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A Single-Step Method for Accelerometer and
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Abstract— In this work, we introduce a single-step method for
axes alignment of a three-axis accelerometer and a three-axis
magnetometer. The proposed method is based on the magnetic
inclination to derive the inclination angle and the axes alignment
rotation matrix, both in closed form. It is applied when the two
sensors are fixed on the same rigid platform and requires no
special piece of equipment. In contrast to the existing algorithms,
it does not rely on an iterative optimization or estimation
method; instead, it is executed in a single step. It is two
orders of magnitude faster than the existing iterative algorithms
based on the same principle. Multiple measurement sets are
used to demonstrate the algorithm’s computational efficiency,
while its accuracy is evaluated through a series of simulated
measurements.

Index Terms— Accelerometer, axes alignment, inclination, iner-
tial sensors, magnetometer.

I. INTRODUCTION

THE advancement of microelectromechanical (MEMS)
sensors over the past decades significantly reduced the

size and cost of accelerometers enabling their wider use. Along
with magnetometers, they are nowadays considered a key
component of several commercial electronic devices, such as
smartphones, activity trackers, alarm systems, and others. The
two sensors are commonly combined in several applications,
including navigation [1], attitude estimation [2], and human
motion tracking [3].

In such cases, except for the individual calibration of the
accelerometer and the magnetometer, an extra procedure to
align the sensitivity axes of the two sensors is required. The
misalignment between the sensors’ axes is caused by the
misalignment of the sensing element of each sensor with its
package, the mutual misalignment of the sensors’ packages,
and the soft-iron distortion of the magnetometer [4]. It is more
evident when the two sensors are in different packages, but it
is present even when they are built into the same chip.
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Fig. 1. Magnetic inclination.

In many cases, the axes alignment of the two sensors is part
of the calibration procedure, whereas in other ones, it is done
separately. Wu et al. [5], Kok et al. [6], and Kok and Schön [7]
proposed a magnetometer calibration algorithm incorporating
the axes alignment step. In [4] and [8], the axes alignment
is a part of an inertial (accelerometer and gyroscope) and
magnetic sensors’ calibration algorithm. An accelerometer–
magnetometer calibration algorithm also accounting for the
axes misalignment is proposed in [9]–[11]. Note that in [5],
[6], [10], and [11], the calibration and axes alignment are fused
together and cannot be done separately, whereas in [4], [8],
and [9], the alignment step is a discrete part of the calibration
algorithm.

While many different algorithms for axes alignment have
been proposed, most of them are based on two fundamental
approaches. The first one (see [5], [7], [8]) is to use a calibrated
gyroscope, as reference, to align the axes of a magnetometer
with those of an accelerometer and a gyroscope. The second
(see [4], [6]) is to exploit the magnetic inclination phenomenon
and use the measurements of the two sensors to align their
axes. It should be noticed that the second approach does not
require any piece of equipment, whereas for the first one,
a calibrated gyroscope is required.

Magnetic inclination (or magnetic dip) is the angle between
the horizon and the Earth’s magnetic field lines, as shown
in Fig. 1. It varies with location and time, and it is defined as
the normalized inner product of the gravity and the magnetic
field.1

sin(δ) = gT m

�g��m� . (1)

When the magnetic inclination is exploited, the axes align-
ment is formulated as an optimization problem, which is usu-
ally solved using gradient descent [4] or Newton–Raphson’s
[9] methods. Both approaches come with a disadvantage; their

1All norms in this article are Euclidean norms unless it is indicated
otherwise.
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solution is given in an iterative way. This implies a significant
computational burden and potential convergence issues.

In this work, we derive a closed-form solution for axes
alignment of a three-axis accelerometer and a three-axis mag-
netometer. The proposed method calculates the rotation matrix
that maps the magnetometer’s axes into the accelerometer’s
ones, in a single step, without using any iterative optimization
(e.g., Newton–Raphson and gradient descent) or estimation
(e.g., Kalman filter) algorithm. It applies when the two sensors
are fixed on the same rigid platform and are individually
calibrated. The evaluation of the proposed method is done
through a series of both real and simulated measurements.
To this end, we use the 12-step sequence of approximate
platform’s placements introduced in [4] and no special piece
of equipment.

The rest of this article is organized as follows. In Section II,
the problem of axes alignment is stated. The proposed method
is described in Section III. The method’s evaluation using
experimental data is presented in Section IV. A variation of
the proposed algorithm with improved accuracy is described
in Section V. Finally, conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

Consider a three-axis accelerometer and a three-axis mag-
netometer, both fixed on the same rigid platform, and denote
their coordinate frames as {A} and {M}, respectively.

Now, suppose that accelerometer’s measurement g A
k and

magnetometer’s measurement mM
k are taken simultaneously

when the rigid platform is still (only gravitational accelera-
tion), for k = 1, 2, . . . , K with K ≥ 9. Platform’s orientation
changes with k and every measured vector is expressed in the
coordinate frame of the corresponding sensor.

Let the gravity vector g and magnetic field m be expressed
in a fixed inertial coordinate frame2 {I }. For every k =
1, 2, . . . , K , there is a rotation matrix Qk ∈ SO(3) trans-
forming vectors from the {I }-frame to the {A}-frame. Then,
the gravity and magnetic field vectors expressed in the {A}-
frame are written as

g A
k = Qk g and m A

k = Qkm (2)

for k = 1, 2, . . . , K , respectively. Solving (2) for g and m and
replacing them in (1)

sin(δ) =
(
g A

k

)T
Qk QT

k m A
k∥∥QT

k g A
k

∥∥∥∥QT
k m A

k

∥∥ =
(
g A

k

)T
m A

k∥∥g A
k

∥∥∥∥m A
k

∥∥ (3)

for k = 1, 2, . . . , K , where we exploited the orthogonality of
Qk and the rotational invariance of the Euclidean norm.

In (3), the accelerometer’s measurement g A
k is known. The

measured magnetic field mM
k , however, is naturally expressed

in the {M}-frame, and therefore, we need to transform it to the
{A}-frame. To this end, let R A

M ∈ SO(3) be the transformation
matrix from the {M}-frame to the {A}-frame, and then

m A
k = R A

M mM
k , k = 1, 2, . . . , K . (4)

2All coordinate frames are considered to be right-handed.

Combining (3) and (4) and using again the rotational
invariance of the Euclidean norm, we get that

sin(δ) =
(
g A

k

)T
R A

M mM
k∥∥g A

k

∥∥∥∥mM
k

∥∥ , k = 1, 2, . . . , K . (5)

In (5), g A
k and mM

k are the known accelerometer’s and
magnetometer’s measurements, respectively, while both R A

M
and inclination angle, δ, are unknown. A standard approach to
derive them is to form and solve the optimization problem

min
R A

M ,δ

K∑
k=1

(
sin(δ) −

(
g A

k

)T
R A

M mM
k∥∥g A

k

∥∥∥∥mM
k

∥∥
)2

s.t. R A
M ∈ SO(3)

δ ∈
[
−π

2
,
π

2

]
. (6)

Solving (6) is typically done using either the gradient
descent or the Newton–Raphson methods (see [4], [9]). Both
are computational costly; gradient descent typically requires
hundreds of iterations to converge, whereas Newton–Raphson,
although it converges faster, it requires the calculation of the
Hessian matrix.

III. PROPOSED METHOD

In this work, instead of applying an iterative algorithm to
solve (6), we propose a single-step method for calculating R A

M
and δ. The proposed method provides a closed-form solution
resulting in significantly improved computational efficiency.

A. Method Description

For the rest of this article, and without loss of generality
we assume that the measured gravity and magnetic field
vectors are normalized, i.e., �g A

k � = �mM
k � = 1 for k =

1, 2, . . . , K , and we also set

sδ � sin(δ).

Furthermore, for notational simplicity, we drop the subscript
and superscript from R A

M , i.e., R ≡ R A
M .

To keep the analysis simple, we proceed assuming perfect
measurements and deal with the nonidealities of the real ones
when it is mandated.

Using identity vec(AX B) = (BT ⊗ A)vec(X) [12], where
⊗ is Kronecker’s product, and the unit magnitude assumption,
from (5), we get

sδ = (
mM

k ⊗ g A
k

)T vec(R) (7)

for k = 1, 2, . . . , K . Then, we express (7) in matrix form as

sδ 1 = A vec(R) (8)

where 1 is the K × 1 vector of ones and A is the following
K × 9 matrix:

A =

⎡
⎢⎢⎢⎢⎣

(
mM

1 ⊗ g A
1

)T(
mM

2 ⊗ g A
2

)T

...(
mM

K ⊗ g A
K

)T

⎤
⎥⎥⎥⎥⎦. (9)
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To proceed, we assume that the measurements are such
that A is of full rank, i.e., rank(A) = 9 (see Section III-B).
This along with the fact that vec(R) �= 0, since R ∈ SO(3),
and (8) imply that

sδ �= 0. (10)

We solve (8) (in the least squares sense [13])3 to derive

vec(R) = sδ(AT A)−1 AT 1 (11)

where the equation is approximate when the measurements are
real. Next, we split the 9 × 1 vector (AT A)−1 AT 1 into three
3 × 1 vectors h1, h2, and h3 as

(AT A)−1 AT 1 = [
hT

1 hT
2 hT

3

]T
. (12)

Defining matrix H as

H = [h1 h2 h3] (13)

and using (11)–(13) we express matrix R as
R = sδ H. (14)

Note that in (14), matrix H is known, but sδ is not.
To calculate sδ , we use the fact that R ∈ SO(3) and so
det (R) = 1 which combined with (14) gives det (H ) �= 0 and

1 = sδ
3 det (H ) (15)

and so

sδ = 1
3
√

det (H )
(16)

where the cubic root is constrained in the real numbers.
Although (16) is a compact expression, it is not as accurate

with real data as the one we derive from the fact that �R�F =√
3 for R ∈ SO(3) [12]. Combining it with (14) implies

|sδ| =
√

3

�H�F
(17)

and the sign of sδ can be recovered from (15) as

sgn(sδ) = sgn(det (H )). (18)

Consider a singular value decomposition (SVD) of matrix
H , i.e., H = U�V T , where U, V ∈ O(3) and � is the
diagonal matrix � = diag(σ1, σ2, σ3), with σ1 ≥ σ2 ≥ σ3 > 0
since det(H ) �= 0. It is �H�F = (σ 2

1 + σ 2
2 + σ 2

3 )1/2 [12],
which combined with (17) and (18) gives

sδ = sgn(det (H ))

√
3

σ 2
1 + σ 2

2 + σ 2
3

. (19)

By substituting (19) into (14), we get R, which ideally
belongs to SO(3). When using real measurements, however,
R may be close to but not necessarily in SO(3). Thus, instead
of R, we derive and use the nearest special orthogonal matrix
R̂ ∈ SO(3) to R = sδ H defined as the solution of the
optimization problem

R̂ � argmin
Q∈S O(3)

�R − Q�F .4 (20)

3With real measurements, (7) is approximate and (8) is considered as a
least-squares problem with solution (11), where R is expected to be close to
but not necessarily in SO(3).

4�X�F = (tr(X∗ X))1/2, X ∈ Cn×m .

Algorithm 1 Proposed Method

1: Use normalized g A
k and mM

k to form matrix A in (9)
2: Verify that A is of full rank
3: Form matrix H in (13) using (12)
4: Derive an SVD, H = U�V T , � = diag(σ1, σ2, σ3)
5: Verify that σ3 > 0
6: Derive sδ from (19)
7: Derive R̂ from (22)

Even with real measurements, we expect that det(R) > 0,
which guarantees the uniqueness of the solution of the
orthogonal Procrustes problem [14] in O(3)

R̄ = argmin
Q∈O(3)

�R − Q�F . (21)

The solution of (21) is R̄ = sgn(sδ)U V T [14]. It can be
derived using the previously calculated SVD of H leading to
an SVD of R = (sgn(sδ)U)(|sδ|�)V T via (14).

Also, note that sgn(det(H )) = sgn(det(U V T )) which along
with (14) and (19) imply that det(R̄) = 1, and therefore, R̂ =
R̄ ∈ SO(3) is the unique solution of (20), i.e.,

R̂ = sgn(det(H ))U V T . (22)

The proposed method is summarized in Algorithm 1.
An alternative expression of (22) is R̂ = ±R(RT R)−1/2

where the square root is positive definite and the sign such
that det(R) = 1. Finally, note that the presented approach to
derive sδ and R̂ was selected due to its robust behavior when
applied to real measurements. Alternate approaches are briefly
mentioned in the Appendix.

B. Measurements Acquisition Procedure

The proposed method aligns the axes of a three-axis
accelerometer and a three-axis magnetometer. To this purpose,
one can consider the 12-step measurement acquisition proce-
dure in Fig. 2 [4]. The (X, Y, Z) coordinate system in Fig. 2
denotes the platform’s body frame (or the accelerometer’s
{A}-frame), whereas the (X̃ , Ỹ , Z̃) is the inertial coordinate
{I }-frame. The respective g A

k and mM
k , k = 1, 2, . . . , 12, are

measured, while the platform is still in each orientation.
Note that the orientations of the sensors’ platform in Fig. 2

are meant to be approximate, and no accuracy is needed.
Orientation and placement of the sensor can be done by hand
with an accuracy of about ±15◦ Euler degrees.

IV. ALGORITHM’S EVALUATION

In order to evaluate the convergence and the computational
efficiency of the proposed algorithm, we performed a series of
experimental measurements. In addition, simulated measure-
ments were used to demonstrate the algorithm’s accuracy.

A. Algorithm’s Convergence and Computational Efficiency

A series of experimental measurements following the pro-
cedure described in Section III-B was performed. Using them,
we compare the performance of the proposed algorithm to that
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Fig. 2. Recommended sequence of approximate orientations.

of the two popular iterative ones, based on the gradient descent
and the Newton–Raphson methods to solve (6).

As a metric of the alignment error, we use the following cost
plus penalty function, associated with (6), which also captures
the nonorthogonality of matrix R:

J (R, δ) =
K∑

k=1

(
sin(δ) −

(
g A

k

)T
RmM

k∥∥g A
k

∥∥∥∥mM
k

∥∥
)2

+ �RRT − I�2
F .

(23)

Note that in our method, the resulting matrix R̂ is always
in SO(3), and thus, the second term, �R̂ R̂T − I�2

F , in (23)
is always zero. For the existing methods, however, this is
not necessarily the case and this is why the second term is
included.

In Fig. 3(a), the alignment error of the proposed method is
compared to those of the gradient descent and the Newton–
Raphson-based methods. Fig. 3(b) shows the execution time
of the three methods as a function of the iteration number.

The proposed method achieves an alignment error of
about 7.4 × 10−4 in a total execution time of about 0.3 ms.

TABLE I

MET OF THE PROPOSED ALGORITHM FOR 400 RUNS
COMPARED TO THE MET OF NEWTON–RAPHSON

AND GRADIENT DESCENT-BASED METHODS

Fig. 3. Performance comparison between the proposed method and the
standard iterative methods. (a) Alignment error of the proposed single-step
method compared with the alignment error of the gradient descent and
Newton–Raphson solutions. The alignment error is evaluated in every iteration
step using J (R, δ) as in (23). (b) Execution time of the proposed single-
step method compared with the execution time of the gradient descent and
Newton–Raphson solutions parameterized on their iteration step.

Newton–Raphson achieves the same alignment error after 57
iterations and about 55 ms; it converges to a slightly smaller
alignment error (about 5.5 × 10−4) after about 80 iterations.
Gradient descent method requires 165 iterations and about
80 ms to achieve the proposed method’s alignment error,
while it also converges to a slightly smaller error (about
5.5 × 10−4) after about 230 iterations.

The execution time of the three approaches was measured
for a total of 400 runs using four different data sets. Gradient
descent and Newton–Raphson iterations were terminated when
they reached the proposed method’s accuracy. The mean exe-
cution time (MET) of each of them is presented in Table I. The
proposed algorithm is about 175 times faster than Newton–
Raphson and 270 times faster than gradient descent. All three
algorithms were executed in MATLAB running on a typical
quad-core, 8-GB RAM PC.
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TABLE II

MEAN VALUE AND VARIANCE OF THE EULER ANGLE REPRESENTATION OF THE RESIDUAL ALIGNMENT ERROR
MATRIX E FOR FIVE DIFFERENT ROTATION MATRICES USING THE PROPOSED ALGORITHM

TABLE III

MEAN VALUE AND VARIANCE OF THE EULER ANGLE REPRESENTATION OF THE RESIDUAL ALIGNMENT ERROR

MATRIX E FOR FIVE DIFFERENT ROTATION MATRICES USING THE PROPOSED ALGORITHM’S VARIATION

B. Algorithm’s Accuracy

Recorded measurements are appropriate to demonstrate the
convergence and the computational efficiency of the proposed
algorithm as they incorporate the nonidealities of a real-world
application, e.g., noise, quantization, and residual calibration
errors of the accelerometer and the magnetometer. On the
other hand, the misalignment of the two sensors is not
known, and thus, the algorithm’s accuracy cannot be evaluated
using recorded measurements. To this purpose, we used both
ideal (noiseless) and noisy simulated accelerometer’s and
magnetometer’s measurements.

Simulated measurements were generated following the mea-
surement acquisition procedure mentioned in Section III-B.
More specifically, two random unit vectors representing the
gravity g A

1 and the magnetic field m A
1 vectors, expressed in

the {A}-frame, were first generated. Then, they were both
rotated 11 times according to Fig. 2, resulting in the {A}-
frame measurement vectors g A

k and m A
k , k = 2, 3, . . . , 12.

The magnetometers’ simulated measurements were rotated
once more using the selected rotation matrix RM

A to get the
corresponding {M}-frame measurement vectors mM

k , k =
1, 2, . . . , 12. Finally, band-limited white noise was added
to the measurements. The noise characteristics were chosen
to match those of the measurement platform used for the
experimental measurements.

Using five different rotation matrices RM
A , we generated

1000 noiseless and 1000 noisy data sets for every rotation

matrix. In every data set, we used different (random) initial
gravity g A

1 and magnetic field m A
1 vectors as well as different

sequences of additive noise.
We define the residual alignment error matrix E as the

product of the original rotation of the {M}-frame RM
A with

the derived rotation matrix R̂, i.e.,

E = RM
A R̂. (24)

In the ideal case, where R̂ = R A
M ≡ (RM

A )
T

, the error E is
equal to the identity matrix, implying zero rotation between
the two frames.

Applying the proposed algorithm using the noiseless data
sets leads to perfect alignment between the sensors’ coordinate
frames, i.e., E = I for every data set. When the more realistic
noisy measurements were used, a small residual alignment
error was observed. The mean value μE and the variance σ 2

E of
the Euler angle representation of E for every selected rotation
matrix are presented in Table II.

V. IMPROVED-ACCURACY ALGORITHM VARIATION

As shown in Fig. 3, the proposed algorithm is two orders
of magnitude faster than the existing iterative ones. However,
both Newton–Raphson and gradient descent converge to a
slightly lower value of the cost function resulting in a little
better accuracy. In this section, a variation of the introduced
algorithm is presented, as a balance between computational

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 04,2021 at 09:58:08 UTC from IEEE Xplore.  Restrictions apply. 



9500307 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fig. 4. Performance comparison between the proposed algorithm and its
combination with the Newton–Raphson method. (a) Alignment error of the
proposed algorithm compared with the alignment error of its combination
with the Newton–Raphson method parameterized on their iteration step.
(b) Execution time of the proposed algorithm compared with the execution
time of its combination with the Newton–Raphson method parameterized on
their iteration step.

efficiency and accuracy. More specifically, we run the pro-
posed algorithm and then use the resulting matrix R̂ and
inclination angle δ as initial estimates for the Newton–Raphson
method. As shown in Fig. 4, when the Newton–Raphson
is initialized using the results of the proposed algorithm,
it converges after just one iteration and about 1 ms.

We used the four recorded data sets of Section IV-A and
run the proposed algorithm’s variation 100 times for every data
set. The MET for the 400 runs was about 1.15 ms. Although it
is about four times slower than the proposed algorithm 1, it is
still up to 100 times faster than the existing iterative algorithms
based on the Newton–Raphson and gradient descent methods.
Using the simulated measurements mentioned in Section IV-B,
we evaluated the algorithm’s residual alignment error matrix
E . The results shown in Table III demonstrate the increased
accuracy of the combination of the two methods compared
with the proposed algorithm alone.

VI. CONCLUSION

A single-step method for aligning the coordinate frames of
a three-axis accelerometer and a three-axis magnetometer was
presented. The proposed method exploits the magnetic incli-
nation to provide a closed-form expression for both the axes
alignment matrix and the inclination angle. Using experimental

results, we demonstrated that the proposed algorithm is about
two orders of magnitude faster than similar algorithms using
the gradient descent or the Newton–Raphson methods. Exper-
imental data demonstrated that although the proposed method
excels in computational efficiency, both Newton–Raphson and
gradient descent-based algorithms provided slightly increased
accuracy. As a balance between computational efficiency and
accuracy, we also proposed a combination of the introduced
method with the Newton–Raphson one. Although it is four
times slower than the introduced method, this variation pro-
vides increased accuracy and up to 100 times less execution
time than the Newton–Raphson alone.

APPENDIX

ALTERNATIVE WAYS TO DERIVE sδ

An alternate way to derive sδ , instead of using (19), is pre-
sented. This approach is also based on the fact that when
perfect measurements are considered, it is R ∈ SO(3). Using
this fact, we search for sδ that minimizes the distance of
R = sδ H from orthogonality. To this purpose, we define the
cost function

J (sδ) = �RT R − I�2
F (25)

and form the following optimization problem to calculate sδ

min
sδ∈[−1,1] J (sδ). (26)

Using the definition of the Frobenius norm, we write (25) as

J (sδ) = tr
(
(RT R − I )T (RT R − I )

)
. (27)

Replacing (14) in (27), a solution of (26) is given in a closed
form in the following by solving d J (sδ)/dsδ = 0,

sδ = sgn(det (H ))

√
tr(H T H )

tr(H T H H T H )
(28)

where the sign of sδ has been determined using (18). Using
an SVD of H , i.e., H = U�V T , where U, V ∈ O(3) and �
is the diagonal matrix � = diag(σ1, σ2, σ3), with σ1 ≥ σ2 ≥
σ3 > 0, we rewrite (28) in for form

sδ = sgn(det (H ))

√
σ 2

1 + σ 2
2 + σ 2

3

σ 4
1 + σ 4

2 + σ 4
3

. (29)
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