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A Fast and Accurate Accelerometer and
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Abstract—A computationally efficient algorithm for axes
alignment of a 3-axis accelerometer and a 3-axis magnetome-
ter is introduced. The proposed algorithm applies when the
two sensors are fixed on the same rigid platform and indi-
vidually calibrated. It exploits the magnetic inclination phe-
nomenon to derive both the inclination angle, and, the axes
alignment rotation matrix. It is more than 50 times faster
than the existing algorithms based on the same principle and
using the Newton-Raphson or the gradient descent methods.
The algorithm’s accuracy and computational efficiency are
demonstrated using multiple measurement sets as well as
simulated data sets.

Index Terms— Accelerometer, axes alignment, inertial sensors, magnetic inclination, magnetometer.

I. INTRODUCTION

ACCELEROMETERS and magnetometers are typically
used in combination in a broad variety of applications.

Popular application fields include, and are not limited to,
navigation [1], attitude estimation [2] and image stabilization
[3]. Their wide use was enabled by the advancement of
micro-electro-mechanical (MEMS) technology over the past
years. Small-size, low-cost MEMS accelerometers and magne-
tometers are nowadays embedded in many commercial devices
(smartphones, activity trackers, etc) further broadening their
application span.

When the two sensors are used together, the alignment of
their sensitivity axes is of major importance. Thus, except
from the individual calibration of each sensor, an extra axes
alignment procedure is mandatory. When the two sensors are
in different packages, the axes misalignment is more evident
and it is mainly caused by the placement of the sensors’
packages on the common rigid platform. Even when the two
sensors are built into the same package, the soft-iron distortion,
often caused by the surrounding electronic components and the
enclosure, significantly distorts the measured magnetic field
vector causing a misalignment between the two sensors.
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Fig. 1. Magnetic inclination [4].

Existing works deal with the axes alignment either as
an independent problem [4]–[6] or as part of a calibration
procedure [7]–[11]. The authors in [7], [8], [10], [12] propose
a magnetometer calibration algorithm incorporating the axes
alignment step. In [4], [5], [13] the axes alignment is part of an
inertial (accelerometer and gyroscope) and magnetic sensors’
calibration algorithm. An accelerometer - magnetometer cali-
bration algorithm, also accounting for the axes misalignment
is proposed in [6], [9], [11]. Note that in [7]–[11], [13] the
calibration and axes alignment are fused together while in
[4]–[6] the alignment step is a discrete part of the calibration
algorithm.

While their algorithmic implementation and computational
efficiency vary significantly, all the aforementioned algorithms
are based on two fundamental approaches; they either use
a calibrated inertial sensor (accelerometer or gyroscope) as
reference (e.g. [5], [7], [10], [12]), or, exploit the magnetic
inclination to align the axes of the two sensors (e.g. [4], [8]).

Magnetic inclination (or magnetic dip) is the angle between
the horizon and the Earth’s magnetic field lines as shown in
Figure 1. It varies with location and time and the sin(·) of it
equals the normalized inner product of the gravity vector g
(in m/s2) and the magnetic field vector m (in T esla).1

sin(δ) = gT m

�g��m� (1)

1All norms in this paper are Euclidean norms unless it is indicated otherwise.
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When a gyroscope is used as a reference, the calibration and
the axes alignment are usually formulated as an estimation
problem which is typically solved using Kalman filter [7].
When the magnetic inclination is exploited, the axes alignment
is formulated as an optimization problem which is usually
solved using the gradient descent [4] or the Newton-Raphson
[6] methods implying increased computational burden and
potential convergence issues.

Accelerometers and magnetometers are widely used in
embedded low-cost devices with very limited hardware
resources. In such cases, the computational efficiency of the
calibration and axes alignment algorithms is of major impor-
tance as they have to be executed quickly on a microcontroller
or on a basic microprocessor. To that purpose, we propose a
two-phases computationally efficient, iterative algorithm for
aligning the axes of a 3-axis accelerometer and a 3-axis
magnetometer. It is more than 50 times faster than similar
algorithms in the literature and requires no special piece of
measurement equipment.

Using a set of measurements of the two sensors, and
exploiting the magnetic inclination, the proposed algorithm
calculates both the axes alignment rotation matrix and the
magnetic inclination angle by solving a computationally-light
least-squares problem and then using a single iteration of
the Newton-Raphson method. The proposed algorithm applies
when the two sensors are individually calibrated and fixed on
the same rigid platform.

The algorithm is tested using both experimental
measurements and simulated data. Finally, its convergence
and efficiency are compared to existing algorithms using
the standard iterative methods i.e. gradient descent and
Newton-Raphson.

The rest of the paper is organized as follows.
In Section II, the axes alignment is formulated as an
optimization problem. The proposed algorithm is presented
in Section III. The evaluation of the algorithm using both
experimental measurements and simulated data is done in
Section IV. Finally, the conclusions are drawn in Section V.

II. PROBLEM FORMULATION

Consider a 3-axis accelerometer and a 3-axis magnetometer,
both fixed on the same rigid platform, and denote their
coordinate frames as {A} and {M} respectively.2 Note that
in the following analysis, the two sensors are assumed to be
individually calibrated.

Now consider a set of K measurements of each sensor,
captured while the sensors’ platform is still in K differ-
ent orientations respectively and away from magnetic distur-
bances. The measurements of the accelerometers are naturally
expressed in the {A}-frame while those of the magnetometer
are expressed in the {M}-frame. They are denoted as g A

k and
mM

k respectively, for k = 1, 2, . . . , K .
Let the gravity vector g and magnetic field vector m be

expressed in a fixed inertial coordinate frame {I }. We express
both sensors’ measurements in the {A}-frame as

g A
k = Qk g and m A

k = Qkm, k = 1, 2, . . . , K (2)

2Both coordinate frames are assumed to be right-handed.

where Qk ∈ SO(3), k = 1, 2, . . . , K is the frame transforma-
tion matrix from the {I }-frame to the {A}-frame corresponding
to the kth orientation. Combining (1) and (2), we can calculate
the inclination angle using the sensors’ measurements

sin(δ)= (g A
k )T Qk QT

k m A
k

�QT
k g A

k ��QT
k m A

k � = (g A
k )T m A

k

�g A
k ��m A

k � , k =1, 2, . . . , K

(3)

where we exploited the orthogonality of Qk and the rotational
invariance of the Euclidean norm.

Let R A
M ∈ SO(3) be the frame transformation matrix

from the {M}-frame to the {A}-frame and mM
k be the

magnetometer’s measurement in the {M}-frame. Then,
the magnetometer’s measurement, expressed in the {A}-frame,
is written as

m A
k = R A

M mM
k , k = 1, 2, . . . , K (4)

Substituting (4) in (3) and using again the rotational invariance
of the Euclidean norm, we get

sin(δ) = (g A
k )T R A

M mM
k

�g A
k ��mM

k � , k = 1, 2, . . . , K (5)

In (5), g A
k and mM

k are the known accelerometer’s and
magnetometer’s measurements, respectively, while both R A

M
and inclination angle, δ, are unknown. A standard approach to
derive them is to form and solve the following optimization
problem [4], [6]

minimize
R A

M ,δ

K∑
k=1

(
sin(δ) − (g A

k )T R A
M mM

k

�g A
k ��mM

k �

)2

subject to R A
M ∈ SO(3)

δ ∈
[
−π

2
,
π

2

] (6)

Solving (6) is typically done using either the gradient
descent or the Newton-Raphson methods. Both are compu-
tational costly; gradient descent typically requires hundreds
of iterations to converge while Newton-Raphson, although it
converges faster, it requires the calculation of the Hessian
matrix in every step.

III. THE PROPOSED ALGORITHM

The proposed algorithm is executed in two phases. In the
first phase, an estimate of the axes alignment rotation matrix
R A

M and the sine of the inclination angle, sin(δ), is derived in
a closed-form. Then, in the second phase, the derived R A

M and
sin(δ) are used as a starting point for the Newton-Raphson
method which rapidly (in 1 iteration) converges to more
accurate estimates.

For the following analysis it is assumed that both the
accelerometer and the magnetometer have already been indi-
vidually calibrated. For notational convenience, in the rest of
this paper we drop the superscripts from the field vectors and
both the subscript and superscript from the axes alignment
matrix i.e. gk � g A

k , mk � mM
k and R � R A

M .
In addition, without loss of generality, we assume that

the gravity and the magnetic field measurement vectors are
normalized i.e. �gk� = �mk� = 1, k = 1, 2, . . . , K . Finally
we define s � sin(δ).
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A. Derivation of R and s Estimates in Closed-Form
Given the aforementioned assumptions, (5) is written as

s = gT
k Rmk, k = 1, 2, . . . , K (7)

Using the identity vec(AX B) = (BT ⊗ A)vec(X), where ⊗
denotes the Kronecker’s product [14], from (7) we get

s = (mT
k ⊗ gT

k )vec(R), k = 1, 2, . . . , K (8)

Equation (8) is written in the more convenient matrix form

s 1 = A vec(R) (9)

where 1 is the K × 1 vector of ones and

A �

⎡
⎢⎢⎢⎣

(m1 ⊗ g1)
T

(m2 ⊗ g2)
T

...

(mK ⊗ gK )T

⎤
⎥⎥⎥⎦ . (10)

In (9), the K × 9 matrix A, which is formed using the
measurements of the two sensors is known, whereas both the
sine of the inclination angle, s, and the alignment matrix in
vector form, vec(R), are unknown. To proceed, it is assumed
that the sine of the inclination angle, s, is nonzero, and
furthermore, that matrix A is of full rank.

We solve (9) for vec(R) in a least square sense

vec(R) = s
(

AT A
)−1

AT 1. (11)

Splitting
(
AT A

)−1
AT 1 into three 3 × 1 vectors h1, h2 and

h3, such that [hT
1 hT

2 hT
3 ]T = (

AT A
)−1

AT 1, we form the
following matrix

H = [h1 h2 h3]. (12)

Then, from (11) and (12) we have

R = s H (13)

Note that in (13), H is formed using the sensors’
measurements and it is known but s is unknown.

Consider a Singular Value Decomposition (SVD) of H i.e.
H = U�V T where U, V ∈ O(3) and � = diag(σ1, σ2, σ3)
with σ1 ≥ σ2 ≥ σ3 > 0 .3 Then (13) gives

R = sU�V T (14)

With ideal (noiseless) measurements it is R ∈ SO(3) implying
det(R) = 1. In the more realistic case, when real noisy
measurements are used, R is expected to be close to but not
necessarily in SO(3). However it is reasonable to assume that
even with noisy measurements, it is det(R) > 0 and thus (13)
implies that sign(s) = sign(det(H )). Using the last one and
(13) we derive the following alternative SVD of R,

R = Û�̂V T (15)

with

Û = sign (det(H ))U and �̂ = |s|�, (16)

3From (13) it is 1 = det (R) = s3 det (H ) implying σ3 > 0. Due to
continuity of the functions involved, this is also true for real measurements
with acceptable noise levels.

for which

det (Û V T ) = 1. (17)

Since, with real data, R in (15) is close to but not necessarily
in SO(3), we derive matrix R̂ which is the closest orthogonal
matrix to R in the following sense

R̂ = argmin
R̂∈S O(3)

�R − R̂�F . (18)

This is a variation of the Orthogonal Procrustes Problem [15],
[16], the unique solution of which is given by

R̂ = Û V T (19)

where det(R̂) = 1 is implied by (17).
An estimate of the inclination angle, can now be derived by

replacing R by R̂ in (7) and averaging, i.e.,

ŝ = 1

K

K∑
k=1

gk R̂mk (20)

This concludes the first phase of the proposed algorithm.

B. Improving Accuracy With Newton-Raphson Method
In order to improve the estimation’s accuracy, we use

the derived R̂ ∈ SO(3) and ŝ from (19) and (20)
respectively as starting point for the Newton-Raphson method.
To apply the Newton-Raphson method, we write the following
cost-plus-penalty function, associated with (6) which captures
both the axes alignment error and the divergence of R from
orthogonality as the algorithm progresses.

J (R, s) = λ1�RRT − I�2
F + λ2

K∑
k=1

(
s − gT

k Rmk

)2
(21)

Note that the weights λ1, λ2 > 0 are typically set to one.
To ensure that R ∈ SO(3) we should also include

(det(R)−1)2 as an extra term to (21), forcing the determinant
of R to be equal to one. However, since the starting point R̂
of the algorithm is typically close to the final solution, this is
not required, assuming data of sufficient quality.

The implementation of the Newton-Raphson method
is presented in Appendix I where the required Hessian
matrix is provided. The proposed method is summarized in
Algorithm 1.

IV. ALGORITHM’S EVALUATION

In order to evaluate the convergence and the computational
efficiency of the proposed algorithm, we performed a series of
experimental measurements. In addition to that, multiple sim-
ulated measurements were used to demonstrate the algorithm’s
accuracy.

A. Measurement Acquisition Procedure
The 12-step measurement acquisition procedure introduced

in [4] was used to record four datasets. More specifically
we placed the sensors’ platform in the 12 still orientations
proposed in [4] recording K = 12 accelerometer’s and
magnetometer’s measurements respectively. As mentioned in
[4], no special piece of equipment was used and the required
sensors’ placement was done by hand. In order to increase the
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Algorithm 1 The Proposed Algorithm
Phase 1

Step 1: Use the K accelerometer’s, gk , and
magnetometer’s, mk , measurements to form
the K × 9 matrix A in (10).

Step 2: Use (11) and (12) to form the 3 × 3 matrix H .
Step 3: Assume an SVD of H i.e. H = U�V T where

U, V ∈ O(3) and � = diag(σ1, σ2, σ3).
Step 4: Use (16) and (19) to calculate R̂.
Step 5: Use (20) to calculate ŝ.

Phase 2

Step 6: Minimize (21) using Newton-Raphson method
with (R̂, ŝ) as the starting point.

Fig. 2. Convergence of the proposed algorithm for the four recorded
datasets.

measurements’ accuracy, we used multiple measurements and
averaging. We repeated the measurement acquisition procedure
four times and recorded four different datasets. Note that
all the measurements took place on the same day, inside
the campus of the National Technical University of Athens,
Greece, away from magnetic disturbances.

B. Algorithm’s Convergence and Computational
Efficiency

The convergence of the proposed algorithm for the four
recorded datasets is presented in Figure 2. Using R̂ and ŝ
from phase 1 as the starting point of the algorithm, the error
converges after just one iteration of the Newton-Raphson
method for all four datasets.

We compare the proposed algorithm’s computational
efficiency, to that of the standard approaches in the literature
using the gradient descent or the Newton-Raphson method
to minimize (6). In Figures 3a and 3b the convergence and
the execution time of the three methods, are presented. The
proposed algorithm converges after just 2 iterations and about
0.5 ms. Newton-Raphson requires 75 iterations and about
32 ms, and, gradient descent requires 200 iterations and 47 ms
to achieve the same accuracy.

In Figure 3, the convergence of the error and the execution
time of the three algorithms are presented for a single dataset
and a single run. To provide a better indication about the algo-
rithms’ performance, we used all four recorded datasets and
a total of 400 runs of each algorithm (100 runs per dataset).

Fig. 3. Performance comparison between the proposed algorithm and
the standard methods used in the literature.

TABLE I
MEAN EXECUTION TIME OF THE PROPOSED ALGORITHM FOR

400 RUNS COMPARED TO THE MEAN EXECUTION TIME OF

NEWTON-RAPHSON AND GRADIENT DESCENT

BASED APPROACHES (ALL ACHIEVING

THE SAME FINAL ERROR)

The mean execution time (M.E.T.) of each algorithm is pre-
sented in Table I. As seen in Table I, the proposed algorithm
(P) is 54 times faster than the Newton-Raphson (NR) and
75 times faster than the gradient descent (GD).

C. Algorithm’s Accuracy
Since the recorded datasets are real measurements, they

incorporate the non-idealities of a real system, e.g., noise,
quantization and residual calibration errors of the accelerom-
eter and the magnetometer. Therefore, they are appropriate to
demonstrate the convergence and the computational efficiency
of the proposed algorithm in real world applications.

On the other hand, since the misalignment of the two sen-
sors is not known, the algorithm’s accuracy cannot be properly
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TABLE II
MEAN VALUE AND VARIANCE OF THE EULER ANGLE REPRESENTATION OF THE RESIDUAL ALIGNMENT ERROR E FOR FIVE DIFFERENT

TEST-CASES USING THE PROPOSED ALGORITHM

evaluated using experimental data. To this purpose, we used
simulated accelerometer’s and magnetometer’s measurements.

Simulated measurements were generated following the mea-
surement acquisition procedure of [4]. More specifically, two
random unit vectors representing the gravity, g A

1 , and the
magnetic field, m A

1 , vectors, expressed in the {A}-frame,
were first generated. Then they were both rotated 11 times
according to [4] resulting in the {A}-frame measurement
vectors g A

k and m A
k , k = 2, 3, . . . , 12. Finally the magnetome-

ters’ measurements were simultaneously rotated once more
using a selected rotation matrix RM

A to get the corresponding
{M}-frame measurement vectors mM

k , k = 1, 2, . . . , 12.
The accuracy of the proposed algorithm was evaluated

for five different cases of selected rotation matrices RM
A ,

corresponding to a misalignment of a few degrees, to the
extreme case of a 90◦ misalignment between the sensors’ axes.
For every case, two different simulations were performed;
one using ideal, noiseless measurements, and one using noisy
measurements resulting by adding band-limited white noise
to the noiseless ones. The noise characteristics were chosen
to match those of the measurement platform used for the
experimental measurements. Every simulation consisted of
1000 runs of the proposed algorithm. In each run we used
different (random) initial gravity, g A

1 , and magnetic field,
m A

1 , vectors, as well as different sequences of additive noise
samples.

The convergence of the proposed algorithm for 1000 runs
using noiseless and noisy simulated measurements is pre-
sented in Figure 4. In the case of the noiseless measurements,
the algorithm converges to an extremely small value within
one step (phase 1) indicating perfect alignment between the
sensors’ coordinate frames. When the more realistic, noisy
measurements, are used, the error converges to a much larger
value, indicating a residual alignment error. We define the
residual alignment error matrix, E , as the product between
the original rotation of the {M}-frame, RM

A , and the derived
rotation matrix R,

E = RM
A R (22)

In the ideal case, where R = R A
M , the error E is equal to

the identity matrix, representing zero rotation between the two
frames. The mean value, μE , and the variance, σ 2

E , of the Euler
angle representation of E for every test-case is presented in
Table II.

Fig. 4. Convergence of the proposed algorithm using noiseless (a) and
noisy (b) simulated data.

V. CONCLUSION

A computationally efficient algorithm for aligning a 3-axis
accelerometer and a 3-axis magnetometer was presented.
The proposed method exploits the magnetic inclination to
form a least-squares based iterative algorithm for the calcu-
lation of both the axes alignment matrix and the magnetic
inclination angle. Experimental results were used to demon-
strated its computational efficiency; the proposed algorithm
is about 55 times faster than the existing ones. Its accu-
racy was proved using several different datasets of simulated
measurements.
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Algorithm 2 Gradient Descent Based Algorithm
Step 1: Initialize R as I3 and s = 0 and form

x = [
vec(R)T s

]T
.

Step 2: Initialize t, a and β
Step 3: Calculate the gradient:

�x=-∇J(x)
Step 4: Choose step size:

While J (x + t�x) > J (x) + at∇ J (x)T �x
t:= βt

Step 5: Update x = x + t�x
Step 6: Calculate J (x)
Step 7: Repeat steps 3-6 until J (x) is sufficiently small

APPENDIX I
GRADIENT DESCENT AND NEWTON-RAPHSON

BASED ALGORITHMS

In this section, the implementation of the gradient descent
and Newton-Raphson based algorithms is described. In addi-
tion, the required gradient vector and Hessian matrix for apply-
ing the two methods are provided. To do so, for notational
purposes, we write the cost-plus-penalty function of (21) as

J (x) = �RRT − I�2
F +

K∑
k=1

(
s − gT

k Rmk

)2
(23)

i.e., instead of J (R, s) we write it equivalently as J (x) where
vector x is a different formation of the pair (R, s),

x =
[
vec(R)T s

]T
(24)

A. Gradient Descent Based Algorithm
To solve (6) using the gradient descent method we

implemented the gradient descent method incorporating the
backtracking line search according to [17] as shown in Algo-
rithm 2. The 10 ×1gradient vector is derived in a closed-form
as follows:

∇ J (x) �
[(

∂ J (x)
∂vec(R)

)T
∂ J (x)

∂s

]T

where

∂ J (x)

∂vec(R)
= −2

K∑
k=1

[(
s − gT

k Rmk

)
(mk ⊗ gk)

]

+4vec
(

RRT R − R
)

∂ J (x)

∂s
= 2

K∑
k=1

(
s − gT

k Rmk

)

B. Newton-Raphson Based Algorithm
To solve (6) using the Newton-Raphson method, we

implemented theNewton-Raphson method, incorporating the
backtracking line search according to [17] as shown in
Algorithm 3. The required 10 × 10 Hessian matrix is derived
in a closed-form as follows:

∇2 J (x) � ∂2 J (x)

∂x∂x T =
⎡
⎢⎣

∂2 J (x)
∂vec(R)∂vec(R)T

∂2 J (x)
∂vec(R)∂s

∂2 J (x)
∂s∂vec(R)T

∂2 J (x)

∂s2

⎤
⎥⎦

Algorithm 3 Newton-Raphson Based Algorithm
Step 1: Initialize R as I3 and s = 0 and form

x = [
vec(R)T s

]T
.

Step 2: Initialize t, a and β
Step 3: Calculate �x :

�x = − (∇2 J (x)
)−1 ∇J(x)

Step 4: Choose step size:
While J (x + t�x) > J (x) + at∇ J (x)T �x
t:= βt

Step 5: Update x = x + t�x
Step 6: Calculate J (x)
Step 7: Repeat steps 3-6 until J (x) is sufficiently small

where
∂2 J (x)

∂vec(R) ∂vec(R)T
=4

[
(RT R)⊗ I3+ I3⊗(RRT )+(RT ⊗R)A

]

−4I9 + 2
K∑

k=1

[
(mk ⊗ gk)(mk ⊗ gk)

T
]

∂2 J (x)

∂vec(R) ∂s
= −2

K∑
k=1

(mk ⊗ gk)

∂2 J (x)

∂s ∂vec(R)T
= −2

K∑
k=1

(mk ⊗ gk)
T

∂2 J (x)

∂s2 = 2K

and

A = [
e1 e4 e7 e2 e5 e8 e3 e6 e9

]T

where ek is the kth normal column vector in R
9.
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