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Accurate Analytical Accelerometer–Magnetometer
Axes Alignment Guaranteeing Exact Orthogonality
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Abstract— A complete analytical solution to the problem of
aligning the sensitivity axes (coordinate frames) of a three-axis
accelerometer and a three-axis magnetometer, fixed on the same
rigid platform, is introduced. It exploits the magnetic inclination
phenomenon to analytically derive the axes alignment rotation
matrix and the inclination angle. Starting from a popular
formulation of the problem as a constrained optimization one,
it introduces a transformation and a parameterization, convert-
ing it to an unconstrained one within the special orthogonal
group. In contrast to existing methods using the same principle,
it guarantees the orthogonality of the axes-alignment rotation
matrix and achieves best-of-class accuracy at the same time. It is
two orders of magnitude faster than the gradient descent and
Newton–Raphson-based methods and about three times faster
than state-of-the-art semianalytical approaches achieving the
same accuracy. Multiple sets of the sensor data are used to
demonstrate the method’s accuracy and computational efficiency.

Index Terms— Accelerometer, axes alignment, magnetic
inclination, magnetometer, optimization.

I. INTRODUCTION

THE advancement of microelectromechanical (MEM) sen-
sors’ technology over the past decades enabled the wide

use of inertial and magnetic sensors in commercial devices.
Nowadays, inertial and magnetic sensors are key parts of our
everyday life as they are embedded in a plethora of devices,
such as smartphones, activity trackers, alarm systems, and
navigation devices.

Sensors based on MEM technology come with two great
advantages; they are of miniature size and of extremely low
cost. Their main disadvantage, however, compared to larger
and costlier devices, is their large(r) error characteristics,
which can be prohibiting for many applications. To this
purpose, several works proposed calibration methods to com-
pensate for the most important linear, time-invariant sensors’
errors [1]–[9]. While such methods are very effective for
single-sensor calibration, most of them do not account for
cross-sensor axes alignment.
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Fig. 1. Axes alignment.

Inertial and magnetic sensors are often used in combi-
nation in many applications, including navigation [10] and
attitude estimation [11], healthcare systems [12], gaming and
entertainment devices [13], space exploration, and many other
industrial and commercial ones. In such cases, it is crucial for
their sensitivity axes (coordinate frames) to be aligned.

Assuming that the coordinate frames of the accelerome-
ter and the magnetometer are {xa, ya, za} and {xm, ym, zm},
respectively, aligning the two coordinate frames comes down
to deriving a rotation matrix R A

M ∈ SO(3) such that
R A

M{xm, ym, zm} = {xa, ya, za}, as shown in Fig. 1.
Axes alignment algorithms require an accurately known

magnetic field to be used as a reference in order to derive R A
M .

When cost is of no concern, the reference magnetic field is
generated using expensive laboratory equipment. For low-cost
sensors, however, this is impractical due to incommensurate
extra cost.

Several works propose axes alignment methods that require
no special piece of equipment [1], [2], [5], [14]–[18].
A standard approach is to exploit the magnetic inclination
phenomenon as a reference in order to align the axes of
an accelerometer and a magnetometer. Magnetic inclination
(or magnetic dip) is the angle between the horizon and the
Earth’s magnetic field lines, as shown in Fig. 2. It varies with
location and time, and the sine of it is the inner product of
the normalized gravity and the magnetic field1 vectors

sδ � sin(δ) = gT m

�g��m� . (1)

Existing axes alignment algorithms, e.g., [1], [2], [15], [17],
use (1) and accelerometer’s and magnetometer’s measurements
to form an optimization problem for deriving R A

M . To do
so, some of them [1], [2] form a cost-plus-penalty function

1All norms in this article are Euclidean norms, unless stated otherwise
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Fig. 2. Magnetic inclination.

associated with (1), which is then minimized using the gradient
descent or Newton–Raphson (NR) method.

To ensure that R A
M ∈ SO(3), it is common to include a prop-

erly weighted (penalty) term in the cost-plus-penalty function
[see (3)]. Selecting the penalty function or its weighting factor
is not always trivial. Improper selection can cause the diver-
gence of the derived R A

M from orthogonality or convergence
issues in the gradient descent, NR methods, or other iterative
methods.

A closed-form solution for the axes alignment problem is
proposed in [19]. While [19] provides a solution such that
R A

M ∈ SO(3) (orthogonality and determinant one), it may be
less accurate than other solutions derived after many iteration
steps of gradient descent and NR methods.

In this work, we propose a complete analytical solution to
the axes alignment problem, guaranteeing the orthogonality of
the axes alignment rotation matrix, with best-of-class accuracy.
This is done by introducing a new formulation of the axes
alignment problem that transforms the original constrained
optimization problem into a smooth unconstrained one.

The proposed method derives both the magnetic inclination
angle and the axes alignment rotation matrix in the closed-
form. Due to its analytical nature, the proposed method gives
highly accurate results, comparable to the best ones achieved
by existing iterative methods, however requiring significantly
lower computational resources. Thus, the proposed method is
ideal for embedded, low-power devices with limited hardware
resources.

The rest of the article is organized as follows. In Section II,
the axes alignment problem is analyzed and formulated as
an optimization problem. Moreover, the limitations of current
works are demonstrated using real sensors’ data. In Section III,
the proposed method is presented. The evaluation of the pro-
posed method is done in Section IV along with its comparison
to other axes alignment methods. Finally, conclusions are
drawn in Section V.

II. PROBLEM STATEMENT AND PERFORMANCE

LIMITATIONS OF THE PRIOR ART

Consider a three-axis accelerometer and a three-axis mag-
netometer, fixed on the same rigid platform. In our analy-
sis, we assume that both sensors have been individually
calibrated.

Assume that K accelerometer’s measurements {gk}K
k=1 and

K magnetometer’s measurements {mk}K
k=1. Each measurement

set is naturally expressed in the corresponding sensor’s frame,
i.e., the {A}-frame and the {M}-frame, respectively. Measure-
ments gk and mk are taken simultaneously when the platform
is still in k = 1, 2, . . . , K different orientations and assuming

a magnetic field of constant direction2 in the platform’s
vicinity.3 Therefore, {gk}K

k=1 are gravity acceleration vectors,
and all magnetic field vectors {mk}K

k=1 have the same magni-
tude. Without loss of generality and for convenience purposes,
we assume that the vectors are normalized, i.e., �gk� =
�mk� = 1 for k = 1, 2, . . . , K .

Let R A
M be the axes alignment matrix, rotating the mag-

netometer’s coordinate {M}-frame into the accelerometer’s
{A}-frame, i.e., R A

M mk is the k th magnetic field measure-
ment expressed in the {A}-frame. For notational convenience,
we drop the superscript and the subscript and write R = R A

M .
Then, from (1), we have that sδ = gT

k Rmk for k =
1, 2, . . . , K . Using this, R is commonly calculated by solving
the minimization problem [19]

min
R,sδ

K∑
k=1

(
sδ − gT

k Rmk

)2

s.t. R ∈ SO(3), |sδ| ≤ 1. (2)

A typical approach to solve (2) is to minimize an associated
cost-plus-penalty function using the gradient descent or the NR
method. In [1] and [2], the authors use the following cost-plus-
penalty function, JCP, associated with (2) and incorporating a
weighted penalty term capturing the nonorthogonality of R4:

JCP(R, sδ) =
K∑

k=1

(
sδ − gT

k Rmk

)2 + λ�RRT − I�2
F (3)

where � · �F denotes the Frobenius norm. In using (3) in [1]
and [2], special care should be given to the selection of
the weighting parameter, λ, in order to ensure both the
approximate orthogonality of R and the (fast) converge of the
minimization method.

Following the iterative optimization approaches [1], [2]
and (3), we first consider the case when both R and sδ are
initialized without any prior knowledge, as the identity matrix
and zero, respectively. Using the NR method and a set of
sensors’ measurements, we minimize (3) for multiple values
of λ. To assess the distance from orthogonality of the derived
matrices R, we first define the nearest orthogonal matrix to R
as [20]

RO = U V T (4)

where U ∈ O(3) and V ∈ O(3) are defined via a singular
value decomposition (SVD) of R = U�V T . Then, the dis-
tance of R from orthogonality is defined as

DO(R) � �R − RO� = �R − U V T �. (5)

The convergence of JC P using the NR for different values
of λ is shown in Fig. 3. The numbers of iterations for NR to
converge (JCP to drop below 10−4) and the distance of the

2The magnitude is irrelevant in the proposed method, and it is normalized.
3Typically, in the absence of special calibration equipment, such experi-

ments are conducted under the influence of the Earth’s (constant) magnetic
field, in an outdoor environment, away from magnetic disturbances, such as
buildings and cars [5], [8].

4Note that, when the initial condition of the NR is far from the final solution,
an extra term in (3) is required to force the determinant of R to be equal to
one and thus R ∈ SO(3). However, if NR initial condition is near to the final
solution, this term may be omitted.
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Fig. 3. Convergence of NR for different values of the weighting factor λ
(the fastest convergence corresponds to λ = 10).

Fig. 4. Distance of R from orthogonality DO (R) when NR has converged,
and the number of iterations required for convergence, as functions of a
weighting factor λ.

Fig. 5. Convergence of NR for different values of the weighting factor, λ,
when the single-step method in [19] is used for initialization.

derived matrix R from orthogonality are presented in Fig. 4
as functions of λ.

We observe that larger values of λ result in R closer
to orthogonality. However, NR requires more iterations to
converge for larger λ, implying a tradeoff between the orthog-
onality of R and computational efficiency.

A better tradeoff is obtained when the results of the
single-step method in [19] are used to initialize the
NR method. As shown in Figs. 5 and 6, NR converges after
only two iterations even when large values of λ are used.
However, in this case, the computational complexity of the
single-step method of [19] must be also taken into account.

III. PROPOSED METHOD

The proposed method converts the constrained optimization
problem (2) to an unconstrained one, which is solved using

Fig. 6. Distance of R from orthogonality and NR iterations until the con-
vergence for different values of the weighting factor, λ, when the single-step
method in [19] is used for initialization.

analytical iterations of the NR method. Furthermore, using a
good initial estimate of the point of minimum, as done later
in this section, implies that only one iteration is sufficient to
achieve a very accurate result.

To convert the constrained problem (2) into an uncon-
strained one, we first derive the optimal value of sδ analytically
and formulate an equivalent optimization problem with the
single unknown R. To do so, consider the cost function of (2)

J (R, sδ) =
K∑

k=1

(
sδ − gT

k Rmk
)2

(6)

and note that it is quadratic with respect to sδ . Defining the
9 × 1 vector VR = vec(R) and using the identity gT

k Rmk =
(mk ⊗ gk)

T vec(R), we write

J (R, sδ) = K sδ
2 − 2sδ1T AVR + V T

R AT AVR (7)

where ⊗ is Kronecker’s product [21], 1 is the K × 1 vector
of ones, and the K × 9 matrix A is

A =

⎡
⎢⎢⎢⎣
(m1 ⊗ g1)

T

(m2 ⊗ g2)
T

...

(m K ⊗ gK )
T

⎤
⎥⎥⎥⎦. (8)

We define the minimum of J (sδ, R) with respect to sδ , that
is

J1(R) � min
|sδ|≤1

J (R, sδ) (9)

and observe that the unconstrained point of minimum is

s∗
δ = 1

K
1T AVR. (10)

Note that (10) can also be written as

s∗
δ = 1

K

K∑
i=1

(
gT

i Rmi
)
. (11)

Following our assumption that �gi� = �mi� = 1 for all
i = 1, 2, . . . , K and the fact that the � · �2-norm is rotational
invariant, by applying the Cauchy–Schwarz inequality to (11),
we get |s∗

δ | ≤ 1, and so s∗
δ is feasible, and the global minimum

of (9).
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Replacing (10) into (7), J1(R) is conveniently written as

J1(R) = 1

2
V T

R BVR (12)

where B = 2(AT A − (1/K )AT 1 1T A) is a 9 × 9 symmetric
matrix. Note that, by the definition of J1, we have

min
R∈SO(3),|sδ |≤1

J (R, sδ) = min
R∈SO(3)

J1(R) (13)

where the minimum exists since the cost function J1 is
continuous and SO(3) is compact.

Let R∗ ∈ SO(3) be a point of global minimum of J1 that is

J1(R∗) = min
R∈SO(3)

J1(R) (14)

and let R0 ∈ SO(3) be an initial estimate of R∗. An improved
estimate can always be expressed as R = P R0, for some
P ∈ SO(3). Moreover, we can write P as a sequence of three
Euler rotations, that is

P = P(x) � Rz(φ)Ry(ψ)Rx(θ) (15)

where φ, ψ , and θ are the yaw, pitch, and roll rotation angles,
respectively, x � [φ, ψ, θ ]T , and

Rz(φ) =
⎡
⎣cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0
0 0 1

⎤
⎦

Ry(ψ) =
⎡
⎣cos(ψ) 0 − sin(ψ)

0 1 0
sin(ψ) 0 cos(ψ)

⎤
⎦

Rx(θ) =
⎡
⎣1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎤
⎦. (16)

The function P : [0, 2ι)3 → SO(3) is surjective and so
R = P(x)R0 can take any matrix value in SO(3), [22].

The above converts the original optimization problem to the
one of deriving x such that P(x)R0 = R∗. To proceed further,
it is convenient to define the cost as a function of x , that is

J2(x) � J1(P(x)R0) = 1

2
VR(x)

T BVR(x) (17)

where VR(x) = vec(R(x)) = vec(P(x)R0).
Assume that R0 and R = P R0 are close to R∗, i.e.,

�R0 − R∗�F and �R − R∗�F are small.5 Then, P is close
to the identity matrix, and so there exists a small x such
that P = P(x), [22]. This along with the smoothness of the
functions involved motivates the use of minimization methods
based on the Taylor expansion, such as NR.

To minimize J2(x), we have to derive x such that
∂ J2/∂x = 0. To do so, we start from x = 0, implying
P(x) = I and cost J2(0), apply one iteration (or more) of
NR method, and derive the new value of x as

x = −
(
∂2 J2

∂x∂x T

∣∣∣∣
x=0

)−1
∂ J2

∂x

∣∣∣∣
x=0
. (18)

The cost gradient is

∂ J2

∂x
=

[
∂ J2

∂φ
,
∂ J2

∂ψ
,
∂ J2

∂θ

]T

(19)

5With respect to the Frobenius or any other rotational invariant matrix norm.

and the Hessian matrix is symmetric and written as

∂2 J2

∂x∂x T
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2 J2

∂φ2

∂2 J2

∂φ∂ψ

∂2 J2

∂φ∂θ
∂2 J2

∂φ∂ψ

∂2 J2

∂ψ2

∂2 J2

∂ψ∂θ
∂2 J2

∂φ∂θ

∂2 J2

∂ψ∂θ

∂2 J2

∂θ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(20)

because of the continuity of all second derivatives.
We derive the first and second derivatives at x = 0,

analytically recalling that BT = B . From (17) and for s,
q ∈ {φ,ψ, θ}, we have that

∂ J2

∂q
= V T

R B
∂VR

∂q
(21)

and

∂2 J2

∂s∂q
= ∂V T

R

∂s
B
∂VR

∂q
+ V T

R B
∂2VR

∂s∂q
. (22)

From the definition VR = vec(R), we have that

∂VR

∂q
= vec

(
∂R

∂q

)
(23)

and

∂2VR

∂s∂q
= vec

(
∂2 R

∂s∂q

)
. (24)

Moreover, since R(x) = P(x)R0 = Rz(φ)Ry(ψ)Rx (θ)R0,
from (16), it is

∂R

∂q

∣∣∣∣
x=0

= Pq R0 (25)

for q ∈ {φ,ψ, θ}, and

∂2 R

∂s∂q

∣∣∣∣
x=0

= Ps Pq R0 (26)

for the ordered pairs

(s, q) ∈ {(φ, φ), (φ,ψ), (φ, θ), (ψ,ψ), (ψ, θ), (θ, θ)} (27)

where

Pφ =
⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦

Pψ =
⎡
⎣0 0 −1

0 0 0
1 0 0

⎤
⎦

Pθ =
⎡
⎣0 0 0

0 0 −1
0 1 0

⎤
⎦. (28)

Combining (23) with (25) and (24) with (26), respectively,
gives

∂VR

∂q

∣∣∣∣
x=0

= (I3 ⊗ Pq)VR0 (29)

and

∂2VR

∂s∂q

∣∣∣∣
x=0

= (
I3 ⊗ (Ps Pq)

)
VR0 (30)
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where VR0 = vec(R0). Finally, replacing (29) into (21) gives

∂ J2

∂q

∣∣∣∣
x=0

= V T
R0

B(I3 ⊗ Pq)VR0 . (31)

Similarly, replacing (29) and (30) into (22) gives

∂2 J2

∂s∂q

∣∣∣∣
x=0

= V T
R0
(I3 ⊗ PT

s )B(I3 ⊗ Pq)VR0

+V T
R0

B
(
I3 ⊗ (Ps Pq)

)
VR0 . (32)

Note that (32) is valid (only) for the six (s, q) pairs in (27).
The proper selection of the initial matrix R0 is crucial for

achieving (fast) convergence. To this purpose, we recommend
using as R0 the approximate closed-form solution of (2)
derived in [19]. This is done as follows. Using A defined in (8),
we calculate the 9 × 1 vector (AT A)−1 AT 1 and split it into
three 3 × 1 vectors h1, h2, and h3, that is

(AT A)−1 AT 1 = [
hT

1 hT
2 hT

3

]T
. (33)

Then, using h1, h2, and h3, we form the matrix

H = [
h1 h2 h3

]
. (34)

We consider an SVD of matrix H , i.e., H = U�V T ,
where U, V ∈ O(3) and � is the diagonal matrix � =
diag(σ1, σ2, σ3), with σ1 ≥ σ2 ≥ σ3 > 0, assuming that
rank(A) = 9. The approximation R0 ∈ SO(3) of the axes
rotation matrix R∗ is given by

R0 = sgn(det(H ))U V T . (35)

For more information about the derivation of (35), the reader
is referred to [19].

The complete proposed method using only one analytical
iteration of the NR (which is typically sufficient) is summa-
rized in Algorithm 1.

Algorithm 1 Proposed Method
1: Use normalized gk and mk to form matrix A in (8)
2: Verify that A is of full rank
3: Use (33), (34) and (35) to calculate R0 as in [19]
4: Calculate the gradient vector using (19) and (31)
5: Calculate the Hessian matrix using (20) and (32)
6: Calculate x from (18)
7: Use x to calculate P(x) using (15) and (16)
8: Calculate R = P(x)R0 ∈ SO(3).

IV. EVALUATION OF THE PROPOSED METHOD

Let R A
M ∈ SO(3) be the frame transformation matrix

rotating the magnetometer’s coordinate frame into the
accelerometer’s one. To evaluate the accuracy and computa-
tional efficiency of the proposed method, we have to compare
the derived axes alignment matrix, R, to the actual one, R A

M ,
which we assume to know accurately in advance.

However, the accuracy with which one can measure R A
M

using laboratory equipment is orders of magnitude worse
than the expected accuracy of the proposed method. There-
fore, we artificially generated 1000 datasets with preselected

TABLE I

MEAN VALUE AND VARIANCE OF THE ERROR ε OF THE PROPOSED
METHOD, A GRADIENT DESCENT (GD)-BASED METHOD, AN

NR-BASED METHOD, AN NR-BASED METHOD INITIALIZED

USING THE SOLUTION OF [19], AND THE

SINGLE-STEP METHOD OF [19] ALONE

R A
M ∈ SO(3), according to the calibration procedure intro-

duced in [1]. This included the random errors (noise) of the
sensors and the associated instrumentation according to typical
characteristics of commercial devices.

To generate the 1000 datasets, we first randomly generated
1000 values of RM

A = (R A
M )

T ∈ SO(3). For every one of them,
we have followed the following steps.

1) First, we generated two random unit vectors, g A
1

and m A
1 , representing the gravity and the magnetic field

in the accelerometer’s {A}-frame.
2) We rotated both vectors 11 times according to [1] to

generate {g A
i }12

i=2 and {m A
i }12

i=2.
3) To express the magnetic field vectors {m A

i }12
i=1 in the

magnetometer’s {M}-frame, we rotated them once more
using RM

A to get {m M
i }12

i=1
4) Finally, a sequence of band-limited white noise was

added to the dataset following typical sensors’ and
measuring procedure’s specifications.

We compare our method’s accuracy and execution time
to those of: 1) a gradient descent based method using (3);
2) an NR-based method using (3); 3) an NR-based method
using (3), initialized using the solution of the single-step
method presented in [19]; and 4) the single-step method
of [19] alone.

Each of the aforementioned methods was run for every one
of the 1000 generated datasets. For the iterative methods, based
on the gradient descent and the NR, the parameter λ of the cost
function (3) was set to λ = 1000 to ensure the orthogonality of
the derived matrix R according to Figs. 4 and 6. We compared
the derived matrix R, of each method, with the true rotation
matrix R A

M = (RM
A )

T
used to generate the data. To quantify

their difference, we used the error metric

ε = ∥∥R − R A
M

∥∥. (36)

In the ideal case of perfect axes alignment, i.e., R = R A
M ,

it is ε = 0. The mean value (με) and variance (σ 2
ε ) of ε for

every method are presented in Table I.
As shown in Table I, the gradient descent and the NR-based

methods alone yield accurate results, however requiring sig-
nificant computational effort. The single-step method of [19]
has much better computational efficiency, but it is a little less
accurate. The proposed method excels in both accuracy and
computational efficiency. It provides accurate results, similar
to those of the computationally heavy, iterative optimization
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TABLE II

PERFORMANCE CHARACTERISTICS OF THE ACCELEROMETER (A)
AND THE MAGNETOMETER (M) INCLUDED IN THE

DESIGNED MEASUREMENT DEVICE

TABLE III

RESIDUAL ERROR OF THE PROPOSED METHOD, A GRADIENT DESCENT
(GD)-BASED METHOD, AN NR-BASED METHOD, AN NR-BASED

METHOD INITIALIZED USING THE SOLUTION OF [19], AND THE

“SINGLE-STEP” METHOD OF [19] EVALUATED USING FIVE

DIFFERENT DATASETS (D1–D5) OF REAL SENSORS’ DATA

methods, while it requires significantly less computational
resources.

While artificially generated data are appropriate to evaluate
the accuracy and computational efficiency of the proposed
algorithm, they do not incorporate the nonidealities expected
in real-world measurements. Although we included random
noise in the artificially generated data, other errors, such as
residual calibration errors (of the sensors individually), could
degrade the proposed algorithm’s performance.

To demonstrate the resilience of the proposed algorithm to
such effects, we recorded five different datasets of accelerom-
eter’s and magnetometer’s measurements. To this end, we used
a measurement device based on the LSM9DS1 system-
in-package by STMicroelectronics, which includes both a
three-axis accelerometer and a three-axis magnetometer. Some
important performance characteristics of the two sensors and
the developed measurement device are presented in Table II.

All datasets were recorded away from magnetic disturbances
(the constant earth’s magnetic field was used as reference)
following the calibration procedure introduced in [1]. Specif-
ically, to record each dataset, we placed the measurement
device by hand in 12 different orientations, as suggested in [1].
In each orientation, we recorded several measurements, while
the sensor was still and used averaging to obtain 12 pairs
of accelerometer’s and magnetometer’s measurements corre-
sponding to the 12 orientations.

In this case of real sensors’ data, the true matrix R A
M is not

known. Thus, in order to evaluate the accuracy of the proposed
algorithm and compare it to that of the existing ones, we use
the cost-plus-penalty function of (3) as a metric of the residual
error.

In Table III, we used five different datasets (D1–D5) to
compare our method’s residual error to that of: 1) a gradient

descent based method using (3); 2) an NR-based method
using (3); 3) an NR-based method using (3), initialized using
the solution of the single-step method presented in [19]; and
4) the single-step method of [19].

Again, for the iterative methods, based on the gradient
descent and the NR, the parameter λ of the cost function (3)
was set to λ = 1000, to ensure the orthogonality of the derived
matrix R according to Figs. 4 and 6.

V. CONCLUSION

This work introduced an analytical method for aligning
the axes of a three-axis accelerometer and a three-axis
magnetometer. The method guarantees the orthogonality of
the axes-alignment rotation matrix and achieves best-of-class
accuracy, while it excels in computational efficiency by being
two orders of magnitude faster than existing methods of the
same accuracy. Moreover, it does not require any parametriza-
tion in contrast to optimization-based methods depending on
proper parametrization to converge to feasible solutions. The
advantages of the proposed method source from the differ-
ent formulation of the axes alignment optimization problem
introduced.
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