
sensors

Review

Magnetic Field Sensors’ Calibration: Algorithms’ Overview
and Comparison

Konstantinos Papafotis * , Dimitris Nikitas and Paul P. Sotiriadis *

����������
�������

Citation: Papafotis, K.; Nikitas, D.;

Sotiriadis, P.P. Magnetic Field Sensors’

Calibration: Algorithms’ Overview

and Comparison. Sensors 2021, 21,

5288. https://doi.org/10.3390/

s21165288

Academic Editor: Nicolò Marconato

Received: 7 June 2021

Accepted: 22 July 2021

Published: 5 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Computer Engineering, National Technical University of Athens,
157 80 Athens, Greece; el15006@central.ntua.gr
* Correspondence: kpapafotis@mail.ntua.gr (K.P.); pps@mail.ntua.gr (P.P.S.)

Abstract: The calibration of three-axis magnetic field sensors is reviewed. Seven representative
algorithms for in-situ calibration of magnetic field sensors without requiring any special piece of
equipment are reviewed. The algorithms are presented in a user friendly, directly applicable step-by-
step form, and are compared in terms of accuracy, computational efficiency and robustness using
both real sensors’ data and artificial data with known sensor’s measurement distortion.

Keywords: magnetic sensor; calibration; algorithms; review; comparison

1. Introduction

Magnetic field sensors (magnetometers) are nowadays widely used in a plethora
of commercial, industrial, marine, aerospace and military applications. Their applica-
tions include but not limited to navigation and attitude estimation, geophysical surveys,
archaeology, entertainment devices, consumer electronics and others.

In most applications, sensor’s calibration is essential in order to achieve the desirable
accuracy level. The purpose of magnetic field sensors’ calibration is a twofold. First, as in
the case of every measurement unit, calibration ensures that the measurement of the stan-
dalone sensor corresponds to the actual value of the magnetic field. To do so, calibration
must compensate for all static (manufacturing imperfections etc.) and active (temperature,
humidity, etc.) phenomena effecting the accuracy of the sensor’s measurement. In addition,
when a magnetic sensor is embedded in a larger system, other components of the system
may cause disturbances (both static and active ones) to the local magnetic field. Static dis-
turbances are usually caused by magnetic and ferromagnetic materials in the vicinity of the
sensor; called hard-iron distortion and soft-iron distortion respectively (more information
are given in Section 2). Mechanical or electronic structures embedded in the system, such
as motors and coils could also actively distort the local magnetic field and cause significant
measurement error.

This review paper focuses on algorithms correcting the dominant linear time-invariant
(static) measurement errors, requiring no special piece of equipment for their application.
Such algorithms are most commonly used for in-situ calibration of magnetic field sensors
which are usually in chip form and embedded in larger systems. The paper presents seven
representative calibration algorithms for three-axis magnetometers and compares them in
terms of accuracy, robustness, computational efficiency and ease of deployment. The seven
algorithms are briefly presented, to introduce all required mathematical expressions, and
are summarized in an easy-to-develop, step-by-step form. For the details of the algorithms,
the reader is referred to the original works.

The selection of the particular algorithms was done based on their popularity and on our
attempt to present as many different calibration approaches as possible. The TWOSTEP [1] al-
gorithm is one of the first algorithms that addressed the full calibration problem (and probably
the most popular one). At a later time, Elkaim and Vasconcelos [2] proposed a geometric
approach of TWOSTEP which is also very popular. At the same time, Dorveaux et al. [3]

Sensors 2021, 21, 5288. https://doi.org/10.3390/s21165288 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9311-7018
https://orcid.org/0000-0001-7631-0441
https://doi.org/10.3390/s21165288
https://doi.org/10.3390/s21165288
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165288
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165288?type=check_update&version=2

Sensors 2021, 21, 5288 2 of 31

offered a non-linear formulation of the problem and they treated it in an innovative, strictly
iterative way. In addition, Wu and Shi [4] suggested the most complete formulation of the
calibration problem as an optimal maximum likelihood estimation one. The TWOSTEP
algorithm, as well as the algorithms proposed by Vasconcelos et al. and Wu et al., consist
of a first step deriving an initial solution, and, a second step for improving it. On the
other hand, Papafotis and Sotiriadis [5] recommended an iterative approach based on a
twofold minimization, which was shown to be extremely effective. Furthermore, a real-
time approach by Crassidis et al. [6] using the popular Kalman Filter is discussed. Finally,
to represent the recent trends towards Machine Learning, an Artificial Intelligence (AI)
method applying Particle Swarm Optimization on the estimation problem is explored [7].

Please note that this review focuses on works for in-situ calibration of three-axis
magnetic field sensor without using any special piece of equipment or any other addi-
tional sensor. Thus, several interesting works dealing with magnetometer’s calibration, in
combination with inertial sensors, [8–12] are not included in this work.

The rest of the paper is organized as follows. First, a standard error model for three-
axis magnetic field sensors is presented in Section 2. In Sections 3–9, seven representative
algorithms are discussed in chronological order of publication. In Section 10, a method for
generating artificial data is proposed and algorithms are evaluated via extensive Monte
Carlo simulation to identify their performance. In addition, the algorithms are evaluated
using several real sensor’s measurements in order to evaluate their performance under
real-world conditions. Finally, Section 11 summarizes our findings and provides brief
comments for each algorithm. The notation used along the paper is presented in Table 1.

Table 1. Notation.

‖.‖ Euclidean Norm
‖.‖F Frobenius Norm
vec (·) Vectorization of Matrix
diag(·) Diagonal Matrix
chol (·) Cholesky Factorization
In×n n× n Identity Matrix
0m×1 m× 1 Zero Vector
N Normal Distribution
U Uniform Distribution
∇ Gradient Vector
∇2 Hessian Matrix
⊗ Kronecker Product
O(3) Orthogonal Group of dimension 3
SO(3) 3D Rotation Group
U (3) Group of 3× 3 Upper Triangular Matrices

2. Magnetic Field Sensor’s Error Sources and Measurement Model

In this section, the most important linear, time-invariant error sources of three-axis
magnetic field sensors are presented. Based on them, a mathematical model relating the
sensor’s measurement with the actual value of the magnetic field is derived.

The total output error of a magnetic sensor is a combination of several error sources
related to the sensing element itself, the instrumentation electronics, manufacturing imper-
fections and distortions caused by magnetic and ferromagnetic materials in the vicinity of
the sensor. The linear, time-invariant error sources with the most significant contribution
in the total sensor’s error, are listed below:

• Bias, or offset; all magnetic sensors suffer from bias, which is a constant distortion.
In many cases, it is the most important defect in the sensor’s overall error. A 3× 1
vector, hs, is used to model it.

Sensors 2021, 21, 5288 3 of 31

• Scale-factor error represents the input-output gain error of the sensor. It is modeled
by a 3× 3 diagonal matrix, Ts f .

• Cross-coupling or non-orthogonality inaccuracies are resulted by the non-ideal align-
ment of the sensor’s axes during manufacturing and are modeled by a 3× 3 matrix, Tcc.

• Soft-iron distortion is caused by ferromagnetic materials in the vicinity of the sensor,
attached to the sensor’s coordinate frame. Those materials do not generate their
own magnetic field, but instead alter the existing magnetic field locally, resulting in a
measurement discrepancy. This effect is modeled by a 3× 3 matrix, Tsi.

• Hard-iron distortion is due to magnetic materials attached to the sensor’s coordinate
frame. As a consequence of the persistent magnetic field created by those materials,
the sensor’s output has a constant bias. Hard-iron distortion is modeled by a 3× 1
vector, hhi.

• Random noise is the stochastic error in the sensor’s output. It is induced by the
sensor’s mechanical and electrical architecture. It is modeled by a 3× 1 vector, ε,
and it is most commonly assumed to be a sequence of white noise, i.e., ε ∼ N (0, σ2).

Let m be the 3× 1 true magnetic field vector and y be the 3× 1 measurement vector.
With the aforementioned error terms in mind, a widely accepted and well-referenced
measurement model for a three-axis magnetometer is the following [1,2,4–7,13,14]

y = Ts f Tcc(Tsim + hhi) + hs + ε (1)

In most applications, the exact contribution of each error term in (1) is of no concern
and, thus, instead of (1), most calibration algorithms use the following, compact form of (1)

y = Tm + h + ε (2)

where T , Ts f TccTsi and h , Ts f Tcchhi + hs.
This work focuses on algorithms intended to be used with magnetic field sensors

requiring no special piece of equipment. In such cases, the calibration is done in the
sensor’s (body) coordinate frame implying that both the measurement vector, y and the
true magnetic field vector, m in (2) are expressed in the senor’s coordinate frame.

Note that when expensive laboratory equipment is not available, both the calibration
parameters T and h in (2), and the magnetic field vector, m, are unknown. Thus, in most
works, multiple measurements of the local (Earth’s) magnetic field are used to derive T
and h. Note that the Earth’s magnetic field varies with location and time and its value
(magnitude and direction) is only approximately known by magnetic models such as
International Geomagnetic Reference Field model (IGRF) [15]. However it is reasonable to
assume that the magnitude of the magnetic field is (locally) constant during the calibration
procedure. Based on this fact, most authors formulate an optimization or an estimation
problem to derive T and h.

3. Alonso and Shuster (TWOSTEP)

The TWOSTEP algorithm [1] consists of an analytical centering approach [16,17] for
its first step, while in the second step the solution is optimized numerically. The authors
initially solved the problem of bias, h, determination when attitude is not known [18] and
then extended their method to determine matrix T as well [1].

TWOSTEP is motivated by the assumption that matrix T should not be far from
a pure rotation. Therefore by applying polar decomposition it can be written as T =
(I3×3 + D)−1O where O is an orthogonal matrix and D is a symmetric 3× 3 matrix so as
(I3×3 + D)−1 to be positive definite. Matrix O can be integrated into vector m since it does
not alter its norm. The equivalent measurement model is

y = T̂m̂ + h + ε (3)

Sensors 2021, 21, 5288 4 of 31

where

T̂ , (I3×3 + D)−1

m̂ , Om.

Therefore, for the full calibration, D and h must be estimated. To this purpose, a set of
N measurements, yk, k = 1, 2, . . . N, is used and the corresponding effective measurements
zk, k = 1, 2, . . . N, are defined as

zk , ‖yk‖2 − ‖m̂k‖2

= ‖yk‖2 − ‖mk‖2.
(4)

The last ones can be decomposed into a deterministic part plus an approximately
Gaussian noise term, υk with mean µk and variance σ2

k , i.e., υk ∼ N (µk, σ2
k), given by

µk = −3σ2 (5a)

σ2
k = 4σ2((I3×3 + D)yk − h)T((I3×3 + D)yk − h) + 6σ4. (5b)

Since D and h are unknown, the variance σ2
k is assumed to be similar to measurement’s

output error variance σ2. Hence µk and σ2
k can be assumed independent of k. To estimate D

and h, Alonso and Shuster define the auxiliary quantities E , D2 + 2D and c , (I + D)h,
as well as the estimation vector θ′ containing the elements of the 3× 1 vector c and those of
the 3× 3 symmetric matrix E, which is formed as θ′ = [cTE11 E22 E33 E12 E13 E23]

T .
TWOSTEP algorithm functions on the estimation vector θ′ and thus on the auxil-

iary parameters, E and c and not on the actual calibration parameters, D and h. The
transformation from E and c back to D and h is described in (13) and (14).

3.1. Initial Estimate

For every measurement, yk, k = 1, 2, . . . N, the following auxiliary variables are defined

Sk = [y2
k,1 y2

k,2 y2
k,3 2yk,1yk,2 2yk,1yk,3 2yk,2yk,3] (6a)

Lk = [2yT
k −Sk]. (6b)

The centering approximation is done using the following weighted averages along with
their corresponding centered values

z̄ , σ̄2
N

∑
k=1

1
σ2

k
zk z̃k , zk − z̄ (7a)

L̄ , σ̄2
N

∑
k=1

1
σ2

k
Lk L̃k , Lk − L̄ (7b)

µ̄ , σ̄2
N

∑
k=1

1
σ2

k
µk µ̃k , µk − µ̄ (7c)

where

σ̄2 ,

(
N

∑
k=1

1
σ2

k

)−1

.

Sensors 2021, 21, 5288 5 of 31

The first estimation of θ′ is the centered one given by

θ̃′ = P̃θ′θ′

N

∑
k=1

1
σ2

k
(z̃k − µ̃k)L̃T

k (8a)

P̃−1
θ′θ′ =

N

∑
k=1

1
σ2

k
L̃T

k L̃k (8b)

with P̃θ′θ′ denoting the centered covariance matrix and F̃θ′θ′ denoting the centered Fischer
information matrix.

3.2. Solution Improvement Step

The second step improves the previous estimate of vector θ, derived in (8), via Gauss-
Newton method using the centered estimate θ̃′ as the initial guess. The estimation is
updated as follows

θ′i+1 = θ′i −
[

F̃θ′θ′ +
1
σ̄2

(
L̄− φ(θ′i)

)T(L̄− φ(θ′i)
)]−1

g(θ′i) (9)

where

v = (I3×3 + E)−1c (10a)

φ(θ′) = [2vT − v2
1 − v2

2 − v2
3 − 2v1v2 − 2v1v3 − 2v2v3] (10b)

g(θ′) = P̃−1
θ′θ′(θ

′ − θ̃′)− 1
σ̄2

(
z̄− L̄θ′ + cTv− µ̄

)(
L̄T − φ(θ′)

)
(10c)

with vj denoting the jth element of vector v. At every iteration the 3× 3 symmetric matrix
E and the 3× 1 vector c are updated according to the current estimation vector θ′i using

c =

θ′1
θ′2
θ′3

 and E =

θ′4 θ′7 θ′8
θ′7 θ′5 θ′9
θ′8 θ′9 θ′6

. (11)

Alonso and Shuster define the following quantity in order to establish a stop condition
for the Gauss–Newton method.

ηi ,
(
θ′i+1 − θ′i

)T
[

F̃θ′θ′ +
1
σ̄2

(
L̄− φ(θ′i)

)T(L̄− φ(θ′i)
)](

θ′i+1 − θ′i
)
. (12)

The iterations continue until ηi became smaller than a predetermined threshold.
After sufficiently many iterations, an optimal estimation of matrix E∗ and of vector

c∗ is derived. The derived solution is then used to find D∗ and h∗. To this end we apply
SVD [19] to the symmetric matrix E∗, i.e.,

E∗ = USUT (13)

where S = diag(s1, s2, s3), U ∈ O(3). Then find the diagonal matrix W = diag(w1, w2, w3)
satisfying S = 2W + W2. Typically, the elements of S are much smaller than unity [1] so a
real solution exists with the diagonal entries of W being wj = −1 +

√
1 + sj, j = 1, 2, 3.

Combining the above, the estimates of matrix D∗ and bias vector h∗ are given by

D∗ = UWUT (14a)

h∗ = (I3×3 + D∗)−1c∗ (14b)

Sensors 2021, 21, 5288 6 of 31

and are related to the calibration parameters T and h of the measurement model (2)
as follows

T = (I3×3 + D∗)−1 and h = h∗. (15)

Summarizing, when the centered estimation is near the ground truth value the Gauss–
Newton method typically converges rapidly. The authors verified the robustness of their
method via simulations assuming either white noise or colored noise. TWOSTEP is also
suitable for on-orbit calibration using IGRF data [15]. The algorithm is summarized in
Algorithm 1.

Algorithm 1: Alonso and Shuster (TWOSTEP) [1]
Step 1: Calculate zk, Lk, for k = 1, 2, . . . , N

by using (4)–(6)
Step 2: Calculate the centered values z̃k, L̃k for k = 1, 2, . . . , N (7)
Step 3: Calculate centered estimate θ̃′ and covariance matrix P̃θ′θ′ (8)
Step 4: Extract c and E from θ′ following (11)
Step 5: Calculate φ(θ′) and g(θ′) from (10)
Step 6: Update θ′ using (9)
Step 7: Calculate η following (12)
Step 8: Repeat steps 4–7 until η is sufficiently small
Step 9: Apply SVD on E∗ (13) and define matrix W
Step 10: Calculate D∗, h∗ (14) and T, h (15)

4. Crassidis et al.

The authors of [6] were motivated by the fact that real-time applications demand real-
time calibration methods. To this end, based on the problem formulation (3) established
in TWOSTEP [1], Crassidis et al. formulate a real-time identification problem for the
derivation of the calibration parameters D and h and solve it using the extended Kalman
Filter (EKF) approach. Note that the authors of [6] have proposed two more algorithms
dealing with the online calibration of a magnetic field sensor in [20,21]. However, in this
work we focus on the EKF based one presented in [6] which is the most efficient and
popular one.

Following the problem formulation of TWOSTEP, the bias vector h and the symmetric
matrix D are desired. The estimation vector θ is defined differently and contains h and D,
structured as follows

θ = [hT D11 D22 D33 D12 D13 D23]
T . (16)

Because the vector θ is constant, the state model is given by θ̇ = 0. The effective mea-
surement is given by zk = ‖yk‖2 − ‖mk‖2 (4) while the measurement’s model is given by
zk = φ(θk) + υk where

φ(θk) = −yT
k

(
2Dk + D2

k

)
yk + 2yT

k (I3×3 + Dk)hk − ‖hk‖2 (17)

and effective measurement’s noise υk ∼ N (µk, σ2
k) follows (5). At each iteration Dk and hk

are extracted from θk according to (16). The propagation is as it follows

θk+1 = θk + Kk[zk − φ(θk)] (18a)

Pk+1 = [I9×9 − Kk H(θk)]Pk (18b)

Kk = Pk HT(θk)
[

H(θk)Pk HT(θk) + σ2
k

]−1
(18c)

where Pk is the covariance of the estimated parameters for h and D at step k. The matrix
H(θk) is the linearization matrix of φ(θk) and is defined as

Sensors 2021, 21, 5288 7 of 31

H(θk) = [2yT
k (I3×3 + Dk)− 2hT

k − SkFk + 2Jk] (19)

where
Sk = [y2

k,1 y2
k,2 y2

k,3 2yk,1yk,2 2yk,1yk,3 2yk,2yk,3] (20a)

Jk = [yk,1hk,1 yk,2hk,2 yk,3hk,3 yk,1hk,2 + yk,2hk,1

yk,1hk,3 + yk,3hk,1 yk,2hk,3 + yk,3hk,2]
(20b)

Fk =

∆1 0 0 2Dk,12 2Dk,13 0
0 ∆2 0 2Dk,12 0 2Dk,23
0 0 ∆3 0 2Dk,13 2Dk,23

Dk,12 Dk,12 0 ∆4 Dk,23 Dk,13
Dk,13 0 Dk,13 Dk,23 ∆5 Dk,12

0 Dk,23 Dk,23 Dk,13 Dk,12 ∆6

 (20c)

and
∆1 = 2(1 + Dk,11)

∆2 = 2(1 + Dk,22)

∆3 = 2(1 + Dk,33)

∆4 = 2 + Dk,11 + Dk,22

∆5 = 2 + Dk,11 + Dk,33

∆6 = 2 + Dk,22 + Dk,33.

(21)

The noise variance of the measurements, σ2
k , can be assumed to be constant and

equal to σ2 as in TWOSTEP. Given a set of N measurements, the EKF provides an optimal
estimation vector θ∗ = θN from which an optimal vector h∗ = hN and a matrix D∗ = DN
can be extracted according to (16). Therefore, the calibration parameters (2) are given by

T = (I3×3 + D∗)−1 and h = h∗. (22)

Under certain conditions, e.g., fast changing data, this approach of sequential calibra-
tion may have some advantages in terms of computational complexity and adaptation. The
algorithm is summarized in Algorithm 2.

Algorithm 2: Crassidis et al. [6]
Step 1: Initialize θ and k = 0
Step 2: for each measurement do:

Calculate zk (4)
Extract Dk and hk from θk (16)
Calculate Sk, Jk, Fk (20) and H(θk) (19)
Calculate Kalman Gain Kk (18)
Update estimation: θk ← θk+1
Update covariance matrix: Pk ← Pk+1 (18)
k← k + 1

Step 3: Extract D∗ and h∗ from θ∗ (16)
Step 4: Calculate T and h (22)

5. Dorveaux et al.

An iterative algorithm for the calibration of magnetic field sensors based on iter-
ations of a least-squares problem is introduced in [3]. In the beginning of the algo-
rithm, the measurements lie on an ellipsoid according to (2). In each iteration, the mea-
surements move from the initial ellipsoid to the unit sphere, following a cost function
minimization algorithm.

Sensors 2021, 21, 5288 8 of 31

The authors in [3] use the following variation of the measurement model of (2)

m = Ay + B (23)

where A = T−1, B = −T−1h and the measurement noise, ε, is neglected.
The algorithm begins by considering an initial estimate of the magnetic field vectors,

denoted by m̃k(0) and defined as

m̃k(0) = yk, k = 1, 2, . . . , K. (24)

In every iteration, the following cost function is formulated and minimized using the least
squares method.

J(A, B, n) =
K

∑
k=1

∥∥∥∥Am̃k(n) + B− m̃k(n)
‖m̃k(n)‖

∥∥∥∥2

(25)

where n = 1, 2, . . . , N denotes the nth iteration. Let An and Bn be the resulting matrices
from the minimization of (25). Every iteration ends with using An and Bn to update the
estimates of the magnetic field vectors as

m̃k(n + 1) = Anm̃k(n) + Bn, k = 1, 2, . . . , K. (26)

From (26) we can express the magnetic field estimates m̃k(n) using the measurement
vectors yk as

m̃k(n) = Ãnyk + B̃n, k = 1, 2, . . . , K (27)

where Ãn and B̃n are iteratively defined as

Ãn = An Ãn−1 and B̃n = An B̃n−1 + Bn. (28)

To determine when the algorithm has reached an acceptable solution, we define the follow-
ing cost

Jstop(An, Bn) = ‖Bn‖+ ‖An − I3×3‖. (29)

The iterations stop when Jstop is sufficiently small. Note that the original manuscript does
not provide an explicit condition to stop iterations. However it is reasonable to terminate
the algorithm when contribution of the updated An and Bn to the calibration parametersÃn
and B̃n is negligible (see (28)). The estimate m̃(N) derived at the Nth iteration represents
the calibrated data and it is:

mk = m̃k(N), k = 1, 2, . . . , K (30)

The derived matrices ÃN and B̃N are related to the calibration parameters T and h of the
measurement model (2) as follows

T = Ã−1
N and h = −Ã−1

N B̃N . (31)

Finally, the estimates m̃k(N), k = 1, 2, . . . , K, derived at the Nth iteration represent the
calibrated measurement vectors. The algorithm is summarized in Algorithm 3.

Algorithm 3: Dorveaux et al. [3]
Step 1: Initialize m̃k(0) using (24).
Step 2: Minimize (25) using least squares and derive An and Bn.
Step 3: Use An and Bn to calculate m̃k(n + 1) from (26).
Step 4: Calculate Ãn and B̃n using (28).
Step 5: Evaluate the cost function Jstop(An, Bn) from (29).
Step 6: Repeat steps 2-5 until Jstop is sufficiently small.
Step 7: Use ÃN and B̃N to calculate T and h using (31).

Sensors 2021, 21, 5288 9 of 31

6. Vasconcelos et al.

The authors of [2] consider that magnetometers’ measurements lie on a ellipsoid
manifold following the measurement model (2). First, they derive an initial estimate of the
calibration parameters T and h by finding the ellipsoid that fits best to the given data. Then,
they use the measurement model of (2) to formulate a maximum likelihood estimation
problem and derive an improved estimate of the calibration parameters T and h.

From (2), the magnetic field vector is expressed as m = T−1(y− h)− T−1ε. Assuming
that the magnitude of the magnetic field is constant during the calibration procedure we
can write the following unconstrained optimization problem to derive T and h

minimize
T,h

K

∑
k=1

(
‖T−1(yk − h)‖ − 1

σk

)2

. (32)

Here σk denotes the standard deviation of the measurement noise in the kth measurement,
assuming it is the same for all three axes and equal to σ. Without loss of generality, the
magnitude of the magnetic field is assumed to be equal to one. A possible relaxation
of this soft assumption is provided by Springmann [22] who addresses the problem of
time-varying bias. To solve (32), the authors define the following cost function and then
minimize it using the Newton’s method

J(x) ,
K

∑
k=1

(
‖T̂(yk − h)‖ − 1

σk

)2

(33)

where T̂ = T−1 and
x =

[
vec(T̂)T hT]T . (34)

The vector x is updated in every Newton’s iteration as follows

x(+) = x(−) −
[
∇2 J(x)

∣∣∣
x=x(−)

]−1
∇J(x)

∣∣∣
x=x(−)

(35)

where ∇J(x) is the gradient vector and ∇2 J(x) is the Hessian matrix of the cost function.
For both ∇J(x) and ∇2 J(x), the authors in [2] provide analytical expressions which are
presented in Appendix A.1.

Initial Estimate

Solving (32) using the Newton’s method requires a good initial estimate of the calibration
parameters, T̂ and h. Vasconcelos et al. use a previous work on nonlinear estimators for strap-
down magnetometers by Foster and Elkaim [23,24], to derive a good initial estimate. Solving
the ellipsoid equation ‖mk‖ = ‖T−1(yk − h)‖ = 1 for every k is equivalent to solving the
following pseudo-linear least squares estimation problem by re-arranging the terms as follows

Lp = b (36)

where, by writing each measurement vector as yk =
[
yx

k yy
k yz

k

]T , k = 1, 2, . . . , K, it is

L =

yx

1
2 yx

1yy
1 yx

1yz
1 yy

1
2

yy
1yz

1 yx
1 yy

1 yz
1 1

...
...

...
...

...
...

...
...

...
yx

K
2 yx

Kyy
K yx

Kyz
K yy

K
2

yy
Kyz

K yx
K yy

K yz
K 1

 (37)

and
b =

[
yz

1
2 yz

2
2 . . . yz

K
2
]T

. (38)

The vector p is derived as

Sensors 2021, 21, 5288 10 of 31

p =
[
A B C D E G H I J

]T
= (LT L)−1LTb. (39)

The initial estimates of the calibration parameters are derived as

T̂(0) =

 1
α 0 0

− 1
α tan(ρ) − 1

b sec(ρ) 0
1
α (tan(ρ) tan(λ) sec(φ)− tan(φ)) − 1

b sec(ρ) tan(λ) sec(φ) 1
c sec(λ) sec(φ)

 (40)

and
h(0) =

1
2α1

[
β1 β2 β3

]T (41)

where
a =

1
2α1

(
−(4D + E2)α2

)1/2

b =
1

2α1

(
−(4A + C2)α2

)1/2

c =
1

2α1

(
(4DA− B2)α2

)1/2

tan(ρ) = − 1
2α1

(2B + EC)(α1)
−1/2

tan(φ) = (BE− 2CD)(α1)
−1/2

tan(λ) = E(−α1α−1
3)1/2

(42)

and
β1 = 2BH + BEI − 2CDI − 4DG + ECH − E2G

β2 = −2AEI + 4AH − BCI − 2BG + C2H − CEG

β3 = 4DIA− 2DGC + EGB− IB2 − 2EHA + CBH.

(43)

The auxiliary variables α1, α2 and α3 are defined as

α1 = −B2 + DC2 + 4DA + AE2 − BEC

α2 = 4AE2 J − E2G2 − 4BECJ + 2ECHG + 2BEIG− 4EHAI − 4DICG− C2H2

+ 4DAI2 + 2CBHI − 4DG2 + 4DC2 J + 4BHG− 4AH2 − B2 I2 − 4B2 J + 16DAJ

α3 = E4 A− CBE3 + E2C2D− 2B2E2 + 8DAE2 − 4DB2 + 16D2 A.

(44)

One contribution of Vasconcelos et al., advancing the existing initial step approach sug-
gested in [23], was the derivation of the aforementioned explicit and non-trivial expressions.
In addition, Vasconcelos et al. state that their proposed algorithm is applicable even when the
magnitude of the magnetic field is not constant during the measurement, similarly to TWOSTEP
and Crassidis et al. algorithm [6]. The algorithm is summarized in Algorithm 4.

Algorithm 4: Vasconcelos et al. [2]
Initial Estimate
Step 1: Use the sensors’ measurements yk, k = 1, 2, . . . , K and form A and b

according to (37) and (38), respectively.
Step 2: Calculate p using (39)
Step 3: Derive the initial estimates T̂(0) and h(0) using (40) and (41), respectively.

Newton Method
Step 4: Use the initial estimates T̂(0) and h(0) to initialize x according to (34).
Step 5: Update x using (35).
Step 6: Evaluate the cost function J(x) of (33).
Step 7: Repeat Steps 5–6 until J(x) becomes sufficiently small.
Step 8: Split x into T̂ and h and calculate T = T̂−1.

Sensors 2021, 21, 5288 11 of 31

7. Ali et al.

The authors in [7] propose a Particle Swarm Optimization (PSO) [25] - based calibra-
tion algorithm that estimates the bias, the scale and nonorthogonality factors. The main
advantage of this algorithm is its simplicity of implementation since the optimization
is heuristic and does not depend on calculation of gradients, unlike other optimization
techniques mentioned in this paper. It can be classified as an AI [26] approach.

The authors in [7] use (2) and a set of N sensor’s measurements to form the following
optimization problem for deriving the calibration parameters T and h

minimize
T,h

√√√√ N

∑
k=0

(
‖yk‖2 − ‖mk‖2

)2
. (45)

where J ,

√
∑N

k=0

(
‖yk‖2 − ‖mk‖2

)2
is called the fitness value.

Function J depends on T and h which are conveniently combined into the single vector
x ∈ R12,

x =

[
h

vec(TT)

]
. (46)

For a swarm of S particles, the position xi ∈ R12 and the velocity vi ∈ R12 of the ith particle
can be computed using [25]

vk
i = vk−1

i + c1rk−1
1i

(
pk−1

i − xk−1
i

)
+ c2rk−1

2i

(
pk−1

g − xk−1
i

)
(47a)

xk
i = xk−1

i + vk
i (47b)

for i = 1, 2, . . . , S where k denotes the new value while k − 1 the old value. Also pi
denotes the ith’s particle best position, pg denotes the swarm’s best position, c1 and c2
are the acceleration coefficients, w is the inertial weight factor and r1i, r2i are random
numbers uniformly distributed within the range [0, 1]. Typical values of these quantities
are c1 = c2 = 2, w = 1 and the number of particles S is usually between 20 and 65.

Therefore, at each iteration k, each particle’s fitness value J(xk
i) is calculated and

quantities pi and pg are updated accordingly. The authors suggest three different stop
criteria. Specifically, the iterations stop either when the fitness value J of a particle is
smaller than a predetermined threshold, or after a maximum number of iterations, or when
the change of J becomes insignificant with iterations. Upon termination of the algorithm,
parameters T and h (2) are extracted from the swarms’s optimal solution pg according to[

h
vec(TT)

]
= pg. (48)

Following the general concept of applying AI optimization algorithms, as was in-
troduced in [7], one can also consider using more modern versions of the standard PSO,
e.g., [27–29]. They are typically found as built-in functions in computational suites such as
MATLAB [30]. The algorithm is summarized in Algorithm 5.

Sensors 2021, 21, 5288 12 of 31

Algorithm 5: Ali et al. [7]
Step 1: Initialize xi, vi for i = 1, 2, . . . , S

and set pi = xi

Step 2: Find j = {i|i = 1, 2, . . . , S and J(pi)← min}
Particle i best: Ji

min ← J(pi)
Global best: pg ← pj and Jmin ← J(pj)

Step 3: for each particle i do
Update xi, vi (47)
Calculate J(xi) (45)
if J(xi) < Ji

min
Ji
min ← J(xi) and pi ← xi

if J(xi) < Jmin
Jmin ← J(xi) and pg ← xi

Step 4: Repeat Step 3 until an exit condition is met
Step 5: Extract T and h from pg (48)

8. Wu and Shi

The authors of [4], formulate the calibration of a three-axis magnetometer as a maxi-
mum likelihood estimation problem which is solved using the Gauss-Newton method.

Starting from the measurement model of (2), Wu and Shi observed that by considering
the QR decomposition T−1 = QR, where Q ∈ O(3) and R ∈ U(3), (2) is written as

y = R−1QTm + h + ε. (49)

Defining m̂ , QTm, we observe that ‖m̂‖ = ‖m‖ since Q ∈ O(3). Also setting T̂ , R−1 we
have that

y = T̂m̂ + h + ε. (50)

Using the above transformation, the authors reduce the unknown model parameter vari-
ables from 12 (9 for T and 3 for h) to 9 (6 for R since R is upper triangular and 3 for h). Note
that using (50), the calibration procedure now aims at finding the calibration parameters T̂
and h while the magnetic field vector m̂ is also unknown.

Using a set of K measurements and (50), the authors formulate the following maximum
likelihood estimation problem

minimize
T̂,h,m̂k

K

∑
k=1
‖yk − T̂m̂k − h‖2

subject to ‖m̂k‖ = 1, k = 1, 2, . . . , K.

(51)

Without loss of generality, the authors, constrained the magnitude of the magnetic field to
be equal to one. Based on (51), the following Lagrange function is formulated

J(x) =
K

∑
k=1

[
‖yk − T̂m̂k − h‖2 + λk

(
‖m̂k‖2 − 1

)]
(52)

where
x =

[
vec(T̂)T , hT , m̂T

1 , m̂T
2 , . . . , m̂T

K, λ1, λ2, . . . , λK

]T
(53)

and λk, k = 1, 2, . . . , K are positive Lagrange coefficients for the unit norm constrain. Note
that since T̂ is an upper triangular matrix, the lower triangular elements of T̂ are excluded

Sensors 2021, 21, 5288 13 of 31

from x. The minimization of (52) and the estimation of x are done using the Gauss-Newton
method as follows

x(+) = x(−) −
[
∇2 J(x)

∣∣∣
x=x(−)

]−1(
∇J(x)

∣∣∣
x=x(−)

)
(54)

where ∇J(x) is the Jacobian vector and ∇2 J(x) is the Hessian matrix of the Lagrange
function. For both ∇J(x) and ∇2 J(x), the authors provide analytical expressions which
are presented in Appendix A.2.

Initial Estimate

Solving (51) using the Gauss-Newton method requires a good initial estimate of the
unknowns. To find one, the authors of [4] use the unit magnitude constrain and the
equation 1 = ‖R(yk − h)‖2 which after some manipulation, is written as

[
yT

k ⊗ yT
k yT

k 1
]vec(A)

b
c

 , Ykz = 0, k = 1, 2, . . . , K (55)

where A = RT R, b = −2RT Rh and c = hT RT Rh. Defining Y =
[
YT

1 YT
2 . . . YT

K
]T ,

from (55) it is
Yz = 0 (56)

The authors, solve (56) using the least squares method and denote the solution
ze =

[
vec(Ae)T bT

e ce
]T

= min ‖Yz‖2. They derive ze as the eigenvector of YTY corre-
sponding to its minimum (or zero) eigenvalue. Using ze, the vector z is derived as z = αze,
where α = 4/

(
bT

e A−1
e be − 4ce

)
. Extracting vec(A), b and c from z, the initial estimates of

the unknowns, T̂(0), h(0), m̂k(0) and λk(0) are defined as follows:

T̂(0) = R−1 = chol(A)

h(0) = −A−1b/2

m̂k(0) = T̂(0)−1(yk − h), k = 1, 2, . . . , K

λk(0) = 0, k = 1, 2, . . . , K

(57)

where chol(·) is the Cholesky factorization.
Finally, an alternative version of Wu’s and Shi’s algorithm is proposed by Cao et al.

in [13], where a different method for the initial estimate is presented, and the second step
is identical. The algorithm is summarized in Algorithm 6.

Algorithm 6: Wu and Shi [4]
Initial Estimate
Step 1: Calculate Yk, k = 1, 2, . . . , K from (55) and form the matrix
Y =

[
YT

1 YT
2 . . . YT

K
]T .

Step 2: Find the eigenvector of YTY corresponding to its minimum (or zero)
eigenvalue and denote it as ze =

[
vec(Ae)T bT

e ce
]T .

Step 3: Calculate z = aze where α = 4/
(
bT

e A−1
e be − 4ce

)
.

Step 4: Extract vec(A), b and c from z.
Step 5: Calculate an initial estimate of the unknowns using (57).

Gauss–Newton Method
Step 6: Use the initial estimates to initialize the vector x of (53)
Step 7: Update x using (54).
Step 8: Evaluate the cost J(x) of (52).
Step 9: Repeat steps 7-8 until J(x) becomes sufficiently small.

Sensors 2021, 21, 5288 14 of 31

9. Papafotis and Sotiriadis (MAG.I.C.AL.)

The authors in [5] use (2) and a set of K sensor’s measurements to form the following
optimization problem for deriving the calibration parameters T and h

minimize
T,h,mk

K

∑
k=1
‖yk − Tmk − h‖2

subject to ‖mk‖ = 1, k = 1, 2, . . . , K

(58)

where, without loss of generality, the magnitude of the magnetic field is constrained to
be equal to one. In order to solve (58) they propose an iterative algorithm, based on the
solution of a linear least-squares problem.

The algorithm begins by initializing the magnetic field vectors, mk, as

mk =
yk
‖yk‖

, k = 1, 2, . . . , K (59)

and rewriting (2) in a matrix form as follows:

Y = LG + E (60)

where

Y =
[
y1 y2 . . . yK

]
(61a)

L =
[
T h

]
(61b)

G =

[
m1 m2 . . . mK
1 1 . . . 1

]
(61c)

E =
[
ε1 ε2 . . . εK

]
. (61d)

In every iteration, (60) is solved for L using the least squares method, minimizing the
total squared error ‖ETE‖2

F
L = YGT(GGT)−1 (62)

From the calculated L, an updated set of calibration parameters T and h is extracted
from (61b). Using them, the magnetic field vector is updated as

mk =
m̃k
‖m̃k‖

, k = 1, 2, . . . , K (63)

where
m̃k = T−1(yk − h), k = 1, 2, . . . , K. (64)

Every iteration ends by updating the matrix G using the updated vectors mk,
k = 1, 2, . . . , K. Iterations stop when a small value of the following cost function is achieved

J(T, h) =
K

∑
k=1

(
‖m̃k‖2 − 1

)2
. (65)

MAG.I.C.AL. algorithm is summarized in Algorithm 7.

Sensors 2021, 21, 5288 15 of 31

Algorithm 7: Papafotis and Sotiriadis (MAG.I.C.AL.) [5]
Step 1: Initialize mk using (59).
Step 2: Calculate L using (62).
Step 3: Extract T and h from L using (61b).
Step 4: Update mk using (63) and (64) and use it to update G.
Step 5: Evaluate the cost-plus-penalty function J from (65).
Step 6: Repeat steps 2-5 until J(T, h) is sufficiently small.

10. Algorithm Evaluation and Comparison

In this Section, the performance of the presented algorithms are evaluated in terms
of accuracy, robustness, and execution speed. Firstly, we evaluate the performance of the
seven algorithms using multiple sets of synthetic data where the calibration parameters
T and h, as well as the measurement noise characteristics are predefined and known. By
doing so, we are able to accurately determine the algorithms’ accuracy and robustness.
Then multiple datasets of two different low-cost magnetic field sensors are used to verify
the algorithms’ performance under real-world conditions.

10.1. Synthetic Data Generation

We designed a procedure to generate synthetic data effectively, in order to examine
each of the aforementioned algorithm’s performance across a range of noise variance and
measurement sample size. The authors of TWOSTEP [18] propose a typical scenario of
assuming the magnetic vector spinning with a constant angular velocity. On the other hand,
Wu and Shi [4] suggest a specific sequence of 3D rotations using Euler Angles, applied
on a constant known magnetic vector m. In the same page, Papafotis and Sotiriadis [5]
recommend a sequence of 12 approximate orientations. Another alternative is to make use
of a set of random, yet normalized, vector fields, which however demands a reasonable
amount of samples.

Because none of the described algorithms guarantees that it will function properly
under an arbitrary dataset, we propose an efficient method to span SO(3), following [31], so
as to provide the algorithms with substantial, non-redundant information and to compare
them fairly. After extensive simulation, it was observed that the recommended method
was very effective in spanning the 3D rotation space.

Our method’s effectiveness lies in distributing the points on the sphere ‖m‖ = 1, more
evenly by using the canonical Fibonacci lattice mapping [31,32]. Generating a Fibonacci
sphere is an extremely fast and effective approximate method to evenly distribute points
on a sphere.

This way SO(3) is sufficiently represented even with only a small dataset. An algo-
rithm for generating K vectors distributed on a Fibonacci sphere is presented in detail in
Algorithm 8.

Considering K vectors, mk, k = 1, 2, . . . , K distributed on a Fibonacci sphere, we
continue with generating matrix T and vector h, required to calculate the corresponding
measurement vectors yk, mk, k = 1, 2, . . . , K according to (2). Ideally, matrix T would be
the 3× 3 identity matrix while the bias vector h would be the 3× 1 vector of zeros. A
realistic model for T and h, accounting for the sensor’s non-idealities, is derived by using
the concept of additive perturbation

T = αI3×3 + E (66a)

h = e (66b)

where α accounts for gross scaling errors, E is a 3× 3 perturbation matrix with random,
typically small, coefficients and e is 3× 1 perturbation bias vector with random coefficients.

Sensors 2021, 21, 5288 16 of 31

Finally, a sequence of white noise ε ∼ N (0, σ2) is added to the measurements and the
measurement vectors yk, mk, k = 1, 2, . . . , K are derived according to (2)

y = Tm + h + ε. (67)

Algorithm 8: Generation of synthetic data
Step 1:Initialize the number of measurements K and the radius of sphere r

Step 2: Calculate Golden Ratio: ϕ = 1+
√

5
2

Step 3: for each k = 1, 2, . . . , K do:
θ = 2πk

ϕ

φ = arccos
(

1− 2(k−0.5)
K

)
mk =

[
mx, my, mz

]
= [r cos θ sin φ, r sin θ sin φ, r cos φ]

Step 4: Pick the scaling parameter, α, the perturbation matrix, E
and the perturbation vector, e.

Step 5: Calculate T and h according to (66).
Step 6: Generate a sequence of white noise: ε ∼ N (0, σ2)

Step 7: Calculate the measurement vectors: yk = Tmk + h + εk (2)

The two datasets generated using Algorithm 8 are presented in Figure 1. Note that
for visualization purposes, the scaling parameter, α, the perturbation matrix, E, and the
perturbation vector, e, used to create each dataset were set to a rather large value.

-2

-2.5

-2

-1

-1.5

-1

-0.5

0

Z

0.5

-10

X
0

Y
1 12 2

mk, k=1,2,..,150

yk, k=1,2,..,150

(a) Synthetic dataset generated using Algorithm 8 for K = 150.

Figure 1. Cont.

Sensors 2021, 21, 5288 17 of 31

-2.5

-2

-1.5

-1

-0.5

-2.5

0
Z

0.5

-2 -1-1.5 -1

Y
0-0.5

X
0 10.5

mk, k=1,2,..,300

yk, k=1,2,..,300

(b) Synthetic dataset generated using Algorithm 8 for K = 300.

Figure 1. Two synthetic datasets generated using Algorithm 8 for K = 150 (a) and K = 300
(b), respectively.

10.1.1. Experiment Setup and Evaluation Criteria

To evaluate the performance of the algorithms, we used synthetic data, generated by
Algorithm 8, and we executed a great number Monte Carlo simulations. Each simulation
consisted of 250 runs of each algorithm while in each run, the same dataset was used as
input in all algorithms. An uncertainty was introduced in the generation of each dataset
by considering a statistical distribution for the elements, Eij, of the perturbation matrix,
E, and the elements, ei, of the perturbation vector e (see (66)). Specifically, for the Monte
Carlo simulations we assumed

α ∼ U [0.8, 1.2] (68a)

Eij ∼ U [−β, β] (68b)

ei ∼ U [−γ, γ] (68c)

where β and γ are scalars, the effect of which was tested using multiple Monte Carlo
simulations. Note that we considered the scaling factor, α, to be close to the ideal value of
α = 1. That may not be the case when real-world measurements are used, however, it is
trivial, and common, to properly scale the measurements before the calibration procedure
and remove gross scaling errors. In this way, the algorithms are not burdened, searching
for a scaling relationship which can be easily provided by simple data preprocessing.

A challenging point while setting up the experiments was to determine the number of
samples of each dataset and the value of the sensor’s noise variance, σ2. We considered a
dataset of 300 measurements as a solid choice for a simulation environment based on [4,7]
while we experimentally confirmed that bigger datasets do not improve the performance
of any algorithm. We also examined the performance of the presented algorithms when
smaller datasets, consisting of 150 and 50 measurements, are used. As far as the noise vari-

Sensors 2021, 21, 5288 18 of 31

ance, σ2, is concerned, we considered a nominal value of σ = 0.005, following [2,4], while
we also simulated the cases of more noisy (σ = 0.05) and less noisy (σ = 0.0005) sensors.

The evaluation of the algorithm for each Monte Carlo simulation was completed in
terms of accuracy, execution speed, and robustness. We used the execution speed of each
algorithm as a metric of computational efficiency and is defined as the inverse of the mean
execution time. As a metric of robustness we considered the percentage of datasets for
which each algorithm successfully derived a meaningful solution.

The definition of an accuracy metric is a little more involved. Each algorithm was
developed to take as inputs the measurement vectors yk, k = 1, 2, . . . , K and output the
calibration parameters T and h. Comparing the output bias vector h with the true one,
htrue, which was used in the data generation procedure, was performed by defining the
following cost

Jh = ‖htrue − h‖. (69)

The calibration matrix T on the other hand is derived under a rotational uncertainty
and comparing it with the true one, Ttrue, is a more challenging task.

Consider the measurement model of (2). Noting that the true magnetic field vector
in (2) is also unknown, and derived by the calibration algorithm, we can write:

y = TtrueRRTm + htrue (70)

where R is an orthogonal matrix in the O(3) group. Thus, taking into account the rotational
invariance of the Euclidean norm which implies that ‖RTm‖ = ‖m‖, a calibration algorithm
may output any matrix T of the form T = TtrueR. Thus, a proper cost function to compare
T and Ttrue is the following

JT = ‖T − TtrueR‖F (71)

where, the matrix R is defined as the solution of the following minimization problem

R = argmin
Ω∈O(3)

‖T − TtrueΩ‖F. (72)

The solution of (72) is given by the orthogonal procrustes problem [33], and it is

R = UVT (73)

where the matrices U and V are derived from the singular value decomposition (SVD) of
the matrix TT

trueT, i.e., TT
trueT = UΣVT , where U, V ∈ O(3) and Σ is a diagonal matrix.

Using (69) and (71) we define the following cost function as a metric of accuracy

J = ‖htrue − h‖+ ‖T − TtrueR‖F. (74)

Based on the above and given the results of a Monte Carlo simulation consisted of N
executions of each algorithm, we define the following metrics of performance:

• Accuracy is defined as the mean value of the cost J, defined in (74), across all N
executions with meaningful output.

• Mean execution time is defined as the mean value of the execution time of an algorithm.
• Robustness is defined as the percentage of datasets for which each algorithm success-

fully derived a meaningful solution.

The robustness criterion can be seen as the frequency in which an algorithm provides
a better solution (T, h) in the sense of the cost function (74), than the trivial solution
(I3×3, 03×1) which assumes no bias and non multiplicative errors. Given the cost Jo that
corresponds to the trivial solution,

Jo = ‖htrue − 03×1‖+ ‖I3×3 − TtrueR‖F (75)

Sensors 2021, 21, 5288 19 of 31

an execution of an algorithm is considered as successful with meaningful output when

J < δJo (76)

where δ ∈ (0, 1) is a robustness parameter. If δ is close to 1, it means that only little
improvement with respect to Jo is sufficient. As δ gets smaller, better solutions are required.
Thus, this parameter can be tuned with respect to the test’s objective and the application’s
specifications. Given N runs for an algorithm, its robustness is denoted by RB(%) and is
defined as

RB(%) =
1
N

N

∑
i=1

U(Ji < δJoi) · 100. (77)

Here Ji and Joi are the values of J (74) and Jo (75), respectively, corresponding to the
ith run of the algorithm and U is a boolean function, which is one if its argument is true
and zero otherwise. Let M denote the number of executions meaningful outputs.

Now, the accuracy metric is only applied on the M meaningful outputs according to
the robustness test (76), since otherwise the comparison would be unfair for the least stable
algorithms. The accuracy of an algorithm over a dataset is denoted by ρ and it is defined as

ρ =
1
M

N

∑
i=1

U(Ji < δJoi)Ji (78)

which is the mean accuracy metric value over the M executions with meaningful outputs.
Similarly, the time-efficiency metric (i.e., mean execution time) is only applied on

the M executions with meaningful outputs according to the robustness test (76). Again,
this is because otherwise the comparison would be unfair for the least stable algorithms.
The mean execution time of an algorithm over a dataset, is denoted by τ and is defined as

τ =
1
M

N

∑
i=1

U(Ji < δJoi)ti (79)

where ti is the time needed for the i run to be completed. The execution speed of an
algorithm is defined as 1/τ.

10.1.2. Baseline Evaluation

To derive a baseline evaluation of the presented algorithms, we run a Monte Carlo
simulation considering typical values for the sensor’s error and noise parameters. In this
simulation we neglected the effect of hard-iron and soft-iron distortions which are, in some
cases, the dominant terms of the overall error, as well as extreme cases of large manufactur-
ing imperfections. More specifically, 250 different datasets consisting of 300 measurements
each, were generated following Algorithm 8 and considering the following distributions of
the model disturbances and the measurement noise

α ∼ U [0.8, 1.2]

Eij ∼ U [−0.05, 0.05]

ei ∼ U [−0.05, 0.05]

σ = 0.005

(80)

The distribution ranges in (80) are based on our literature review. The selection
β = γ = 0.05 corresponds to the typical case of approximately 5% distortion for T and bias
h. The measurement noise standard deviation is set to a typical value of σ = 0.005 [2,4].

The performance of the seven algorithms is presented in Table 2.

Sensors 2021, 21, 5288 20 of 31

Table 2. Baseline evaluation of the presented algorithms.

Algorithm Accuracy (1/ρ) Robustness (RB%) Execution Speed (1/τ)

TWOSTEP [1] 35.3× 100 91.6% 455 s−1

Crassidis et al. [6] 3.31× 103 100% 47.6 s−1

Dorveaux et al. [3] 2.26× 105 100% 12.8 s−1

Vasconcelos et al. [2] 2.28× 105 99.6% 0.089 s−1

Ali et al. [7] 2.27× 105 98.8% 0.10 s−1

Wu and Shi [4] 2.32× 105 87.2% 0.24 s−1

MAG.I.C.AL [5] 2.28× 105 100% 29.4 s−1

10.1.3. The Effect of the Offset Perturbation Parameter, γ

Under extreme manufacturing imperfections or the effect of hard-iron distortion, the mag-
nitude of the offset vector, h, can be much larger than that in the typical case. In this Section,
we examine how larger values of ‖h‖ affect the performance of the presented algorithms.
To do so, we run six Monte Carlo simulations, each one comprised of 250 different datasets
generated by following Algorithm 8. The offset vector perturbation parameter ei is simulated
with gradually increasing magnitude by expanding the selection horizon U [−γ, γ]. After-
wards, its corresponding impact on each algorithm’s robustness and accuracy is investigated.
The distributions of the model disturbances and measurement noise are:

α ∼ U [0.8, 1.2]

Eij ∼ U [0.05, 0.05]

ei ∼ U [−γl , γl]

σ = 0.005

for various γ
γ = {0.05, 0.15, 0.25, 0.5, 0.75, 1}

where l = 1, 2, . . . , 6 is the index of Monte Carlo simulation. The extreme case of γ = 1
addresses the possibility of bias being clearly comparable and even indistinguishable to the
true magnetic vector. Therefore, as γ increases, the algorithms were driven to their limits and
their functionality range was identified. All the other parameters were nominal, to ensure a
fair comparison. The results of the six Monte Carlo simulations are presented in Figure 2.

(a) Accuracy (1/ρ) of the presented algorithms for different values of γ.

Figure 2. Cont.

Sensors 2021, 21, 5288 21 of 31

(b) Execution speed (1/τ) of the presented algorithms for different values of γ.

(c) Robustness (RB(%)) of the presented algorithms for different values of γ.

Figure 2. Performance characteristics of the presented algorithms for different values of γ.

The MAG.I.C.AL and the PSO methods are the most robust ones since they function
almost always, even for large values of bias, while TWOSTEP and Wu and Shi’s algorithms
are a little less stable. In addition, Dorveaux et al. algorithm and EKF seem to be reliable for
small to moderate values of bias. All algorithms, except TWOSTEP and EKF are extremely
precise when they function properly. No changes in execution speed are noticed, with the
exception of MAG.I.C.AL which probably requires more iterations as the bias increases.

10.1.4. The Effect of the Calibration Matrix Perturbation Parameter, β

Similar to the case of the offset vector, h, under extreme manufacturing imperfections
or the effect of soft-distortion, matrix T, can also diverge significantly from the typical
case of the identity matrix. In this Section, we examine how larger values of perturbation
E affect the performance of the presented algorithms. To do so, we run six Monte Carlo
simulations, each one based on 250 different datasets generated by following Algorithm 8.
The perturbation elements Eij were simulated with gradually increasing magnitude by
expanding the distribution range U [−β, β]. Afterwards, its corresponding impact on
each algorithm’s robustness and accuracy is investigated. The distributions of the model
disturbances and measurement noise are:

Sensors 2021, 21, 5288 22 of 31

α ∼ U [0.8, 1.2]

Eij ∼ U [−βl , βl]

ei ∼ U [−0.05, 0.05]

σ = 0.005

for various β
β = {0.05, 0.15, 0.25, 0.5, 0.75, 1}

where l = 1, 2, . . . , 6 is the index of Monte Carlo simulation. As β increases, the algorithms
were driven to their limits and their functionality range was identified. All the other
parameters were nominal, to ensure a fair comparison. The results of the six Monte Carlo
simulations are presented in Figure 3.

(a) Accuracy (1/ρ) of the presented algorithms for different values of β.

(b) Execution Speed (1/τ) of the presented algorithms for different values of β.

Figure 3. Cont.

Sensors 2021, 21, 5288 23 of 31

(c) Robustness (RB(%)) of the presented algorithms for different values of β.

Figure 3. Performance characteristics of the presented algorithms for different values of β.

The MAG.I.C.AL algorithm and the algorithm of Dorveaux et al. appear to be the most
robust and effective, with similar accuracy. The algorithm of Vasconcelos et al., the PSO
algorithm and the EKF algorithm succeed only for small to moderate non-orthogonality
errors. Vasconcelos et al. achieves accuracy comparable to that of MAG.I.C.AL. The rest of
the algorithms tend to fail frequently as these errors increase. What is surprising is that
Wu and Shi’s algorithm provides the most accurate solutions for all β values, but with
very low robustness. To conclude, most algorithms handle bias distortion better than
non-orthogonality errors.

10.1.5. The Effect of Dataset Size, K

In this section, we examine how the dataset size, K, affects the algorithms’ performance.
In general, the diversity of the measurement directions is more crucial than the quantity of
them, e.g., a dataset of 50 measurements with directions distributed near uniformly on the
unit sphere is significantly more suitable for the algorithms than one with thousands of
measurements all having approximately the same direction.

According to existing literature [4,5,7], an order of 300 measurements with directions
sufficiently covering the unit sphere form an acceptable dataset for the calibration. Here
we use datasets with 50, 150, and 300 measurements to test the algorithms’ limits. To do
so, we run three Monte Carlo simulations, based on 250 different datasets generated by
Algorithm 8. The distributions of the model disturbances and measurement noise are:

α ∼ U [0.8, 1.2]

Eij ∼ U [−0.05, 0.05]

ei ∼ U [−0.05, 0.05]

σ = 0.005

The dataset size K varied whereas the distributions’ ranges were fixed to nominal to
ensure a fair comparison. The results of the three Monte Carlo simulations are presented in
Figure 4.

Sensors 2021, 21, 5288 24 of 31

(a) Accuracy (1/ρ) of the presented algorithms for datasets of different size, K.

(b) Execution speed (1/τ) of the presented algorithms for datasets of different size, K.

TWOSTEP

Cras
sid

is e
t a

l.

Dorv
eau

x e
t a

l.

Vasc
oncel

os
et

al.

Ali e
t a

l.

Wu et
 al

.

MAG.I.C
.AL.

0

20

40

60

80

100

R
ob

u
st

n
es

s
(R

B
)

-
%

K=50
K=150
K=300

(c) Robustness (RB(%)) of the presented algorithms for datasets of different size, K.

Figure 4. Performance characteristics of the presented algorithms for different values of K.

In general, the dataset size, K, does not seem to be important in terms of robust-
ness. Accuracy is surprisingly high even with only 50 measurements, which is probably

Sensors 2021, 21, 5288 25 of 31

an outcome of the well distributed measurement directions using the Fibonacci lattice.
Furthermore, the algorithms execution time appeared to be linear with K.

10.1.6. The Effect of the Noise Variance, σ2

In this section, we examine the influence of measurement noise variance σ on algo-
rithms’ robustness and accuracy. The assumption of pure white Gaussian noise in the mea-
surement model was done. We considered a nominal value of σ = 0.005, following [2,4],
while we also simulated the cases of more noisy (σ = 0.05) and less noisy (σ = 0.0005) sen-
sors. With these choices, we represented algorithms’ capabilities under 3 different orders
in the magnitude of the error in the measurement. To do so, we run three Monte Carlo
simulations, each one based on 250 different datasets generated by following Algorithm 8.
The distributions of the model disturbances and measurement noise are:

α ∼ U [0.8, 1.2]

Eij ∼ U [−0.05, 0.05]

ei ∼ U [−0.05, 0.05]

σ = {0.0005, 0.005, 0.05}

Finally, all parameters except σ were set to their default ones, to ensure a fair compari-
son. The results of the three Monte Carlo simulations are presented in Figure 5.

(a) Accuracy (1/ρ) of the presented algorithms for different values of the noise variance, σ2.

(b) Execution speed (1/τ) of the presented algorithms for different values of the noise
variance, σ2.

Figure 5. Cont.

Sensors 2021, 21, 5288 26 of 31

(c) Robustness (RB(%)) of the presented algorithms for different values of the noise variance, σ2.

Figure 5. Performance characteristics of the presented algorithms for different values of the noise
variance, σ2.

All algorithms appear to be immune to the change of measurement’s output variance σ.
What is worth mentioning is that an increase of one order in variance resulted to a decrease
of one order in accuracy for most algorithms (i.e., MAG.I.C.AL, Ali et al., Vasconcelos et al.,
Dorveaux et al., Wu and Shi).

10.2. Algorithm Evaluation Using Real Data

In this section, the aforementioned algorithms are tested using real data. Multiple
datasets captured by low-cost magnetic field sensors were used to verify the algorithms’
performance under real-world conditions. In this case, parameters Ttrue and htrue are not
known in advance. Therefore, the accuracy metric (74) cannot be used. Since, the measure-
ments took place in a specific location, a constant magnitude of magnetic vector, ‖m‖ = 1
was considered. As a result, a proper cost function to evaluate an algorithm’s effectiveness
is the following

Jr =
1
K

K

∑
i=1

(
‖mk‖2 − 1

)2
(81)

where K is the number of measurements and k = 1, 2, . . . , K is the measurement index.
The estimated magnetic field vector mk for each k is given by

mk = T−1(yk − h) (82)

where T and h are the outputs of a calibration algorithm. Such a cost function is described
by Wu and Shi (52), as well as by Papafotis and Sotiriadis (65).

To evaluate the performance of the presented algorithms, we used two off-the-shelf,
low-cost magnetic field sensors, which are typically found in commercial electronic devices,
such as smartphones, activity trackers, etc. More specifically, we captured a total of
30 datasets using the LSM9DS1 by STMicroelectronics and the BNO055 by Bosch Sensortec.
The operation parameters of the two sensors during the experiment are presented in
Table 3.

During the experiment, two sensors were fixed on the same rigid platform which
was rotated by hand in several orientations. In Figure 6a, the mean value of the cost
function (81) across all the recorded datasets for every algorithm is presented as a metric
of accuracy. The robustness of each algorithm, as defined in (77) is presented in Figure 6b.
Note that both Figure 6a,b are in agreement with the results obtained in Section 10.1.2
where synthetic data with typical values for sensor’s noise and measurement distortion
were considered.

Sensors 2021, 21, 5288 27 of 31

Table 3. Operation parameters of the two magnetic field sensors.

BNO055 LSM9DS1TR

Measurement Range ±13 Gauss ±4 Gauss

Sampling Rate 30 Hz 80 Hz

Measurement Resolution 16 bits 16 bits

TWOSTEP

Cras
sid

is e
t a

l.

Dorv
eau

x e
t a

l.

Vasc
oncel

os
et

al.

Ali e
t a

l.

Wu et
 al

.

MAG.I.C
.AL.

100

101

102

103

A
cc

u
ra

cy
 (

1
/J

r)

LSM9DS1
BNO055

(a) Accuracy (1/Jr) of the presented algorithms using multiple datasets of real data from two
different commercial magnetic field sensors.

TWOSTEP

Cras
sid

is e
t a

l.

Dorv
eau

x e
t a

l.

Vasc
oncel

os
et

al.

Ali e
t a

l.

Wu et
 al

.

MAG.I.C
.AL.

0

20

40

60

80

100

R
ob

u
st

n
es

s
(R

B
)

-
%

LSM9DS1
BNO055

(b) Robustness (RB(%)) of the presented algorithms using multiple datasets of real data from
two different commercial magnetic field sensors.

Figure 6. Performance characteristics of the presented algorithms using multiple datasets of real data
from two different commercial magnetic field sensors.

11. Conclusions

To summarize, a complete and extensive study on calibration methods for low-cost
magnetometers was carried out by the authors. Seven algorithms were selected for this
purpose according to their popularity and their performance. A standard, unified, and
complete linear measurement model was used here as the reference model for analyzing all
calibration methods. After establishing the full calibration problem, these seven algorithms
were discussed and were presented in an easy-to-implement way.

Sensors 2021, 21, 5288 28 of 31

In order to evaluate fairly the presented algorithms’ performance, we proposed a
method for optimally generating artificial magnetometer data. This method was used for
executing a plethora of Monte Carlo simulations. The evaluation metrics we focused on
were the robustness, the accuracy and the efficiency of the algorithms. We designed several
experiments to check the behavior of the algorithms under different values in bias, different
values in non-orthogonality errors, different number of measurements and finally under
various orders of variance in noise. Finally, several datasets of real magnetometer’s data,
from two different, low-cost, commercial sensors were used to verify the results obtained
using the artificial data.

The following summarizes our findings regarding the studied algorithms and their
possible implementation. Except from the objective criteria that we established in Section 10
to evaluate and compare the presented algorithms (accuracy, robustness, computational
efficiency), in Table 4 we also evaluate the algorithms in terms of simplicity. Simplicity is
used as a (subjective) metric describing our personal experience developing and testing the
algorithms. It is related both to the algorithmic complexity of the algorithms (which is not
an inherent disadvantage) and the quality of their presentation in the original manuscripts.
The algorithms are discussed in chronological order of publication.

X TWOSTEP: Extremely time efficient. Works effectively for small distortions. Has low
accuracy in general. The method can be generalized to on-orbit calibration.

X Crassidis et al.: Easy to implement. Extremely time efficient. Works effectively for
small to medium distortions. The method can be generalized to on-orbit calibration.
It is the only algorithm that provides online update. It can be considered as a more
accurate and effective version of TWOSTEP with similar time complexity.

X Dorveaux et al.: Easy to implement. Moderately time efficient. Robust and accurate,
but vulnerable to large values of bias.

X Vasconcelos et al.: Difficult to implement. Characterized by high time-complexity.
Exceptional accuracy and robustness for small distortions.

X Ali et al.: Robust and accurate. Very high computational cost. Some prior knowledge
of the search space is beneficial. At the beginning of the algorithm, the unknown
variables are randomized and, thus, it is not always ensured that the algorithm will
reach an optimal point. Thus, a couple of repetitions might be needed. Using modern
PSO algorithms which can constrain the search space and handle a few variable
inequalities increases the algorithm’s performance significantly.

X Wu and Shi: Difficult to implement. Characterized by high time-complexity. Excep-
tional accuracy even with larger distortion. We noticed a 1% failure of finding an
initial estimate due to inadequacy of applying Cholesky decomposition.

X MAG.I.C.AL: Easy to implement. Moderately time efficient. Exceptional robustness
and accuracy in both synthetic and real data experiments.

Table 4. Algorithms’ Comparison Summary – More checkmarks correspond to better performance
regarding a specific metric.

Algorithm Simplicity Robustness Accuracy Efficiency

TWOSTEP XX XX X XXX

Crassidis et al. XXX XX X XXX

Dorveaux et al. XXX XXX XXX XX

Vasconcelos et al. X X XX X

Ali et al. XX XXX XXX X

Wu and Shi X X XXX X

MAG.I.C.AL XXX XXX XXX XX

Sensors 2021, 21, 5288 29 of 31

To conclude, in this work, we tried to cover a broad range of realistic cases and test
the limits of the algorithms, noting that in real life the performance requirements differ
from application to another. In some applications computational efficiency may be of
major importance while great accuracy may not be needed, while in others, a very accurate
calibration is essential even if significantly more computation time is required for this.
Thus, there is no “perfect” algorithm appropriate for all applications; different algorithms
may be more appropriate for different cases.

Author Contributions: Investigation, K.P., D.N. and P.P.S.; Writing—original draft, K.P., D.N.; Writ-
ing—review and editing, K.P., D.N. and P.P.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is co-financed by Greece and the European Union (European Social Fund-
ESF) through the Operational Programme “Human +Resources Development, Education and Lifelong
Learning” in the context of the project “Strengthening Human Resources Research Potential via
Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (IKY).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Gradient Vector and Hessian Matrix for the Algorithm of Vasconcelos et al.

This section (Section 6) presents the analytical algebraic expressions for the gradient
and Hessian of the likelihood function (35), used in descent optimization methods. Let
uk = yk− h, the gradient of the likelihood function J (33) is denoted by∇J|x =

[
∇J|T̂∇J|h

]
and described by the submatrices

∇J|T̂ =
N

∑
k=0

2ck
σ2 uk ⊗ T̂uk (A1a)

∇J|h =
N

∑
k=0

−2ck
σ2 T̂T T̂uk (A1b)

where ck = 1− ‖T̂uk‖−1. The Hessian

∇2 J|x =

HT̂,T̂ HT̂,h

HT
T̂,h

Hh,h

 (A2)

is given by the following submatrices

HT̂,T̂ =
N

∑
k=1

2
σ2

[
(ukuT

k)⊗ (T̂ukuT
k T̂T)

‖T̂uk‖3
+ ck

[
(ukuT

k)⊗ I3×3

]]
(A3a)

HT̂,h =
N

∑
k=1

−2
σ2

[
(uk ⊗ T̂uk)uT

k T̂T T̂
‖T̂uk‖3

+ ck
[
uk ⊗ T̂ + I3×3 ⊗ T̂uk

]]
(A3b)

Hh,h =
N

∑
k=1

2
σ2

[
T̂T T̂ukuT

k T̂T T̂
‖T̂uk‖3

+ ckT̂T T̂

]
(A3c)

Appendix A.2. Gradient Vector and Hessian Matrix for the Algorithm of Wu and Shi

This section (Section 8) presents the algebraic expressions for the gradient and Hessian
of the likelihood function (51), used in descent optimization methods. For notational
simplicity T̂ and m̂ are replaced by T and m. Let uk = yk − h, the Jacobian vector and
Hessian matrix are, respectively, derived as

Sensors 2021, 21, 5288 30 of 31

∇J|x =

[
JT

T JT
h JT

mk︸︷︷︸
k=1:N

JT
λk︸︷︷︸

k=1:N

]T

(A4)

∇2 J|x =

HTT HTh HTmk . . . 09×1 . . .
HT

Th Hhh Hhmk
. . . 03×1 . . .

HT
Tmk

HT
hmk

Hmkmk . . . Hmkλk . . .
...

...
...

...
0T

9×1 0T
3×1 HT

mkλk
. . . 0 . . .

...
...

...
...

(A5)

where

JT = −2
N

∑
k=1

mk ⊗ (uk − Tmk)

Jh = −2
N

∑
k=1

(uk − Tmk)

Jmk = −2TT(uk − Tmk) + 2λkmk

Jλk = ‖mk‖2 − 1

(A6)

and

HTT = 2
N

∑
k=1

(
mkmT

k

)
⊗ I

HTh = 2
N

∑
k=1

mk ⊗ I

HTmk = 2((mk ⊗ I)T − I ⊗ (uk − Tmk))

Hhh = 2NI

Hhmk
= 2T

Hmkmk = 2TTT + 2λk I

Hmkλk = 2mk

(A7)

Note that in [4], the calibration matrix, T, is considered to be an upper triangular
matrix. Thus, from both the gradient vector and the Hessian matrix, the rows and columns
that correspond to the lower triangular elements of T must be removed.

References
1. Alonso, R.; Shuster, M.D. Complete Linear Attitude-Independent Magnetometer Calibration. J. Astronaut. Sci. 2002, 50, 477–490.

[CrossRef]
2. Vasconcelos, J.F.; Elkaim, G.; Silvestre, C.; Oliveira, P.; Cardeira, B. Geometric Approach to Strapdown Magnetometer Calibration

in Sensor Frame. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1293–1306. [CrossRef]
3. Dorveaux, E.; Vissière, D.; Martin, A.; Petit, N. Iterative calibration method for inertial and magnetic sensors. In Proceedings of

the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, Shanghai,
China, 15–18 December 2009; pp. 8296–8303. [CrossRef]

4. Wu, Y.; Shi, W. On Calibration of Three-Axis Magnetometer. IEEE Sens. J. 2015, 15, 6424–6431. [CrossRef]
5. Papafotis, K.; Sotiriadis, P.P. MAG.I.C.AL.—A Unified Methodology for Magnetic and Inertial Sensors Calibration and Alignment.

IEEE Sens. J. 2019, 19, 8241–8251. [CrossRef]
6. Crassidis, J.; Lai, K.L.; Herman, R.R. Real-Time Attitude-Independent Three-Axis Magnetometer Calibration. J. Guid. Control

Dyn. 2005, 28, 115–120. [CrossRef]
7. Ali, A.; Siddharth, S.; Syed, Z.; El-Sheimy, N. Swarm Optimization-Based Magnetometer Calibration for Personal Handheld

Devices. Sensors 2012, 12, 12455–12472. [CrossRef]
8. Papafotis, K.; Sotiriadis, P.P. Accelerometer and Magnetometer Joint Calibration and Axes Alignment. Technologies 2020, 8, 11.

[CrossRef]
9. Kok, M.; Hol, J.D.; Schön, T.B.; Gustafsson, F.; Luinge, H. Calibration of a magnetometer in combination with inertial sensors. In

Proceedings of the 2012 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 787–793.

http://doi.org/10.1007/BF03546249
http://dx.doi.org/10.1109/TAES.2011.5751259
http://dx.doi.org/10.1109/CDC.2009.5399503
http://dx.doi.org/10.1109/JSEN.2015.2459767
http://dx.doi.org/10.1109/JSEN.2019.2919179
http://dx.doi.org/10.2514/1.6278
http://dx.doi.org/10.3390/s120912455
http://dx.doi.org/10.3390/technologies8010011

Sensors 2021, 21, 5288 31 of 31

10. Wu, Y.; Zou, D.; Liu, P.; Yu, W. Dynamic Magnetometer Calibration and Alignment to Inertial Sensors by Kalman Filtering. IEEE
Trans. Control Syst. Technol. 2018, 26, 716–723. [CrossRef]

11. Kok, M.; Schön, T.B. Maximum likelihood calibration of a magnetometer using inertial sensors. IFAC Proc. Vol. 2014, 47, 92–97.
[CrossRef]

12. Li, X.; Li, Z. A new calibration method for tri-axial field sensors in strap-down navigation systems. Meas. Sci. Technol. 2012,
23, 105105. [CrossRef]

13. Cao, G.; Xu, X.; Xu, D. Real-Time Calibration of Magnetometers Using the RLS/ML Algorithm. Sensors 2020, 20, 535. [CrossRef]
[PubMed]

14. Hadjigeorgiou, N.; Asimakopoulos, K.; Papafotis, K.; Sotiriadis, P.P. Vector Magnetic Field Sensors: Operating Principles,
Calibration and Applications. IEEE Sens. J. 2020, 21, 12531–12544. [CrossRef]

15. IAGA Division V; Working Group 8. Revision of International Geomagnetic Reference Field released. EOS Trans. 1996, 77, 153.
[CrossRef]

16. Gambhir, B. Determination of Magnetometer Biases Using Module RESIDG; Technical Report; Computer Sciences Corporation: Falls
Church, VA, USA, 1975.

17. LERNER, G. Spacecraft Attitude Determination and Control; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1978
18. Alonso, R.; Shuster, M.D. TWOSTEP: A fast robust algorithm for attitude-independent magnetometer-bias determination.

J. Astronaut. Sci. 2002, 50, 433–451. [CrossRef]
19. Strang, G. Linear Algebra and Its Applications; Brooks Cole/Cengage Learning: Belmont, CA, USA 2007
20. Crassidis, J.L.; Markley, F.L.; Lightsey, E.G. Global Positioning System Integer Ambiguity Resolution without Attitude Knowledge.

J. Guid. Control Dyn. 1999, 22, 212–218. [CrossRef]
21. Crassidis, J.L. Optimal Estimation of Dynamic Systems; CRC Press: Boca Raton, FL, USA, 2004.
22. Springmann, J.C.; Cutler, J.W. Attitude-Independent Magnetometer Calibration with Time-Varying Bias. J. Guid. Control Dyn.

2012, 35, 1080–1088. [CrossRef]
23. Foster, C.C. Elkaim, Extension of a two-step calibration methodology to include nonorthogonal sensor axes. IEEE Trans. Aerosp.

Electron. Syst. 2008, 44, 1070–1078. [CrossRef]
24. Gebre-Egziabher, D.; Elkaim, G.; Powell, J.; Parkinson, B. Calibration of Strapdown Magnetometers in Magnetic Field Domain.

J. Aerosp. Eng. 2006, 19, 87–102. [CrossRef]
25. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]
26. Kennedy, J.; Obaiahnahatti, B.; Shi, Y. Swarm Intelligence; Morgan Kaufmann Academic Press: San Francisco, CA, USA, 2001;

Volume 1, pp. 1931–1938.
27. Magnus Erik Hvass Pedersen. Good Parameters for Particle Swarm Optimization; Hvass Laboratories. 2010. Available

online: https://www.semanticscholar.org/paper/Good-Parameters-for-Particle-Swarm-Optimization-Pedersen/a4ad7500b6
4d70a2ec84bf57cfc2fedfdf770433 (accessed on 31 July 2021)

28. Mezura-Montes, E.; Coello, C. Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm
Evol. Comput. 2011, 1, 173–194. [CrossRef]

29. Helwig, S.; Branke, J.; Mostaghim, S. Experimental Analysis of Bound Handling Techniques in Particle Swarm Optimization.
IEEE Trans. Evol. Comput. 2013, 17, 259–271. [CrossRef]

30. MATLAB. Optimization Toolbox; The MathWorks Inc.: Natick, MA, USA, 1999.
31. Roberts, M. How to Evenly Distribute Points on a Sphere More Effectively than the Canonical Fibonacci Lattice. Available

online: http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-
fibonacci-lattice/ (accessed on 22 May 2021).

32. Gonzalez, A. Measurement of Areas on a Sphere Using Fibonacci and Latitude–Longitude Lattices. Math. Geosci. 2010, 42, 49–64.
[CrossRef]

33. Schonemann, P. A generalized solution of the orthogonal procrustes problem. Psychometrika 1966, 31, 1–10. [CrossRef]

http://dx.doi.org/10.1109/TCST.2017.2670527
http://dx.doi.org/10.3182/20140824-6-ZA-1003.02025
http://dx.doi.org/10.1088/0957-0233/23/10/105105
http://dx.doi.org/10.3390/s20020535
http://www.ncbi.nlm.nih.gov/pubmed/31963680
http://dx.doi.org/10.1109/JSEN.2020.3045660
http://dx.doi.org/10.1029/96EO00106
http://dx.doi.org/10.1007/BF03546247
http://dx.doi.org/10.2514/2.4395
http://dx.doi.org/10.2514/1.56726
http://dx.doi.org/10.1109/TAES.2008.4655364
http://dx.doi.org/10.1061/(ASCE)0893-1321(2006)19:2(87)
http://dx.doi.org/10.1109/ICNN.1995.488968
https://www.semanticscholar.org/paper/Good-Parameters-for-Particle-Swarm-Optimization-Pedersen/a4ad7500b64d70a2ec84bf57cfc2fedfdf770433
https://www.semanticscholar.org/paper/Good-Parameters-for-Particle-Swarm-Optimization-Pedersen/a4ad7500b64d70a2ec84bf57cfc2fedfdf770433
http://dx.doi.org/10.1016/j.swevo.2011.10.001
http://dx.doi.org/10.1109/TEVC.2012.2189404
http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
http://dx.doi.org/10.1007/s11004-009-9257-x
http://dx.doi.org/10.1007/BF02289451

	Introduction
	Magnetic Field Sensor's Error Sources and Measurement Model
	Alonso and Shuster (TWOSTEP)
	Initial Estimate
	Solution Improvement Step

	Crassidis et al.
	Dorveaux et al.
	Vasconcelos et al.
	Ali et al.
	Wu and Shi
	Papafotis and Sotiriadis (MAG.I.C.AL.)
	Algorithm Evaluation and Comparison
	Synthetic Data Generation
	Experiment Setup and Evaluation Criteria
	Baseline Evaluation
	The Effect of the Offset Perturbation Parameter,
	The Effect of the Calibration Matrix Perturbation Parameter,
	The Effect of Dataset Size, K
	The Effect of the Noise Variance, 2

	Algorithm Evaluation Using Real Data

	Conclusions
	
	Gradient Vector and Hessian Matrix for the Algorithm of Vasconcelos et al.
	Gradient Vector and Hessian Matrix for the Algorithm of Wu and Shi

	References

