui, i = 1, . . . , d (1)

where vector x contains the design variables, Li and Ui are the
lower and upper bounds of the ith variable, S =∏d

i=1 [Li, Ui]
is the variable space, F is the objective (fitness) function, and
gj is the jth constraint function. For a given parameter vector
x, its degree of constraint violation is defined as

CV(x) =
∑

j

max
[
0, gj(x)

]
. (2)

Equality constraints can also be handled after being relaxed
to inequalities, given simple transformations [35].

In the case of MOPs, F is a vector of m (often conflicting)
functions F(x) = [fi(x)]m

i=1. Minimizing F typically results in
multiple solutions that constitute a Pareto set (PS). For a point
x� to be a pareto optimum, i.e., to belong in the PS, every vari-
ation of x� further minimizing one of the m objective functions
fi(x�) must also deteriorate another one. We say that a feasible
solution x1 dominates another feasible solution x2, if fi(x1) ≤
fi(x2) for i = 1, . . . , m and there exists m′ ∈ [1, . . . , m] such
that fm′(x1) < fm′(x2). Consequently, x1 belongs to the PS if it
is feasible and it is not pareto dominated by any other x ∈ S.
We also use the term Pareto front (PF) to denote the image of
PS via function F, i.e., PF = {F(x)|x ∈ PS}.

In an arbitrary finite subset P = {xi}Ni=1 of S, multiple lev-
els of pareto dominance (subsets of P) may be defined. The
first level is the subset of P including all vectors that are non-
dominated by any other vector in P, and only those. The first
level is an approximation of PS of the MOP. The second level
is defined by removing the first level (approximate PS) from
P, and keeping the nondominated solutions from this set. The
process is repeated until all samples in P are assigned to a
dominance level.

In the context of analog circuit sizing, a PF provides
designers with a model of the conflicting relationships of cir-
cuit performance aspects, aiding the device sizing. To utilize
optimization algorithms in practice, dedicated software frame-
works have been proposed [36], [37] automating the process of
simulator calls, circuit netlist parametrization, results parsing,
and performance computation.

In this work, we use an in-house interface, written in Python,
connecting the Cadence Spectre Simulator with our in-house
high-level optimization tool by computing user-defined metrics
and by processing the simulator’s outputs. In addition, our
interface allows us to run multiple simulations using both the
simulator’s batch mode and parallel processing.

B. Gaussian Processes

Consider a variable space S and let xi, i = 1, 2, . . . , N be
the inputs in S of an unknown function f : S → R. The
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observations are yi = f (xi) + εi, i = 1, . . . , N, where εi ∼

N (0, σ 2
n ) is uncorrelated additive noise. The inputs {xi} and

observations {yi} are arranged in pairs forming a dataset D =
{(x1, y1), . . . , (xN, yN)}.

A GP is a stochastic process of infinitely many random
variables that define a probability distribution over functions
on S. GPs are defined by a mean function m : S→ R and a
kernel function k : S × S → R. By assuming that f follows
a GP:

f (x) ∼ GP(m(x), k(x, x′)
)

(3)

one defines a probabilistic surrogate of f to use for prediction.
GPs have the following defining property. For every posi-
tive integer N, vector f = [f (xi)]N

i=1 follows a Multivariate
Gaussian distribution:

f ∼ N (μ, K). (4)

Here, the (N×1) mean vector is μ = [m(xi)]N
i=1 and the (N×

N) covariance matrix K is defined such that Kij = k(xi, xj)+
σ 2

n δij, where δij is the Kronecker delta.
When no prior information about f (x) is available, m(x) is

set to zero. The kernel function defines a measure of similarity
between the outputs of any two input points. Popular kernels
include the RBF and Matèrn families [30]. In this work, we use
the Matèrn 5/2 kernel that provides with twice differentiable
functions [38]

k
(
xi, xj

) = σ 2
(

1+√5r + 5

3
r2
)

e−
√

5r (5)

where

r =
(

d∑

k=1

(xi,k − xj,k)
2

λ2
k

)1/2

. (6)

Lengthscales λk and parameters σn and σ are called the
hyperparemeters of the GP model and are denoted by θ .
Learning θ from data adjusts the GP model to the observa-
tions in D. This is done using gradient descent optimization
to minimize the negative log marginal likelihood

L(θ) = 1

2
yTK−1y+ 1

2
log(|K|)+ N

2
log(2π) (7)

where yT is a (1× N) vector of the observations.
To predict f (x) at a point x� �∈ D, one uses the predictive

distribution p(f (x�)|D). This is a Gaussian distribution with
mean and variance

μf |D
(
x�
) = kTK−1y

σ 2
f |D
(
x�
) = c− kTK−1k. (8)

Here, kT is a (1 × N) vector with values k(xi, x�) for i =
1, . . . , N and c = k(x�, x�). The predictive distribution pro-
vides estimates not only for pointwise query points but for
multiple inputs as well. In this case, equations in (8) provide
the mean and the diagonal elements of the covariance matrix of
a multivariate Gaussian distribution p([f (x�

1), . . . , f (x�
k)]|D).

The covariance between two points x�, x�′ is given by [30]

Cov
(
x�, x�′) = k

(
x�, x�′)− kT

X,x�K−1kX,x�′ (9)

where the (1× N) vector kT
X,x� = [k(xi, x�)]N

i=1.
In terms of computational complexity, GP training and

query point prediction require O(N3) and O(N2) time, respec-
tively. In addition, drawing NS samples over k query points
requires O(kN2 + k2(N + NS)+ k3) time [39].

C. Bayesian Optimization

BO [34] is a low-budget method to solve global optimization
problems involving expensive-to-evaluate black-box functions.
Considering a real valued cost function f , BO learns a fast-
to-evaluate probabilistic surrogate model of f from its past
evaluations. Starting from an initial set of evaluations, each
query point is selected sequentially, by balancing exploration
and exploitation to find the global optimum.

The BO framework consists of two main components;
the GP model that approximates function f and an acquisi-
tion function. Popular acquisition functions, such as expected
improvement (EI), probability of improvement (PI), and lower
confidence bound (LCB) [34], make use of pointwise GP
predictive distributions to assign a score of utility for expen-
sive evaluation to each point in the search space. To determine
the best candidate point, off-the-shelf optimization algorithms
such as DIRECT or CMA-ES [34] are used to maximize the
fast-to-evaluate acquisition function.

In the case of MOPs, a popular BO approach is the reduc-
tion of the multiobjective problem to a single-objective one,
using random objective function scalarizations [28]. When
constraints apply, these approaches are extended by using
separate GP models to approximate the black-box constraint
functions. Using pointwise predictive distributions of the con-
straint models, each point in the variable space is assigned a
probability of feasibility, which is used to weight acquisition
functions and eventually drive the search to feasible solu-
tions [28]. In the aforementioned category falls the WEIBO
algorithm, which is compared against the proposed method
in the following sections. Another algorithm, MESMOC [32],
uses a Monte-Carlo-based entropy approximation to select a
single query point by utilizing the output space entropy to
maximize the information gain about the optimal PF.

III. PROPOSED APPROACH

Expanding BO to multiple objectives and constrained high-
dimensional problems are two critical challenges for an effi-
cient low-budget MOP optimizer. In high-dimensional search
spaces, GP models result in high predictive uncertainties,
thereby encouraging exploration on top of exploitation of
promising subregions of the design space [40].

In addition, query point selection is not straightforward
in the multiobjective setting, since it must take into account
pareto dominance and diversity. To address the aforementioned
issues, we need to resort to new model-based approaches that
exploit better the promising regions and define corresponding
acquisition functions.

This section describes the local-based LoCoMOBO algo-
rithm. First, a local-search scheme used to circumvent the
problem of GP inefficiency in high-dimensional problems
is presented. Then, a multiobjective acquisition function is
proposed that is able to drive the BO to feasible and pareto
optimal solutions.

A. BO Local-Based Approach

Starting from an initial estimate xc of the point of global opti-
mum (or in this case, a PS), searching locally for an improvement
is the purpose of local-based optimization methods. Typically,
in such cases, an approximation F̂ of the objective function F
is used to determine future query points according to

x� = argmin F̂(x), ||x− xc|| ≤ R. (10)
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Here, xc is the current best solution and R is a trust radius,
restricting the next query point to be near the current best. If
the expensive evaluation of F(x�) leads to a better solution, the
current best is updated. In our case, F̂ relates indirectly to the
actual problem defined in (1), since it provides a metric upon
the multiobjective optimization progress (see Section III-B).

Based on the aforementioned general scheme for local-
based optimization, a similar single objective BO was
proposed in [40], where query point selection is restricted
within a hypercube centered at xc, with its edge denoted by L.
GP models are trained using a dataset (archive) consisting of
past objective function evaluations. By setting the maximum
utility point in the archive as xc, this approach restricts exces-
sive exploration of the search space. This approach is extended
here to address constrained MOPs. By using NTR ≥ 1 trust
regions in parallel, each one with their separate center and
past archive, multiple paths toward the optimal subregions of
the variable space are followed and global search is enhanced.
This is particularly helpful in the case of multimodal functions.

To extend the trust region approach to the constrained
multiobjective case, one should define a measure of the utility
of the evaluated points. This is imperative in order to select
the trust region center xc, but it is not straightforward, since
typically multiple pareto optimal solutions exist. Starting from
the requirement for well spread pareto optimal solutions in the
objective space, the trust region center is selected as follows.
In each iteration, every trust region has a local PF and PS,
namely, PFi and PSi, which are determined among the sam-
ples from their respective archive Di that reside in the trust
region’s hypercube. The global archive D = ⋃i [Di] is used
to determine the global PF and PS. The selection of the ith
trust region center is done based on the following rule.

1) If no feasible sample exists in Di, xc,i is the sample in
Di with the minimum constraint violation (2).

2) If feasible samples exist in Di and A = PSi ∩ PS �= ∅,
xc,i is the the maximum crowding distance sample in A.

3) If feasible samples exist in Di and A = PSi ∩ PS = ∅,
xc,i is the sample from PSi being in the topmost global
dominance level and having the maximum crowding
distance.

The crowding distance metric [41] quantifies the diversity of
each solution in the objective space. It is used to compare solu-
tions that are on the same dominance level. Since the crowding
distance of the samples that lie on the edges of the PF is infi-
nite, we use the maximum finite values to determine the trust
region centers.

The optimizer operates on normalized search space Sn =
[0, 1]d, and query points are transformed back to the orig-
inal search space prior to evaluation. This facilitates GP
training and helps define trust region lengths Li in the nor-
malized space, irrespective of the variable domain boundaries.
For the ith trust region, its hypercube occupies a space
S

(i)
n = {x|xL,i ≤ x ≤ xU,i} with xL,i = max(0, xc,i − Li)

and xU,i = min(1, xc,i + Li).
Each space S(i)

n is updated according to the rate with which the
optimizer finds new maximum utility points xc,i. In particular,
a simple method is used that counts the successes and failures
of the optimizer to find better solutions. After a user-specified
number of successes (failures) for the ith trust region, Li is
increased (decreased) by a user-specified factor ρ > 1, i.e.,

Li :=
{

ρ · Li, for consecutive successes
1/ρ · Li, for consecutive failures. (11)

Therefore, in cases where the surrogate model’s predictions
lead to improvements upon the optimization goal, the trust
region edge increases; otherwise, it shrinks to restrict the
search closer to the current best point. For the rest of this
work, ρ is considered constant and equal to 1.2 to allow for
smooth transition between trust-region sizes.

Fig. 1 shows an example of the local-based approach, using
two trust regions and a function F(x) : R

2 → R
2, over a

bounded space [−2, 2]2. In this example, no constraints apply.
After an initial sampling of the variable space, the samples
are clustered to two trust regions, using k-means clustering.
In each trust region [shown in red-dotted boxes in Fig. 1(a)
and (b)], a new solution (marked as a diamond) is selected
and evaluated. The trust region centers are chosen so as to
facilitate the diversification of the global PF solutions, shown
in the objective space plot in Fig. 1(c). Once the query points
are evaluated, the trust regions move to new locations shown
in light red-dotted boxes.

B. Acquisition Function

To address the constrained multiobjective selection,
LoCoMOBO uses a composite selection scheme where both
feasibility criteria and the pareto optimality are taken into
account. The proposed acquisition function is based on
TS [34]. TS is a randomized selection strategy addressing the
exploration–exploitation tradeoff by drawing random samples
from the posterior distribution of the GP models and selecting
a query vector by optimizing on these samples. Recent works
highlight the suitability of TS acquisition functions for paral-
lelizing BO [42]. By drawing NS > 1 samples from the GP
posteriors, and finding a single maximum utility point for each
one of them, one can have multiple query points to evaluate
in parallel [42]. This is useful in cases where time-consuming
function evaluations can be run in parallel, such as in our
case, since parallel function evaluations provide with more
information in the same time frame.

Sampling functions from GP models, however, would
require computing the joint predictive distribution over
infinitely many points, which is not possible. A common prac-
tice is to find the maximizer of a discretization over the search
domain [40]. Although this is a simple approach and works in
many cases, it is not suitable for high-dimensional problems,
where exponentially many discrete points need to be used to
achieve a good coverage. To circumvent this limitation, we
sample GP models by building an analytic approximation to
the samples, using random fourier features (RFFs) [43], [44].

A GP posterior sample f̃ (x) can be approximated by a
linear model f̃ (x) ≈ φ(x)Tθ , where φ : S → R

M is a finite-
dimensional basis function that approximates the GP kernel
as k(x, x′) ≈ φ(x)Tφ(x′). Vector θ ∈ R

M is drawn from
a Gaussian distribution. It holds that φ(x) = [φi(x)]M

i=1 and
φi(x) ∼ cos(wT

i x + bi), with bi ∼ U [0, 2π ] and wi sampled
from the kernel function’s spectral density [44]. For the Matèrn
5/2 kernel, wi are sampled from a d-dimensional t-distribution
wi ∼ T(0,
, 5/2), with 
 being a diagonal matrix of the GP’s
kernel lengthscales. For posterior sampling, θ is sampled from
a Gaussian distribution with mean and covariance matrix

μθ |D =
(
�T�+ σ 2

n I
)−1

�Ty

σ 2
θ |D =

(
�T�+ σ 2

n I
)−1

σ 2
n (12)
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(a) (b) (c)

Fig. 1. Demonstration of the local-based approach for minimizing F(x) = [f1(x), f2(x))] in a 2-D space. No constraints apply. (a) and (b) show contour
plots of the functions of F. Two trust regions (shown in red boxes) are used, and the sampled points are shown as dots, with the black ones corresponding
to the upper trust region. The location of the true PS is shown in light gray, the next query points as diamonds, and the updated trust regions locations are
shown as light-red boxes. (c) Shows the mapping to objective space, along with the true PF, the empirical PF, and the local PFs of each trust region.

Fig. 2. 20 sampled functions using M = 300 RFFs. Past evaluations, GP
mean, and 95% confidence bounds are shown.

where the (N ×M) matrix � is given by � = [φ(xi)]N
i=1 and

it holds M features for each of the N sampled points in D.
The (1×N) vector yT contains the past observations from the
modeled function. The computational cost for sampling f̃ (x)
using the above procedure is O(M3) [45].

Fig. 2 shows an example where 20 functions were sampled
from a GP using M = 300 RFFs. The number of RFFs is
a hyperparameter of the overall procedure and it is the same
for all employed models. For the rest of this article, M is
considered fixed and equal to 300. The readers are referred
to [44] for theoretical foundations on RFFs approximations.

Here, functions are sampled to select query points in the
constrained multiobjective setting, where query points are
restricted to lie in small regions in the variable space.

Unconstrained Problem: Assume for now that there are no
constraints and a single trust region is used, with the space
occupied by its hypercube denoted by S

(1)
n . For each of the

trained GP models that approximate the objective functions,
one can draw a sample using RFFs. This results in a set of fast-
to-evaluate functions F̃ = [f̃1(·), . . . , f̃m(·)], which are used in
a cheap auxiliary optimization problem

min F̃(x) =
[
f̃1(x), . . . , f̃m(x)

]
, x ∈ S

(1)
n . (13)

This problem is solved using NSGA-II [41]. The resulting PS
points are query point candidates and are denoted as Xcand.

Selecting a query point in Xcand requires a metric (measure)
of the utility of the points in Xcand. In our case, where multiple
objectives apply, the hypervolume indicator (HV) [46] is an
appropriate measure. Following the definition in [46], for a
point set P and a reference vector r = [r1, . . . , rm] ∈ R

m, the
HV of P is the m-dimensional Lebesgue measure λm of the

(a) (b)

Fig. 3. Illustration of the hypervolume and HVI concepts. Minimization
is assumed here. The light-orange area is the dominated HV. Out of three
candidates, x3 provides with the largest HVI. (a) Individual HVI contributions.
(b) Total HVI.

region that is dominated by P and bounded by r, i.e.,

HV(P, r) = λm

⎛

⎝
⋃

p∈P
[p, r]

⎞

⎠. (14)

Moreover, HV is used to define the hypervolume improvement
(HVI) measure of the PF, used to evaluate new samples. Given
a new set of points Y , it is

HVI(P,Y, r) = HV(P ∪ Y, r)− HV(P, r). (15)

We select the single query point in Xcand as one with the
largest HVI when added to the current PF, i.e.,

x� = argmax
x∈Xcand

HVI
(P, F̃(x), r

)
. (16)

Note that the values of the sampled functions are used to eval-
uate HVI. Also, the reference vector r is specified either using
domain knowledge, or using past evaluations in D, as

r =
[

max
x∈D

(f1(x)), . . . , max
x∈D

(fm(x))

]

. (17)

Definition (17) assumes a minimization problem as in (1). If
the problem is a maximization one, then the max function
should be replaced by min in (17). An illustration of the HV
concept is given in Fig. 3.

Constrained Problem: The above procedure extends to con-
strained problems. In our approach, each constraint function is
modeled separately by a GP model. Sampling from all of the
employed GP models using RFFs results in an additional set
of constraint functions [g̃j(·)]l

j=1. Now, NSGA-II is equipped
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with the feasibility rule [35] to account for constraints and the
cheap optimization problem is formulated as

min F̃(x) =
[
f̃1(x), . . . , f̃m(x)

]

s.t. g̃j(x) ≤ 0, j = 1, . . . , l, x ∈ S
(1)
n . (18)

To select a single query point, we distinguish two cases.
1) If no feasible Pareto optimal solution is found, the set

of the candidate points for evaluation, Xcand, is formed
by the individuals of the final NSGA-II generation, and
the query point is selected according to minimize the
constraint violation, i.e.,

x� = argmin
x∈Xcand

C̃V(x). (19)

This drives the optimization toward regions of the search
space with low constraint violation. Note that the nota-
tion C̃V is used to highlight the fact that the constraint
violation function is applied on the sampled function
values.

2) If feasible Pareto optimal solutions exist, the query point
is selected among them, based on their respective HVI
contributions.

Multiple query points can be selected by optimiz-
ing on multiple GP posterior samples. In this case, NS

batches of objective and constraint functions [F̃(i)]NS
i=1 and

[g̃(i)
1 , . . . , g̃(i)

l ]NS
i=1 are sampled and used in NS separate auxil-

iary optimization problems as in (18), resulting in NS batches
of candidate points [X(i)

cand]NS
i=1. The main challenge is to deter-

mine a set of NS distinct candidate vectors, jointly resulting
in maximum HVI. This is a nontrivial task since computing
the joint HVI scales exponentially with NS [46].

Instead, we adopt an iterative greedy approach where no
joint HVI calculation is performed. Starting from the current
PF HV, the candidate point with maximum HVI contribution
from the first batch of sampled functions is selected and added
to the PF. The next query point will be selected among the
auxiliary optimization results of the next batch of sampled
functions using the augmented PF from the previous selection.
After NS iterations, a total of NS query points are selected for
evaluation.

When NTR > 1 trust regions are employed, each one holds
NS batches of sampled functions and auxiliary optimization
results that reside in their separate hypercube. Similar to the
above procedure, NS query points are selected greedily from
NS augmented candidate pools [X(i)

cand]NS
i=1, each one corre-

sponding to one RFF sample. In this case, however, each X(i)
cand

is the union of candidate points of all trust regions, based on
their ith sample, i.e., X(1)

cand holds the results from the first
sample of all trust regions and so on.

Algorithm 1 summarizes the selection scheme for the
proposed LoCoMOBO algorithm.

C. Implementation

Here, we provide implementation instructions for
LoCoMOBO and relevant comments. The probabilistic nature
of GP models is useful for fast convergence to optimal solu-
tions, but it comes at a high computational cost. In practice,
GP inference and training scale cubically with the number of
samples used for training [30]. Therefore, as the optimization
process progresses and more query points are evaluated, the

Algorithm 1: Proposed Acquisition Function
Input : batch size NS; trust region count NTR; GP models

[f (i)
1 , . . . , f (i)

m ]NTR
i=1 , [g(i)

1 , . . . , g(i)
l ]NTR

i=1 ; data D, spaces

{S(i)
n }NTR

i=1 , reference vector r
Output: query points x�

i , i = 1, . . . , NS
1 Compute PF P from D
2 X(i)

cand ← ∅ ∀i ∈ {1, . . . , NS}
3 for i = 1, . . . , NTR do
4 for j = 1, . . . , NS do
5 Sample f̃r ∼ f (i)

r using RFF ∀r ∈ {1, . . . , m}
6 Sample g̃r ∼ g(i)

r using RFF ∀r ∈ {1, . . . , l}
7 Xcand ← candidates from problem in (18) on S

i
n

8 X(j)
cand ← X(j)

cand ∪ Xcand
9 end

10 end
11 for i = 1, . . . , NS do
12 A← {x ∈ X(i)

cand|C̃V(x) = 0}
13 if A �= ∅ then
14 x�

i ← Maximum HVI(P, F̃(x), r) among A
15 P ← P ∪ F̃(x�

i )
16 else
17 x�

i ← argmin
x∈X(i)

cand
C̃V(x)

18 end
19 end

time spent on GP model training increases. Another important
aspect concerns problems with many objective and/or constraint
functions; training separate GP models for each one of them
can be time consuming and even surpass the time needed for
expensive exact function evaluation.

To this end, we leverage recent advances in GP inference by
using black-box matrix–matrix multiplication (BBMM) [47].
This uses a highly parallelized routine for matrix–matrix
multiplications to perform all computations necessary for GP
inference, reducing its asymptotic complexity to O(N2) [47].
GPyTorch provides a framework for BMMM-based GP
training and was used for the development of the GP models.
By using tensorial representation for GP kernel matrices,
GPyTorch allows for the simultaneous training of multiple
GP models with considerable speed enhancements [47].
Furthermore, GPyTorch enables the use of GPUs for fast
inference. In our case, models associated with a single trust
region are trained simultaneously.

D. Summary

The complete flow of LoCoMOBO is shown in Algorithm 2.
The maximum number of iterations is computed by the maxi-
mum number of evaluations and the batch size NS. It is worth
mentioning that the GP models of a trust region are trained
only when new query points coming from the same trust region
are selected and evaluated.

To demonstrate the benefits of LoCoMOBO, we consider a
set of benchmark functions for constrained MOPs with vary-
ing dimensions. OSY is a 6-D problem having 2 objectives
and 6 constraints, MW2 has 15 variables, 2 objectives, and 1
constraint, and C2DTLZ2 has 12 variables, 3 objectives, and 1
constraint. For performance evaluation, we use the HV metric
of the resulting PF, with vector r equal to [0, 100], [1.5, 1.5],
and [1.1, 1.1, 1.1], respectively.

To highlight the advantages of the local-based approach, we
introduce two baseline methods for comparison.

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 08:54:01 UTC from IEEE Xplore.  Restrictions apply. 



2786 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 9, SEPTEMBER 2022

Algorithm 2: LoCoMOBO Algorithm
Input : trust region count NTR; batch size NS, initial samples N0,

maximum iterations Tmax, initial trust region lengths
Output: PF, PS

1 Evaluate objectives and constraints at N0 random points
2 Initialize Di ∀i ∈ {1, . . . , NTR} with all initial samples
3 k-Means clustering of initial samples and select xc,i ∀i ∈ {1, . . . , NTR}

as the i-th centroid
4 for i = 1, . . . , Tmax do
5 Select NS query points using the acquisition function, (no

black-box function evaluation at this step)
6 Evaluate objectives and constraints at selected points
7 for j = 1 . . . , NTR do
8 if j-th trust region evaluated query points then
9 Update Dj and trust region center xc,j

10 Train GP models of j-th trust region
11 end
12 Update Lj
13 end
14 end

TABLE I
HV RESULTS (MEAN ± STD) ON BENCHMARK FUNCTIONS

1) Baseline-1 uses the proposed acquisition function with
a single trust region that spans the entire variable space.
This is a special case of the proposed algorithm and
can be considered as a constraint handling TSEMO [38]
variant.

2) Baseline-2 uses a single trust region that also spans the
entire variable space, and selects query points based on
the PF of LCB acquisition functions on each objective,
such as in [33]. To account for constraints, the pointwise
values of each LCB function are weighted by their prob-
ability of feasibility [28]. The most diverse candidate
solutions are selected as query points from the resulting
PF.

For the proposed approach, we include a single-trust-region
(LoCoMOBO NTR = 1) and a two-trust-region (LoCoMOBO
NTR = 2) approach, both of which use local trust regions,
unlike Baseline-1. The batch size for the above methods is
set to NS = 5. WEIBO [28], MESMOC [32], NSGA-II, and
NSGA-III [48] are also included for comparisons. For all BO-
related methods, the initial samples were set to 2(d+1) where
d is the dimension of each problem, and the maximum eval-
uations were set to 200 for OSY, 500 for C2DTLZ2, and 900
for the demanding MW2. Maximum evaluations for NSGA-II
and NSGA-III are set to three times the aforementioned limits,
and the number of reference directions is 24.

Table I shows the results of the experiments. LoCoMOBO
outperforms the other methods in the given evaluation budgets.
For the case of OSY, it is evident that a single trust region
is enough to produce acceptable results. This can be verified
by the performance of global Baseline-1. For the other two
functions, the two-trust-region LoCoMOBO performs better
than the single trust-region one, while the rest of the methods

TABLE II
RUNTIME COMPARISON (S)

Fig. 4. Evolution of HV attained by the proposed approach using different
batch sizes. The values in the y axis are normalized to the largest HV value
attained.

either fail to find feasible points or result in much worse PFs.
This is demonstrated in the case of MW2, where the feasible
region occupies little portion of the design space, showing that
the proposed method can handle effectively constrained prob-
lems. The multiple trust-region approach proves to be effective
in high-dimensional problems, where Pareto optimal solutions
may lie away from each other or in disconnected regions.

To provide a quantitative measure of the speed gains of
GPU acceleration, Table II shows the average runtimes of the
above experiments for the batched proposed LoCoMOBO and
the sequential WEIBO. It is shown that a slight increase in run-
time is induced by including additional trust regions, which is
expected as more GP models need to be trained. As expected,
the batched approach is faster than the sequential WEIBO,
since GP model training is done fewer times for the same
sample budget. In the 15-D MW2 problem, where the sample
budget is larger compared to the other experiments, the inclu-
sion of GPU acceleration provides a speedup of ×3.5 in the
optimization procedure.

By optimizing the OSY function using different batch size
NS, we demonstrate the effect of the batch size parameter on
the LoCoMOBO’s performance. Fig. 4 shows the results of
this experiment, highlighting that there is no profound differ-
ence in the performance of LoCoMOBO with respect different
batch sizes. In this case, we used a single trust region. We have
found out empirically that LoCoMOBO provides better results
when using a batch size in the range [5, 10] for MOPs with
more than 20 variables. It is worth noting that every exper-
iment of this section was repeated five times to account for
random fluctuations.

IV. CIRCUIT DESIGN APPLICATIONS

In this section, LoCoMOBO is applied to three real-world
circuits, two CMOS amplifiers, and an LNA to demonstrate
its effectiveness. To highlight that the proposed approach
can handle multiple objectives as well as process, voltage,
and temperature (PVT) variations, we consider the follow-
ing formulations for each circuit. Both CMOS amplifiers are
sized accounting only for their nominal performance, using a
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Fig. 5. Three stage amplifier proposed in [49].

two-objective and a three-objective formulation. In the case of
the LNA, we consider two objectives and include additional
constraints to account for five different process corners, three
different operating temperatures, and three supply voltages. All
of the discussed circuits are designed in Cadence Virtuoso and
Spectre is used for simulation, using a TSMC 90-nm PDK.

The algorithms discussed are implemented in Python, using
GPyTorch and the DEAP library. The available online code
for MESMOC [32] was used as well. All of the experiments
were executed on a Linux workstation using an 8 core CPU
and a P5000 GPU.

A. Three Stage Amplifier

A three stage amplifier [49] shown in Fig. 5 is sized in this
section. It includes a wideband current buffer and an active
left-half-plane zero [49] to increase its driveability to large
capacitive loads, without sacrificing its bandwidth.

The amplifier consists of 18 transistors, the halves of the
current mirrors generating voltages Vbn1 and Vbp1 (not shown
in Fig. 5), three resistors, and two capacitors. Based on the cir-
cuit’s topology and taking into account symmetry constraints,
a total of 23 independent variables are used for sizing. These
include 13 transistor widths, four transistor lengths, two bias-
ing currents, and R1, Rz, Cz, and CM . Assuming no prior
knowledge of the optimal parameter values, the ranges of the
transistors’ lengths and widths are restricted to be less than
1.5 and 100 μm, respectively, while their lower bounds are
equal to the minimum acceptable by the PDK. The allowable
ranges for capacitors, resistors and biasing currents are [0.5, 6]
pF, [0.1, 300] k, and [0.4, 6] μA, respectively. It should be
noted that any restriction on the silicon area can be enforced by
defining appropriate variable ranges. In addition, the in-house
interface tool used allows the definition of separate variable
ranges for each device of the circuit studied. To obtain the
circuit’s performance metrics, two testbenches are used; one
for transient simulation and slew rate measurements, and the
other for ac and dc analysis.

1) Two-Objective Formulation: For the two-objective case,
we seek to determine the optimal tradeoff between power con-
sumption and dc voltage gain. The remaining specifications,
based on the original implementation in [49] with the capaci-
tive load of CL = 15 nF, constitute the optimization constraints
and are given in detail in Table III.

For LoCoMOBO, we consider two cases with a single and
two trust regions operating locally in the search space. All BO-
related methods discussed in the previous section are applied
for comparison. The maximum number of simulations is 1300
and the initial sample count is 150. Two batch sizes NS = 5
and NS = 10 are used for LoCoMOBO and the two base-
line methods. In this experiment, NSGA-II has population 50
and 80 generations. All experiments are repeated ten times to

TABLE III
SPECIFICATIONS FOR THREE STAGE AMPLIFIER—TWO OBJECTIVES

TABLE IV
THREE STAGE AMPLIFIER HV RESULTS—TWO OBJECTIVES

account for random fluctuations and the results in terms of PF
HV are given in Table IV.

We used the worst performance values from the PFs of
all algorithms and runs to determine the reference point, in
a similar manner as in (17), and utilized the total biasing
current instead of power consumption as an indicator. This
resulted in r = [81.9, 321/VDD] = [81.9, 160.5]. Except
for MESMOC, WEIBO, and NSGA-II, all algorithms take
advantage of batched simulation execution. The GP models
of LoCoMOBO and the baseline methods were trained using
both GPU acceleration and batch GP training, and WEIBO
models were trained using only GPU acceleration.

In the case of NS = 5 and NTR = 1, LoCoMOBO pro-
vides a runtime gain of ×10.9 and ×19.6 compared to WEIBO
and MESMOC, respectively. For NS = 10, the aforementioned
speedup is by ×23 and ×42, respectively. The two-trust-region
optimization takes ×1.2 more time to complete compared to
the single-trust-region case, due to the training of additional
GP models.

As shown in Table IV, in terms of dominated HV, it is
evident that LoCoMOBO finds better solutions within the
simulation budget restrictions. The two-trust-region approach
provides on average the best PFs in the case of NS = 10.
LoCoMOBO consistently surpasses the examined algorithms
considering different batch sizes and trust-region count.

During the experiments, we noticed that the main difficulty
when sizing this topology is that the optimum solutions lie
close to the infeasible region. This is the reason why the
entropy-based MESMOC results in lesser HV than the rest
of the methods, since it found only a small amount of feasi-
ble solutions. An interesting note is that the batched methods
provide better results compared to the sequential ones. The
PFs resulting from a single run per algorithm are given for
demonstration in Fig. 6.
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Fig. 6. PFs for the three stage amplifier. Bottom-right values result in better
dc gain versus Pdc tradeoff.

TABLE V
THREE STAGE AMPLIFIER COVER MATRIX—TWO OBJECTIVES

To demonstrate in a qualitative manner the results of the
experiments, we provide a cover matrix [28] in Table V. This
is a matrix where its (i, j) entry represents the portion of PF
solutions from the jth algorithm that are dominated by the PF
solutions of the ith one, providing an additional metric for
comparison between two different PFs.

We used the PFs from the NS = 10 case to compute the
cover matrix. It is seen that the PFs from LoCoMOBO domi-
nate most of the Pareto solutions resulting from the rest of the
examined approaches. The results from the two-trust region
optimization dominate 44% of the ones from the single trust
region optimization. Among the rest of the methods, Baseline-
2 provides better PFs qualitatively. It provides a dense set of PF
solutions, which explains the fact that its PF is not dominated
by any other approach, but it does not yield diverse solutions
such as LoCoMOBO. For the single-trust-region LoCoMOBO
PF of Fig. 6, the average, maximum, and minimum typi-
cal FOMS [49] of the PF solutions are 105, 113, and 99
(MHz·pF/μW). The same metrics for NSGA-II are 96, 104,
and 85.

2) Three-Objective Formulation: We now proceed with the
formulation of the three-objective optimization problem. The
design space remains the same, and the optimization goals and
constraints are given in Table VI. In this case, the simulation
budget for BO methods is increased to 1600 and the initial
sample count to 150. For NSGA-II, 50 individuals and 100
generations are used. Again, all experiments were executed
ten times to account for random effects.

The results in terms of final PF HV are given in Table VII,
with r = [80.3, 473, 0.05]. LoCoMOBO outperforms the
other algorithms in this case as well. By using two trust
regions, we are able to get slightly better results. In this case,
LoCoMOBO performs better when using a smaller batch size.
Among the rest of the methods, Baseline-2 results in the best

TABLE VI
SPECIFICATIONS FOR THREE STAGE AMPLIFIER—THREE OBJECTIVES

TABLE VII
THREE STAGE AMPLIFIER HV RESULTS—THREE OBJECTIVES

TABLE VIII
THREE STAGE AMPLIFIER COVER MATRIX—THREE OBJECTIVES

solutions. The fact that LoCoMOBO consistently outperforms
the global Baseline-1 highlights the advantage of the local-
based approach. In terms of runtime comparison, the proposed
approach is ×20 and ×36 faster compared to the sequential
WEIBO and MESMOC, respectively, for NS = 10.

The PFs resulting from the three objectives formulation
(NS = 10) are compared qualitatively in the cover matrix of
Table VIII.

Here, it is seen that LoCoMOBO dominates most of the
solutions of the other approaches, as expected from the HV
results. In this problem, most of the algorithms found feasible
solutions from the initial samples; therefore, the ratio of feasi-
ble to infeasible space is quite large. This explains the fact that
some approaches performed better in the three-objective case
compared to the two-objective one. For demonstration pur-
poses, an example PF resulting from LoCoMOBO (NTR = 2
and NS = 10) is shown in Fig. 7.
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Fig. 7. PF for the three stage amplifier.

TABLE IX
SPECIFICATIONS FOR FOUR STAGE AMPLIFIER—TWO OBJECTIVES

B. Four Stage Amplifier

A four-stage amplifier [50] shown in Fig. 8 is examined in
this experiment. It can drive large capacitive loads by employ-
ing an active zero subcircuit, a slew-rate enhancer subcircuit,
and four gain stages. Similar to the previous case, we con-
sider two optimization formulations, one with two and one
with three objectives, respectively.

This circuit consists of the core amplifier shown in
Fig. 8 and a biasing circuit that is responsible for voltages
Vbn1, Vbn2, Vbp1, and Vbp2 [50] (not shown in Fig. 8). In total,
35 transistors, 2 capacitors, a single resistor, and a current
source are employed. We use two testbenches, one for the
slew rate and one for ac and dc analysis. The testbenches
are parameterized by 43 parameters, including 20 transistor
widths, 19 transistor lengths, a bias current, and CZ, CM , and
RZ . The variable ranges are determined as follows. Transistor
lengths and widths are again restricted to be less than 1.5
and 100 μm, respectively, with the lower bounds set to the
minimum acceptable values of the PDK. The biasing current
range is [0.5, 10] μA and the ranges of the resistor and the
capacitors are the same as in the previous example.

1) Two-Objective Formulation: The objectives and con-
straints for the two-objective formulation are based on the
original implementation in the case of CL = 12 nF and they
are given in Table IX. For the BO-related methods, the total
simulation budget is 1300, with 150 initial sampling simula-
tions. For NSGA-II, the population count is 60 and the number
of generations is 80.

In terms of HV, the optimization results are given in
Table X.
These were computed after ten repetitions of each experiment,
with the reference point r = [81, 645] determined using the
worst PF values among all algorithms and executions. The
gains from the two-trust-region LoCoMOBO are more evident

TABLE X
FOUR STAGE AMPLIFIER HV RESULTS—TWO OBJECTIVES

Fig. 9. PFs for the four stage amplifier. Bottom-right values result in better
dc gain versus Pdc tradeoff.

in this higher dimensional case. Among all methods, the two-
trust-region LoCoMOBO with NS = 10 delivers the best PF
with a slight overhead in runtime (×1.4 slower) compared to
the single-trust-region LoCoMOBO.

In this problem, the single-trust-region LoCoMOBO is ×24
and ×43 faster than the sequential WEIBO and MESMOC
when using NS = 10. Therefore, LoCoMOBO provides better
PFs within shorter time limits compared to the other algo-
rithms. The PFs resulting from the optimization procedures
(NS = 10) are shown in Fig. 9. LoCoMOBO NTR = 1 has
average, maximum, and minimum FOMS 105, 166, and 64
(MHz·pF/μW) in its PF of Fig. 9. For comparison, NSGA-II
provides with 85, 125, and 49.

We compare the results (NS = 10) in terms of Pareto domi-
nance using the cover matrix shown in Table XI. In this case,
where the variable space is larger compared to the previous
example, the two-trust region LoCoMOBO dominates 88%
of the PF solutions from the single trust-region one. Both
proposed approaches dominate large portions of the PFs from
the rest of the methods. Baseline-2 again proves favorable in
comparison to Baseline-1, WEIBO, MESMOC, NSGA-II, and
NSGA-III.

2) Three-Objective Formulation: The variable space
remains the same in the three-objective formulation and the
objectives and constraints are given in Table XII. Here,
the total simulation budget for the BO-related methods is
increased to 1600, with 150 initial sampling simulations. The
NSGA-II population count and maximum generations are 60
and 100, respectively. The results in terms of final PF HV are
given in Table XIII, with r = [75, 497, 0.027].

The proposed approach provides higher HV values com-
pared to those of all the other approaches. The two-trust-region
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Fig. 8. Four stage amplifier proposed in [50].

TABLE XI
FOUR STAGE AMPLIFIER COVER MATRIX—TWO OBJECTIVES

TABLE XII
SPECIFICATIONS FOR FOUR STAGE AMPLIFIER—THREE OBJECTIVES

LoCoMOBO again proves favorable compared to the single-
trust-region one, but with the outcome of higher variance.
This is highlighted by the fact that the single-trust-region
LoCoMOBO provides the least worst solution among all algo-
rithms. We noticed that all algorithms managed to find feasible
solutions with relative ease, which means that this problems is
not highly constrained. This may explain the fact that WEIBO
and MESMOC provide better solutions compared to their two-
objective performances, but they do not manage to come close
to the HV values attained by LoCoMOBO. Selecting and eval-
uating NS = 5 query points prove favorable in this case. We
argue that this is due to the multimodal loss landscape of this
problem; GP models need to be trained more often before
providing sampled functions to the acquisition function.

In terms of runtime, the single-trust-region LoCoMOBO
with NS = 5 provides an overall speedup of ×12 and ×21
compared to WEIBO and MESMOC, respectively. These quan-
tities become ×20 and ×35 when the batch size is NS = 10.
A qualitative comparison of the resulting PFs from the tested
methods (NS = 10) is given in the cover matrix of Table XIV.

The PFs of LoCoMOBO dominate a large portion of the
PFs of the other algorithms. In addition, the two-trust-region
case seems to provide with wider PFs in comparison to the

TABLE XIII
FOUR STAGE AMPLIFIER HV RESULTS—THREE OBJECTIVES

TABLE XIV
FOUR STAGE AMPLIFIER COVER MATRIX—THREE OBJECTIVES

single-trust-region one. While it provides a relatively large PF
HV difference, it does not dominate large portion of the single-
trust-region PF. The HV difference, therefore, can be attributed
to more diverse PF. An example PF for this circuit (NTR = 2
and NS = 10) is given in Fig. 10.

C. Low Noise Amplifier

An LNA is sized in this section. The circuit is shown in
Fig. 11 and it is an inductively degenerated common-source
cascode topology.

The LNA consists of three nMOS transistors (one current
source), three inductors, three capacitors, and two resistors. All
of the employed inductors are spiral ones and capacitors Cg,
Cd, and Cf are metal-oxide-metal (MOM) ones. Devices Rb1
and Rb2 are p-diffusion resistors, while Rd is fixed to 100. In
total, there are 21 independent variables and their ranges are
as follows. Inductor widths are chosen between the available
values by the PDK (3, 6, 9, and 15 μm), while the number
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Fig. 10. PF for the four stage amplifier.

Fig. 11. LNA examined in this section.

of turns ranges between 0.5 and 5 with a step of 0.25 and the
inner radius between 10 and 100 μm. Transistor length and
width ranges are [100, 240] nm and [5, 250] μm. The total
length of the resistors ranges between 1 and 30 μm, while
their width is fixed to 2 μm. For the capacitors, the fingers
width is fixed to 140 nm and the number of horizontal and
vertical fingers ranges between 1 and 100.

This problem involves both continuous and integer-valued
variables. To handle this variable space, we adopt the method-
ology proposed in [51] and extend LoCoMOBO to handle
mixed-integer variables. To this end, prior to the evaluation of
any sampled function via RFF when solving (18), the input
vector x is replaced by a transformed vector T(x), where T(·)
rounds the input entries that correspond to integer variables to
the closest integer.

In this experiment, we consider optimizing for power dis-
sipation and gain (S21) with 2.4-GHz operating frequency.
To account for PVT variations, we consider 45 separate test-
benches, combining five different corner model files (typical,
SS, SF, FS, and FF), three operating temperatures (−50, 27,
and 125 C), and three supply voltages (typical, typical ×1.1,
and typical ×0.9). The specifications for the LNA, which
include optimization objectives and constraints, are given in
detail in Table XV. In summary, the constraints are chosen
to ensure that a 20-dB gain is achieved in typical conditions,
while linearity, input matching, and noise performances at all
corners meet the chosen thresholds.

In this example, we compare the proposed LoCoMOBO
approach using a single and two trust regions against Baseline-1,
NSGA-II, and NSGA-II. The batch size for BO approaches is
NS = 5. WEIBO and MESMOC were not proposed to handle
problems with mixed integer and discrete variables and Baseline-
2 cannot be extended to do so, thus they are not included in this
test case. For LoCoMOBO and Baseline-1, the initial samples
are 150 and the maximum number of evaluations is 1300. For

TABLE XV
SPECIFICATIONS FOR LNA

TABLE XVI
LNA HV RESULTS

Fig. 12. PFs for the LNA. Bottom-right values result in better S21 versus
Pdc tradeoff.

NSGA-II and NSGA-III, 50 individuals and 80 generations were
used, with 24 reference directions. The experiments are repeated
five times to account for random flunctuations and the results
in terms of HV are given in Table XVI, where r = [20.06, 30],
computed from the minimum gain and maximum dc current
encountered from all of the algorithms.

It is seen that LoCoMOBO outperforms the population-
based NSGA-II and NSGA-III in this example as well.
The global Baseline-1 performs better than the population-
based algorithms but it does not reach the performance of
the proposed approach using a single or two trust regions.
A cover matrix for this example is shown in Table XVII.
Here, the results from the HV-based comparison are validated,
demonstrating the effectiveness of the proposed approach. For
demonstration purposes, the resulting PFs from a single run
of each algorithm are shown in Fig. 12. For the case of
LoCoMOBO with a single trust region, the average, maxi-
mum, and minimum LNA FOM [52] from the PF solutions
are 17485, 21060, and 13069 W−1. For comparison, the same
metrics for NSGA-II are 13884, 16233, and 9881.

To highlight the effect of including PVT variations in
the optimization procedure, we proceed with a comparison
between variation-aware and nominal optimization results. The
above experiment is repeated once more, but this time account-
ing only for nominal conditions; therefore, we utilize a single
testbench. The variable ranges as well as the algorithmic
hyperparameters remain the same and the optimization con-
straints are changed accordingly. In Fig. 13, the PFs from the
nominal optimization and the ones resulting from the corner
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TABLE XVII
LNA COVER MATRIX

Fig. 13. Comparison between the PFs derived accounting for PVT variations
and only for nominal conditions. Nominal sizing results are depicted using
light dotted lines and PVT-aware results using solid lines.

based one are superimposed. Two major conclusions can be
drawn from this figure: 1) LoCoMOBO outperforms the other
algorithms considering both nominal conditions and PVT vari-
ations and 2) the PFs from the variation-aware sizing provide
worse S21 versus PDC tradeoff, which is expected due to the
additional constraints that ought to be satisfied. This, in turn,
implies that the nominal PFs do not satisfy the constraints of
Table XV in all corners.

V. CONCLUSION

A new local multiobjective BO method that addresses
constrained problems, LoCoMOBO, was proposed in this
article. In contrast to classical BO approaches that search the
entire variable space, LoCoMOBO provides Pareto optimal
solutions by using a trust-region approach, which maintains
separate GP models in the search space. The size and location
of the trust regions are adaptively updated throughout the
optimization. Using TS and RFFs, a set of auxiliary cheap
MOPs is defined and solved to suggest multiple query points
at each iteration, thereby allowing for parallel query point
evaluation. The efficiency of LoCoMOBO was demonstrated
by comparing it against state-of-the-art approaches and two
baseline methods on a set of benchmark functions and
three real-world circuits. Both nominal conditions and cases
accounting for PVT variations were examined to highlight
the flexibility of the proposed approach. The experimental
results suggest that LoCoMOBO provides better results both
in terms of PF quality and total optimization runtime.
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