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Abstract— This work presents adder and subtracter
architectures for stochastic computing (SC). In contrast to
standard approaches, the result of their operation is nonscaling,
i.e., X ± Y , and this is achieved via a deterministic operation
based on a counting process. These properties result in an
improved tradeoff between accuracy and stochastic sequence
length, fast convergence, and the potential for cascaded,
scale-dependent (e.g., nonlinear) stochastic computations
providing with flexibility on the design level. The architectures
are modeled using Markov chains (MCs) allowing for detailed
understanding of their proper operation supported with
analytical derivations. Using modified MC models, the adder
and subtracter’s internal register size is analytically calculated
providing guidelines for its optimal size selection based on
accuracy requirements and stochastic input sequences lengths.
Both architectures are simulated in MATLAB and are designed
in Synopsys to compare their performance to that of existing
ones in terms of computational accuracy and hardware
resources. Finally, to demonstrate the adder’s efficacy, we use it
as a building block to realize a 3×3 convolution kernel and then
perform a standard digital image processing task. The results
are compared to those achieved using adder architectures from
the SC literature.

Index Terms— Approximate computing, nonscaling addition,
nonscaling subtraction, stochastic adders, stochastic computing
(SC), stochastic subtracters.

I. INTRODUCTION

W ITH Moore’s law stressed and new applications push-
ing for higher computational efficiency, research is

intensified toward alternative numerical computing paradigms.
A promising approach is stochastic computing (SC), where
numbers and signals are encoded in a probabilistic form [1].

The essence of SC lies in its ability to realize basic arith-
metic operations using only a few standard logic cells [2], and
in contrast to conventional digital signal processors (DSPs),
it is robust to soft errors [3]. SC enables massive paral-
lelism and therefore proves attractive for hardware-demanding
designs. These advantages have been exploited in several
applications, including the field of digital image processing
[4]–[6], neural networks (NNs) [7]–[13], soft polynomial solv-
ing and filtering [14], [15], as well as modern error-correcting
coding and decoding [3], [16], [17].
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The DSP cores utilized in the aforementioned applications
rely mostly in multiply-and-add operations. The multiplica-
tion part is implemented using a single AND or XNOR gate
according to the stochastic number representation used. Their
addition part in SC though is typically realized by the MUX,
which requires an additional random number source for its
select signal, besides its inputs. However, the random number
source by itself is a large block compared to the SC ele-
ments, occupying most of the design’s area [18]. In addition,
the adder’s output is typically scaled by 1/2, meaning that for
a given sequence length, the resolution has dropped by 2. This
makes the MUX less attractive for cascaded computations and
blocks that rely on exact calculations. The same applies for
the MUX implementation of the subtracter.

To address the former issues focusing on computational
and design efficiency, several adders [19]–[22] and subtracters
[22]–[24] have been published and explored [25] within the
context of SC. The adder in [19] is based on the multiplexer’s
scaling principle but avoids the extra random number source
by using a single T flip-flop, increasing also its accuracy.
A similar (scaling) approach is presented in [20], but instead of
a T flip-flop, it employs a two-state finite-state machine (FSM)
to further increase its accuracy. The semistochastic approach
explored in [26] uses the parallel input adder originally pro-
posed in [25], which provides computations in a binary format
that does not always favor next-stage SC-based computational
blocks, for instance nonlinear functions. The nonscaling adder
in [21] is based on a two-line representation of a stochas-
tic number carrying its information in two sequences: one
for its sign and one for its magnitude. Although it is a
promising approach in application level [27], the two-line
encoding imposes system design constraints as it requires other
operations, e.g., multipliers, to follow this principle as well.
Furthermore, the size of its counting unit is only estimated
empirically [27]. Similar to the previous adder, the adder (and
subtracter with one inverted input) presented in [22] encodes
a stochastic number by using the ratio of logic ones and zeros
between its input sequences. Yet, its unique representation is
incompatible with standard SC formats, while the generation
of two sequences for a single stochastic number influences the
overall hardware utilization.

Regarding stochastic subtracters, the method in [23], [28],
and [29] correlates the input sequences. This, however,
requires caution since SC elements are prone to errors caused
by correlated inputs [18]. Moreover, if the subtraction is
an intermediate operation, regenerating correlated inputs is
necessary. Another technique presented in [24] applies iterative
logic units to enhance the accuracy of an XNOR gate with one
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of its inputs inverted. As expected, it trades hardware resources
and latency for accuracy, both depending on the number of
stages used.

All the above methods trade circuit run time and/or hard-
ware area for accuracy. In addition, certain of them introduce
constraints that reduce the flexibility on the SC design space.
Motivated by the aforementioned and to achieve the best
of both worlds, we propose nonscaling adder and subtracter
architectures for SC. They offer the following advantages:
1) they do not require any random number source; 2) they do
not scale the output result; 3) they operate with independent
and identically distributed (IID) input sequences (i.e., no spe-
cially correlated inputs required); 4) they are compatible with
standard SC formats; and 5) they are fast converging, achieving
high accuracy with short sequences lengths.

To demonstrate the properties of the two architectures,
we model them using Markov chains (MCs), which allows
for the derivation of their first-order statistics, the verification
of their stochastic operation, and the analytic calculation of
the internal register size, providing guidelines for their design
based on accuracy requirements.

The remainder of this article is organized as follows.
Section II provides a background on the standard notation
used and the stochastic number representation. In Section III,
the architecture of the proposed stochastic adder is presented
and its MC is mathematically analyzed. Based on the proposed
adder, Section IV briefly presents the proposed stochastic
subtracter and its MC analysis. In Section V, we provide
with a high-level estimation of the hardware requirements of
the proposed architectures. In Section VI, we show extensive
comparisons between the proposed architectures and the state
of the art in both accuracy and hardware resources as well
as discuss the impact of the results. To demonstrate the
adder’s efficacy in larger designs, in Section VII, we use it
to implement a realistic digital image processing task and
compare its effectiveness with other adders and techniques
targeting SC implementations as well as the standard binary
method. Finally, Section VIII concludes the present work.

II. STOCHASTIC NUMBER REPRESENTATION

The stochastic number generator (SNG), shown in Fig. 1
[1], [3], is the standard circuit converting a k-bit determin-
istic number into its stochastic 0 and 1 sequence representa-
tion. A pseudorandom number generator uniformly distributed
in {0, 1, . . . , 2k − 1} and typically implemented as a k-bit
linear-feedback shift register (LFSR) generates on every clock
cycle a k-bit random number that is compared with the deter-
ministic number B ∈ [0, 1]. The bit generation is completed
after N = 2k clock cycles and corresponds to the length of
the sequence [2], [3].

The N-bit output sequence generated by the SNG,
i.e., {Xn}, n = 1, 2, . . . , N , with n being the current time
index (or clock cycle), is IID. It represents a nonnega-
tive number in [0, 1] and is known as unipolar format in
SC. The probability of the stochastic number is defined as
X � Pr (Xn = 1) = B/2k , which is the normalized value of

Fig. 1. Stochastic number generator (SNG) circuit [3].

Fig. 2. Proposed stochastic adder architecture. Tn is the m-bit register’s state,
updated according to (1).

B in k-bit representation and its mean is given as

X̃ N = 1

N
(X1 + X2 + · · · + X N ).

Negative numbers (bipolar format) can also be represented
using the transformation X �→ 2X −1, expanding the range to
[−1, 1] [1]. For both stochastic number formats, the length of
the sequence N is directly associated with the accuracy of the
representation, which increases at the cost of additional clock
cycles and is considered as SC’s essential design tradeoff. In
the following, we use the former basic facts to explain the
operation of the proposed adder and subtracter architectures.

III. STOCHASTIC ADDER

This section introduces the proposed stochastic adder archi-
tecture and its mathematical analysis using MCs.

A. Architecture

The proposed adder architecture is shown in Fig. 2. If
OR(Xn, Yn) = 1, then the output is Zn = 1. In the case of
Xn = Yn = 1, 1 is also stored and carried in the register
(upcount by 1) in order to be outputted in the first future clock
cycle n′, i.e., Zn′ = 1, for which Xn′ = Yn′ = 0. Moreover,
when Xn = Yn = 0, the register is downcounted by 1 if it had
a positive prior value.

The procedure of storing 1 s, when Xn = Yn = 1, and
carrying them until they can be outputted compensates for
the inability of the single-bit output to accommodate the
instantaneous value of more than 1.

The above are captured in the schematic of Fig. 2, where
the register is m-bit with current state Tn in the set TR �
{0, 1, 2, . . . , M − 1}, where M = 2m . Note that Tn equals the
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Fig. 3. MC model of the proposed stochastic adder. The register’s zero state
is represented by two states in the model, 0A and 0B . Transition probabilities
A, B , and C are given by (3).

number of accumulated logic 1 s “owned” to the output, with
initial value T0 = 0 when the operation starts. From Fig. 2,
one can conclude that the state of the adder evolves according
to the following iteration:

Tn = min
{

Tn−1 + XnYn − (
Tn−1 >0

)
X nY n, M−1

}
(1)

where Xn = NOT(Xn) = 1 − Xn and similarly for Y n .
Although the proposed adder is designed to process sto-

chastic sequences, its behavior is deterministic. As shown
in Fig. 2, the output is a deterministic function of the inputs
without any additional randomization, which could increase
uncertainty and degrade precision. Specifically, the adder’s
output precision is determined by the length, N , of the
input sequences, their stochastic properties, and the register’s
size, m.

B. MC Modeling

The operation of the stochastic adder architecture is mod-
eled by the MC in Fig. 3. To explain its derivation, we note first
that we assign two states 0A and 0B to the zero value of the
register, whereas states 1 to M −1 represent the corresponding
values of the register. Therefore, the MC state Sn can take the
M + 1 values in the set

S � {0A, 0B, 1, 2, . . . , M − 1}. (2)

Although using two zero states may appear confusing,
it simplifies the analysis significantly because it allows us to
relate the output value, Zn , to the state only (i.e., the output is
a function of the MC state and not of the inputs Xn and Yn).

Let the MC’s state be Sn−1. Then, the transition to the next
state Sn and the output Zn are determined according to the
following transition probabilities:

A = Pr (Xn = 0)Pr (Yn = 0)

B = Pr (Xn = 1) + Pr (Yn = 1) − 2Pr (Xn = 1)Pr (Yn = 1)

C = Pr (Xn = 1)Pr (Yn = 1). (3)

As shown in Fig. 3, there are three kinds of states: A)
the two zero states 0A and 0B corresponding to register’s
zero state and also embedding information of the predecessor
input-state pair; B) states 1 to M − 2 capturing a sequential
increase/decrease of the register’s value; and C) state M − 1
corresponding to the maximum value of the register that is

also the overflow state in the case of Xn = Yn = 1 with
probability C . Extensive discussion on the register’s overflow
procedure and probability estimation follows in Section III-E.

To analyze the behavior of the MC, which captures that of
the proposed stochastic adder, we proceed with standard defi-
nitions. The (M + 1) × (M + 1) transition probability matrix,
with state ordering (0A, 0B , 1, 2, . . . , M − 1), is defined as

H =
[

Pr (Sn+1 = sb|Sn = sa)
]

sa,sb∈S
where the (sa, sb) entry of the matrix is the probability to
transition to state sb from state sa . Matrix H is written as

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C . . . . . . 0
A B C . . . . . . 0
0 A B C . . . 0
...

. . .
. . .

. . .
. . .

...
...

. . . 0 A B C
0 . . . . . . 0 A B + C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

The probability distribution vector of state Sn defined as

pT
n �

⎡⎢⎢⎢⎢⎢⎣
Pr (Sn = 0A)
Pr (Sn = 0B)
Pr (Sn = 1)

...
Pr (Sn = M − 1)

⎤⎥⎥⎥⎥⎥⎦ ∈ [0, 1]M+1 (5)

can be expressed as

pn = p0 H n ∈ [0, 1]M+1 (6)

where

p0 = [
1, 0, 0, . . . 0

] ∈ [0, 1]M+1 (7)

is the initial distribution vector and represents the starting state
of the register S0 = 0A.

C. Expected Output Value and Error Characteristics

We use the MC model equations from Section II-B to derive
the expected value of the adder’s output. To this end, we first
calculate the expected value of the instantaneous output Zn.
Note that since Zn depends only on the state Sn , it is zero if
and only if Sn = 0A. Therefore, it is

E[Zn] = Pr (Zn = 1) = Pr (Sn ∈ S − {0A})
= 1 − p0 H neT

1 (8)

where we used (6) and ei = [0, . . . 0, 1, 0, . . . , 0] ∈ R
M+1 is

the i th normal vector. Then, the average value of the output
N-bit sequence

Z̃ N = 1

N

(
Z1 + Z2 + · · · + Z N

)
(9)

has expected value

E[Z̃ N ] = 1

N

N∑
n=1

E[Zn] = 1 − 1

N
p0

(
N∑

n=1

H n

)
eT

1 . (10)

Both the expected value of {Zn} and its mean are essential
in quantifying the model’s accuracy given its inputs {Xn}, {Yn}
and will be used to verify the operation of the architecture.
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Fig. 4. Mean relative error calculated using (11) with sequence length
N = 32 and a register of m = 2-bits. Results are in log scale.

Fig. 5. Distribution of error Z̃N − (X + Y ) for two selected cases with
sequence length N = 2048 and register size of m = 7 bits.

1) Error Characteristics: To measure the adder’s output
precision and characterize the error behavior, we use the mean
relative error (MRE) metric as follows:

Zerror = E

∣∣∣∣ (X + Y ) − Z̃ N

(X + Y )

∣∣∣∣ (11)

where Z̃ N is given by (9) and X, Y ∈ [0, 1] are the
probabilities of one of the input sequences. The MRE is
estimated numerically. For every pair of input probabilities
(X, Y ) considered, the simulation is run 103 times with IID
sequences {Xn}, {Yn}. The results are shown in Fig. 4, in a
logarithmic scale, for sequence length N = 32 and a register
of m = 2-bits. As seen, the error is not uniform and peaks
when X + Y = 1, especially for X = Y = 0.5. It decreases
rapidly when moving away from these values.

To further illustrate the error characteristics, Fig. 5 shows
the error distribution of (X + Y ) − Z̃ N for the two additions,
(X, Y ) = (0.5, 0.1) and (X, Y ) = (0.5, 0.5), with N = 2048,
m = 7, and 104 simulation runs. It is observed that for
(0.5, 0.1), the error’s mean is about 2×10−5, whereas for edge
case of (0.5, 0.5), the mean is increased to about 2 × 10−2.

D. Verification of Operation

The operation of the proposed architecture as an adder is
proven here. As above, for the IID input sequences, we use
notation X � Pr (Xn = 1) and Y � Pr (Yn = 1). In addition,
we assume that 0 < X, Y < 1 implying A, B, C > 0,
as defined in (3). Therefore, the main, first upper, and first
lower diagonals of matrix H in (4) are positive implying the
following Lemma whose proof is straightforward.

Lemma 1: All entries of H M−1 are positive, i.e.,
H M−1 > 0.

The result of Lemma 1 implies that (I + |H |)M−1 > 0,
which along with Theorem 1 from [30] below proves that H
is irreducible.

Theorem 1: Matrix H is irreducible if and only if (I +
|H |)M−1 > 0, where I is the identity matrix.

Moreover, since H is a stochastic matrix, its spectral radius
is ρ(H ) = 1 having 1 as an eigenvalue. Now, consider vector
v ∈ R

M+1 such that

vT = θ

[
1,

1 − A

A
,

ρ

A
,
ρ2

A
, . . . ,

ρM−1

A

]
(12)

where we have set

ρ � C

A
= XY

(1 − X)(1 − Y )
(13)

θ � A
ρ − 1

ρM − 1
(14)

and 1 = [1, 1, . . . , 1]T ∈ R
M+1 is the column vector of ones.

It can be verified that vT and 1 are left and right eigenvectors
of H corresponding to eigenvalue 1, i.e., vT H = vT and
H 1 = 1. Moreover, it is vT 1 = 1. From [30, Th. 8.6.1],
we get that

lim
N→∞

1

N

N∑
n=1

H n = 1vT (15)

noting that 1vT is an (M + 1)×(M + 1) rank-one matrix.
From (10) and (15), we get limN→∞ E[Z̃ N ] = 1 − p01vT eT

1 .
Since p01 = 1 and vT eT

1 = θ , we get limN→∞ E[Z̃ N ] = 1−θ ,
and by replacing θ , we have

lim
N→∞

E[Z̃ N ] = 1 − A
ρ − 1

ρM − 1
. (16)

We assume in addition that X + Y < 1, which along with
0<X, Y<1 imply that 0 < ρ < 1 and so limM→∞ ρM = 0.
Therefore, since 1 − A(1 − ρ) = 1 + C−A = X + Y , we get

lim
M→∞

(
lim

N→∞
E[Z̃ N ]

)
= X + Y (17)

which proves the correct operation in the limiting case.
The result of (17) is valid for stochastic addition in unipolar

format and it is extended directly to bipolar format via the
transformation Z �→ 2(Z − 1), where Z = X + Y as before.

E. Register’s Size and Overflow MC Model

The finite size of the m-bit register and the stochastic
sequence length N impact the accuracy of the addition. Con-
sider the definitions in (3) and suppose that the input sequences
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Fig. 6. MC overflow model of the proposed stochastic adder with absorbing
state M. Transition probabilities A, B , and C are given by (3).

happen to have long segments of ones simultaneously. This
means that at each clock cycle, the register’s size increases
by 1, i.e., it moves one state rightwise in the MC model
in Fig. 3. Apparently, this cannot continue beyond state M −1
resulting in loss of counting ones, i.e., overflow. To select the
register’s size, it is important to investigate how the number of
states M relates to overflow occurrences and when this leads
to erroneous bits in the output.

1) Overflow MC Model: We start by modifying the MC
model in Fig. 3 to get the one in Fig. 6. The difference of
the two MC models is an extra state M in Fig. 6, which is
absorbing. The overflow of the register appears when (and
only when) its state is M − 1 and the input bits are both ones.
In this case, the state remains M − 1 in the MC in Fig. 3,
whereas it transitions to M in Fig. 6. Moreover, in the latter
case, the state remains M , forever, indicating that there has
been at least one overflow. Note that this is the sole purpose
of this model and does not imply any change in the original
architecture or the size of the register.

Defining the set of states of the new MC model, Ŝ �
{0A, 0B, 1, 2, . . . , M}, the probability vector of the state Ŝn

at time n is defined as

p̂T
n �

⎡⎢⎢⎢⎢⎢⎣
Pr (Sn = 0A)
Pr (Sn = 0B)
Pr (Sn = 1)

...
Pr (Sn = M)

⎤⎥⎥⎥⎥⎥⎦ ∈ [0, 1]M+2 (18)

and the transition probability matrix Ĥ ∈ [0, 1](M+2)×(M+2),
assuming the usual state ordering, is the following:

Ĥ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C . . . . . . . . . 0
A B C . . . . . . . . . 0
0 A B C . . . . . . 0

0
. . .

. . .
. . .

. . . . . . 0
... . . . 0 A B C 0
... . . . . . . 0 A B C
0 . . . . . . . . . . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

where A, B , and C are the probabilities given by (3). Note
that Ĥ and H differ only in their last row.

Assuming that S0 = 0A is the initial state of the register,
then the initial probability vector is

p̂0 = [
1, 0, 0, . . . , 0

] ∈ [0, 1]M+2 (20)

Fig. 7. Probability of overflow P̂overflow(n), equation (22), for various
numbers of register states M = 3, 4, . . . , 70 and output stochastic sequences
length N , when X = Y = 0.5.

and the probability vector at time n is expressed as

p̂n = p̂0 Ĥ n. (21)

The probability that the register has overflowed at least once,
before or at cycle n, is Pr (Sn = M) expressed as

P̂overflow(n) � p̂0 Ĥ neT
M+2 (22)

where ei = [0, . . . , 0, 1, 0, . . . , 0] ∈ R
M+2 is the i th normal

vector. One can observe that the maximum of P̂overflow(n)
occurs for Pr (Xn = 1) = Pr (Yn = 1) = 0.5, and it decreases
when moving away from these values.

A graphical illustration of (22) is shown in Fig. 7 for
Pr (Xn = 1) = Pr (Yn = 1) = 0.5, M = 3, . . . , 70 and typical
output sequence lengths N = 25, 26, . . . , 210. As expected,
increasing the number of states M reduces the probability of
overflow.

To further investigate the overflow process, we can consider
the expected number of transitions to reach the absorption
state, N∗. It is given by [31], [32]

N∗ = p0 F1 (23)

where p0 is the initial distribution vector, 1 is the column
vector of M + 1 ones, and F ∈ [0, 1](M+1)×(M+1) is the
fundamental matrix of the absorbing MC [31], [32] defined
as

F = (I − H̃)−1. (24)

Matrix H̃ is given by the decomposition of the
(M + 2) × (M + 2) matrix Ĥ in the form

Ĥ =
[

H̃ R
0 1

]
. (25)

The expected number of transitions to absorption is used in
the following to select the register’s size.
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TABLE I

BINARY REGISTER SIZE m-BIT (M = 2m ) SELECTION

2) Error Due to Overflow: An overflow by itself does not
necessarily imply an erroneous output bit. For example, in the
extreme case where all input bits of both sequences are one,
the register may overflow repeatedly, but the architecture’s
output, 1, is always correct.

Consider now the following scenario. Start from state 0A

and transition to state M − 1 strictly monotonically, i.e., with
both inputs being one. This requires M − 1 transitions and
there is no overflow. State M − 1 is critical; the next state
may be either M − 2, if both inputs are zero, or M − 1 again
if at least one input is one. If both inputs are one, then we
have the first overflow.

Therefore, the minimum time required for the first overflow
to possibly occur is M clock cycles (transitions). For the
overflow to be observed at the output, the state of the register
must become 0A to output a zero, which requires a minimum
of M −1 transitions leftwise from state M −1 (i.e., both inputs
be zero).

Therefore, the minimum number of clock cycles (transi-
tions) that can (may) result in an erroneous output bit is Ner =
2M −1, and therefore, the following condition guarantees that
all output bits are correct

N < Ner. (26)

Typical register sizes, M , imply relatively small values
of Ner and so of N , if we require zero errors. Therefore,
we prefer to relax our requirements and statistically allow
some overflows potentially implying some errors. To this end,
we use N∗ in (23) as a guide to select M . Note that N∗ is an
implicit function of M , X , and Y .

We start with selecting the value of N . Then, for X = Y =
0.5, we derive the values of A, B , and C , and therefore, N∗
becomes a function of M only. We chose M = 2m to be the
smallest power of 2 resulting in N∗ ≥ N . The values of m are
presented in Table I along with the corresponding probability
of overflow, for X = Y = 0.5, given by (22).

F. Deviation of the Output From IID

To estimate the statistical deviation of the output sequence
{Zn} from the ideal IID, we use the stochastic computing
correlation (SCC) metric [3], [28]. For Zn and Zk with
k = n + r and r > 0, it is

SCC(Zn ,Zk )=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E[Zn Zk ]−E[Zn ]E[Zk ]
min(E[Zn ],E[Zk ])−E[Zn ]E[Zk ]

, E[Zn Zk ]>E[Zn ]E[Zk ]

E[Zn Zk ]−E[Zn ]E[Zk ]
E[Zn ]E[Zk ]−max(E[Zn ]+E[Zk ]−1,0)

, otherwise.

(27)

Note that SCC(Zn, Zk) ∈ [−1, 1] with zero corresponding to
uncorrelated random variables.

Fig. 8. SCC(Zn, Zn+1) of IID inputs X, Y with N = 1024 and m = 5 bit.

Fig. 9. Proposed stochastic subtracter architecture. Tn is the m-bit register’s
current state.

Fig. 8 shows SCC(Zn, Zn+1) for IID input sequences with
mean values X, Y ∈ [0, 1] and X + Y ≤ 1 when m = 5 bits
and N = 1024. SCC(Zn, Zn+1) achieves its maximum value
of 0.21 when X = Y = 0.5, decreasing to zero when moving
away from X = Y = 0.5. This potentially allows us to use
{Zn} and perform the next-stage calculations with a single D
flip-flop to achieve the delay of r = 1, for instance to calculate
(X + Y )2 as E[Zn Zn+1].

IV. STOCHASTIC SUBTRACTER

This section introduces the proposed stochastic subtracter
architecture and its mathematical modeling, using MCs, fol-
lowing the definitions, analysis, and operating principles of the
stochastic adder.

A. Architecture

The proposed subtracter architecture is shown in Fig. 9.
It is comprised of the proposed stochastic adder with inverted
one input and its output. Therefore, the subtracter operates like
the adder with inputs X n and Yn having probabilities Pr (Xn =
1) = 1 − X and Pr (Yn = 1) = Y , respectively. The addition
operation implies that Z̃ N ≈ 1−X+Y and the output inversion
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Fig. 10. MC model of the proposed stochastic subtracter. The register’s
zero state is represented by two states in the model, 0A and 0B . Transition
probabilities A, B , and C are given by (29).

gives C̃N = 1 − Z̃ N ≈ X − Y . For the subtracter to operate
appropriately, it must be X ≥ Y .

Similar to the stochastic adder, the counter’s value Tn (with
initial value T0 = 0) belongs to TR � {0, 1, 2, . . . , M − 1},
where M = 2m and m is the register’s size. The state Tn

indicates the number of logic 1 s “owned” to the addition
(1 − Xn) + Yn and evolves according to

Tn = min
{

Tn−1+XnYn −(
Tn−1 >0

)
XnY n, M−1

}
. (28)

B. MC Modeling

The operation of the proposed subtracter architecture is
modeled by the MC model shown in Fig. 10. Both zero states
0A and 0B represent the zero value of the register, whereas 1
to M − 1 represent the corresponding nonzero values of the
register. Moreover, the state of the MC model Sn belongs to
the set of M + 1 elements given in (2), while the state Sn

and its output Cn are determined by the following transition
probabilities:

A = Pr (Xn = 1)Pr (Yn = 0)

B = Pr (Xn = 1)Pr (Yn = 1) + Pr (Yn = 0)Pr (Xn = 0)

C = Pr (Xn = 0)Pr (Yn = 1). (29)

The analysis of the MC’s behavior can be obtained by using
(4), (5), and (7), along with (29) to calculate the probability
distribution vector of state Sn after n = 1, 2, . . . , N steps. Note
that although matrix H is the same for both the adder and
subtracter, transition probabilities A, B , and C are different.
Also, the MC models are the same, except for the output
values.

C. Expected Output, Error Characteristics,
and Verification of Operation

According to the MC model of Fig. 10, it is Cn = 1 if
and only if Sn = 0A. Therefore, the expected value of the
instantaneous output is

E[Cn] = Pr (Cn = 1) = Pr (Sn = 0A) = p0 H neT
1 . (30)

The average value of the output N-bit sequence is

C̃N = 1

N
(C1 + C2 + · · · + CN ), (31)

Fig. 11. MC overflow model of the proposed stochastic subtracter with
absorbing state M. Transition probabilities are given by (29).

with expected value given by

E[C̃N ] = 1

N

N∑
n=1

E[Cn] = 1

N
p0

( N∑
n=1

H n
)

eT
1 . (32)

We note that the subtractor’s error characteristics follow
a similar behavior to those of the adder’s error shown in
Section III-C. The procedure to verify the operation of the
proposed subtracter architecture is identical to that of the
adder in Section III-D. Following Lemma 1 and since matrix
H is irreducible according to Theorem 1 and corresponding
assumptions, we conclude that the operation at the limit case
using (32) implies

lim
M→∞

(
lim

N→∞
E[C̃N ]

)
= X − Y. (33)

Also, it can be shown that bipolar representation C = X −Y
of the stochastic subtracter is achieved using C �→ 2C .

D. Register’s Size and Overflow MC Model

The transitions of the subtracter’s register values fol-
low the same principles as in the adder. Therefore, for an
N-bit sequence, the register does not overflow as long as it
satisfies (26), while Fig. 11 shows the MC overflow model.

The state of the MC overflow model, Ŝn , transitions within
Ŝ � {0A, 0B, 1, 2, . . . , M} of cardinality M + 2, while Ŝn =
M is the absorbing state indicating the overflows. As in the
adder, the extra state M does not imply an increase in the
register’s size or a modification in the architecture of Fig. 9.
Furthermore, the probability that the register has overflowed
at least once, before or at cycle n, is (22). It can be used to
select the register’s size based on accuracy requirements as
explained in the adder’s section and summarized in Table I.

E. Deviation of the Output From IID

The subtractor’s output SCC is calculated similar to that of
the adder, using (27), but with (30) for deriving the expected
value of the output E[Cn]. SCC(Cn, Cn+1) for IID input
sequences with mean values X, Y ∈ [0, 1] and X ≥ Y when
m = 5 bits and N = 1024 is identical to the that of the adder,
as shown in Fig. 8.

V. HIGH-LEVEL HARDWARE REQUIREMENTS ESTIMATION

In this section, we provide a high-level estimation of the
proposed architectures’ hardware requirements. It is important
to note that the correspondence between the architectures of
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Figs. 2 and 9 and the hardware estimation in the following
may vary as the latter is heavily dependent on two factors:
1) the optimization tools and 2) the technology used.

A. Total Cell Area

The adder of Fig. 2 is composed of the following gates
and instances: 1) ANDX1; 2) 2 INVX1; 3) NAND3 × 1;
4) m-bit accumulator containing m-bit register and adder
(FAX1); 5) m-bit comparator; 6) D-FF; and 7) OR3 × 1. Note
that the comparator’s total cell area is reduced compared to the
standard one, given the fact that only an equality comparison
with the first state is necessary as Zn = 0 implies Sn = 0. For
instance, for m = 2, the comparator is reduced to 3 INVX1’s
and an ANDX1. The subtracter’s total cell area is estimated
similar to the adder’s, by including two INVX1’s.

B. Propagation Delay

By inspecting the architectures is Figs. 2 and 9, one can
observe that the propagation delay is the path from the D-FF
to the counter’s register. It is calculated as the minimum total
time required to pass through each of the following logic cells
and instances (in order): 1) NAND3×1; 2) INVX1; 3) AND2×
1; 4) INVX1; 5) OAI21×1; 6) AND2×1; and 7) m-bit FAX1,
where 3–7 correspond to the state update.

C. Energy Consumption

From a high-level system perspective, both the adder and the
subtracter are FSMs, and thus, their state update is a function
of their previous state and inputs, i.e., Sn = f (Sn−1, Xn, Yn).
Consequently, the energy consumed during the update process
is also a function of the previous state and inputs, namely
wn = E(Sn−1 = s, Xn = x, Yn = y), where s ∈ S
and x, y ∈ {0, 1}, depending on the circuit implementation,
loading conditions, technology node, and so on. Since the
probability of this transition is Pr (Sn−1 = s, Xn = x, Yn = y),
the expected instantaneous energy consumption is

E[wn] =
N∑

s∈S
x,y∈{0,1}

E(s, x, y)Pr (Sn−1 = s, Xn = x, Yn = y).

(34)

Therefore, the expected total energy cost of the operation,
assuming N-bit input sequences, is

∑N
n=1 E[wn].

VI. COMPARISON OF THE PROPOSED ARCHITECTURES

WITH EXISTING ONES

In this section, we compare the proposed architectures with
popular SC adders [1], [19]–[22] and subtracters [22]–[24]
in the literature. We measured the performance in terms of
accuracy using the mean absolute error (MAE) with simula-
tions in MATLAB. To this end, we considered a grid of pair
values (X, Y ), assuming the unipolar SC format. For each grid
point, we performed 103 runs with pairs of IID sequences to
derive the corresponding MAE. Then, we averaged over all
MAE values of each architecture. The experiment was run for
stochastic sequence lengths N = 2k , where k = 4, . . . , 10.

Fig. 12. Comparison of accuracy in MAE of stochastic adders for typical
stochastic sequence lengths N .

All designs were synthesized using Verilog HDL in the
Xilinx Kintex-7 FPGA kit and fed into the Synopsys Design
Compiler using the FreePDK CMOS library at 45 nm [33].
For the comparison, we provide the following estimates: 1) the
total area in μm2; 2) the average power consumption for the
max operating frequency in mW; 3) the critical path in ns;
and 4) the energy per operation (average power × the critical
path) in pJ.

A. Stochastic Adders

The accuracy, the power × delay2, and energy consumption
of the adders considered are presented in Figs. 12 and 13,
while their detailed hardware requirements, including the area,
are cited in Table II. Note that the hardware requirements for
the input sequence generation are not included.

1) MUX: We consider the original circuit used for scaled
addition (in unipolar format) and scaled subtraction (in bipo-
lar) [1]. It requires large sequence lengths N to achieve
acceptable accuracy compared to the other architectures, which
reflects the increased total energy consumption. Moreover,
the required SNG also impacts both power and energy con-
sumption. This is why it is the least popular approach for
addition and subtraction.

2) Adders in [19] and [20]: The adder in [19] uses a
T flip-flop to replace the SNG of the original MUX adder,
while the adder in [20] employs a 1-bit register along with a
two-state FSM to slightly improve on the accuracy.

Compared to the adder in [20], the proposed one requires
almost the same area for a register of m = 2-bits and slightly
more power and energy consumption per operation according
to Table II. Compared to the adder in [19], the proposed
one has higher power and energy consumption per operation.
However, the proposed adder achieves better accuracy than
both of them for short sequence lengths according to Fig. 12.
Moreover, the nonscaling behavior of the proposed adder
benefits cascaded computations since the resolution of the
sequence is not reduced by 2 for every adder used. This is
discussed further in Section VII.
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Fig. 13. Comparison of power × delay2 (pJ × ns) (top) and energy (pJ)
(bottom) consumption of stochastic adders for typical stochastic sequence
lengths N .

3) Adder in [21]: The nonscaling adder in [21] assumes a
two-line representation of a stochastic number: one to repre-
sent the magnitude and one the sign. Here, we use the adder
with unipolar format (plus fixed sign) and design parameter
“threshold” 2, following the design methodology in [27],
to compare it with the other adders. As shown in Fig. 12, it has
lower accuracy than the proposed adder and has almost the
same power consumption, with energy being its strong point
according to Table II. Moreover, the adder in [21] occupies
more area compared to the proposed one for register sizes
m = 2, 3.

4) Adder in [22]: The adder (and subtracter by using a
NOT gate in one of its inputs) in [22] uses an encoding of
stochastic number into the ratio of the switching activities
of two sequences. The four inputs of the adder are pairwise
XNORed and then fed to a MUX that uses a modulus 1 counter
as its select signal and it’s output is the scaled result of the
addition. To derive its nonscaling sum, two of the inputs and
the output of an SNG are used as inputs to a three-input XNOR.
The XNOR’s output as well as the MUX form the adder’s
outputs, while their ratio yields the final (nonscaled) sum.

According to Table II, the overall hardware utilization is
taxed due to the additional SNG, which impacts the power
and energy consumption as well. Furthermore, to achieve
comparable accuracy to that of the other adders, it requires
large sequence lengths, as shown in Fig. 12. Its main advantage
is that it can be used for both scaling or nonscaling additions
and the ratio encoding can be used to directly implement
other standard operations as well, e.g., multipliers and dividers.

TABLE II

HARDWARE REQUIREMENTS COMPARISON BETWEEN THE PROPOSED

ARCHITECTURES AND STATE OF THE ART IN AREA (μm2), CRITICAL

PATH (ns), POWER CONSUMPTION (mW ), AND ENERGY (pJ)
PER OPERATION

However, the incompatibility of the ratio encoding with other
more popular SC encodings results in extra translation hard-
ware complexity when is coupled with other traditional SC
numerical architectures.

B. Stochastic Subtracters

The accuracy, the power × delay2, and energy comparison
between the stochastic subtracters are shown in Figs. 14 and
Fig. 15, while detailed hardware utilization results are shown
in Table II. Since the NOT gate does not degrade the accuracy
of the computations for the proposed subtracter as well as
the MUX and [22] architectures, the results are identical to
the adder. Note that the area, power, and energy consumption
of the proposed subtracter is almost the same as those of
the proposed adder since the additional two NOT gates have
minimal impact.

1) Subtracter in [23]: To realize the operation of sub-
traction hardware efficiently, the method in [23] correlates
two input sequences, using the same LFSR for two different
comparators in the SNG stage, and an XOR gate to provide
the output sequence.

This architecture has an important key point; consider
the following two cases: I) if the first SC operation is the
subtraction, one can shape the architecture to effectively
generate two signals from SNGs with one LFSR [23], [28]
and 2) if on the other hand subtraction is an intermediate
SC operation, to effectively use the XOR gate, the subtracter’s
input sequences must be regenerated in order to have high
cross correlation.
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Fig. 14. Comparison of accuracy in MAE of stochastic subtracters for typical
stochastic sequence lengths N .

Fig. 15. Comparison of power × delay2 (pJ × ns) (top) and energy (pJ)
(bottom) consumption of stochastic subtracters for typical stochastic sequence
lengths N .

Fig. 14 suggests that the work [23] achieves lower accuracy
compared to the proposed stochastic subtracter, while it has the
advantage of very low power and energy consumption when
operating in case 1) above. When the subtraction is an inter-
mediate operation, case 2), the proposed subtracter achieves
better overall performance, as shown in Fig. 15 and Table II.

2) Subtracter in [24]: The subtracter in [24] uses an XNOR

gate with inputs the two stochastic sequences, one of them
inverted, to generate a rough estimate of the subtraction result
and cascaded logic stages to improve its accuracy. The number
of additional logic stages considered here is 3 but can be

further expanded at the cost of additional hardware resources
and delay. The proposed stochastic subtracter achieves better
accuracy than the one in [24] as shown in Fig. 14, but the
latter one has lower power and energy consumption according
to Table II.

VII. APPLICATION IN DIGITAL IMAGE PROCESSING

To demonstrate the proposed adder’s effectiveness in cas-
caded computations, we use it as a building block, along
with AND gates for multiplication, to implement a convolution
operation. Specifically, the convolution is used in a digital
image processing task, which is the filtering of an entire image
using a 3 × 3 box blur kernel. By adjusting appropriately
kernel’s weight values and by including nonlinear functions,
this kernel can be used in NNs.

For the application, we select a grayscale image and repre-
sent each pixel with an 8-bit number as it is typically required
in image processing. The pixels’ and the kernel’s values are
normalized to range [0, 1] in order to be processed in the SC
domain. For the stochastic number representation, we consider
typical stochastic sequence lengths, namely N = 2k , with
k = 4, . . . , 10 and investigate their effect in the accuracy of the
computations. Then, the proposed as well as selected adders
discussed in Section VI are used to realize the convolution
operation and their performances are reported.

Among the selected adders, we excluded the standard MUX
from comparisons as it requires large N lengths to achieve
acceptable accuracy as shown in Fig. 12 implying also an
increased hardware overhead. The same applies to the adder
in [22] due to the fact that the two-sequence encoding of a
stochastic number increases the design complexity in cascaded
computations and each nonscaling adder is hardware demand-
ing for moderate N lengths according to Table II.

The accuracy comparison of the convolutions based on
the selected adders is shown in Table III evaluated with
two metrics: 1) the peak signal-to-noise ratio (PSNR) and
2) the structural similarity index measure (SSIM). The first
measures the absolute accuracy of computation and is one of
the standard metrics used for images, whereas the second one
measures the perceived quality of an image with values in
[0, 1] (higher means better quality) [34]. In addition, a graph-
ical representation of the computations using the proposed
adder is shown in Fig. 16. Moreover, Table IV presents the
corresponding hardware resources to realize the convolution
kernel.

We note first that the register size used for the proposed
adder is m = 2, as it does not degrade the result of calculations
in this specific application. Moreover, the kernel by itself
requires nine multipliers (AND gates) and eight stochastic
adders, while its structure is adder tree based.

1) Convolution Using Adders [19], [20]: According to
Table III, the two scaling adders [19], [20] provide
acceptable accuracy and SSIM results when using more
than N = 256 bit sequence lengths, which is due
to sequence resolution drop by 2 after each addition.
On the contrary, the convolution using the proposed
stochastic adder achieves the same accuracy using only
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Fig. 16. Image filtering using 3 × 3 convolution kernel. From left to right, (a) and (b) correspond to MATLAB and (c)–(i) correspond to the approach
using the proposed adder with sequence lengths N . (a) Original image. (b) MATLAB’s blur calculation. (c) N = 16. (d) N = 32. (e) N = 64. (f) N = 128.
(g) N = 256. (h) N = 512. (i) N = 1024.

TABLE III

ACCURACY AND IMAGE QUALITY COMPARISON IN THE CALCULATION OF

A 3 × 3 CONVOLUTION KERNEL USING THE PROPOSED AND

STATE-OF-THE-ART STOCHASTIC ADDERS

TABLE IV

COMPARISON OF HARDWARE REQUIREMENTS TO IMPLEMENT THE
3 × 3 CONVOLUTION KERNEL USING THE PROPOSED AND

STATE-OF-THE-ART STOCHASTIC ADDERS IN AREA (μm2),
CRITICAL PATH (ns), POWER (mW ) AND ENERGY (pJ)

PER OPERATION

half sequence length, e.g., N = 128. This leads to
less energy per convolution for the proposed compared
to the convolution using [20] due to different lengths
required. The convolution is using [19], however, despite
the large N value, e.g., 256, and it also achieves good
power and energy efficiency. A further advantage of the
proposed adder is that it benefits the operations that
require nonscaled computations after the convolution
stage, whereas adders [19], [20] face upscaling followed
by sequence regeneration design challenges.

2) Convolution Using Adder [21]: Due to its nonscaling
nature, the convolution kernel using the adder in [21]
achieves the same accuracy as the proposed approach
according to Table III. However, it also has slightly

increased energy consumption, making the proposed one
more efficient for multiple nonscaling additions.

3) Convolution Using Adder [25]: The accumulative paral-
lel counter (APC) is a popular adder capable of adding
single-bit sequences in parallel producing binary output
and it is used in the SC literature [13], [26] as it
benefits multiply-and-accumulate stages. Compared to
the proposed approach, it achieves almost the same
performance in terms of accuracy. Note, however, that
if the convolution is the final operation, i.e., no further
operations are required, APC is effective terms of hard-
ware. Otherwise, it requires more area than the proposed
approach due to the required binary-to-stochastic con-
verter to rerandomize the output for further computa-
tions, e.g., nonlinear functions.

4) Convolution With Conventional Binary: Compared to
the conventional arithmetic architectures, the proposed
approach requires negligible area, which is its strong
point and is approximately ×16 less according to
Table IV. On the other hand, given the moderate number
clock cycles to achieve acceptable results, for instance
N = 64, its energy consumption is higher, namely 21 pJ.

VIII. CONCLUSION

Two SC nonscaling architectures for addition and subtrac-
tion were presented. Their operation principle was proved
using detailed mathematical analysis based on MC modeling
and an analytical methodology for selecting their register size
was introduced. The two architectures have the advantage
of not requiring any randomizing source and they operate
with standard SC encoding making their use in hardware for
complex calculations easy. Compared to existing architectures
in the SC literature, it was shown that they achieve good
latency versus accuracy tradeoff, which is a bottleneck in
SC, allowing both fast and precise computations. Finally,
the implementation of a 3 × 3 convolution kernel using the
proposed adder demonstrated its advantages.
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