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Abstract—Single-Bit Nyquist-rate quantization of sinewaves with 
random dithering is studied as a means for all-digital frequency 
synthesis. Quantizer’s output spectrum is analytically derived and 
related to the cumulative distribution function of the random dither 
formed by independent and identically distributed random variables. 
Necessary and sufficient conditions for spurs-free output are derived. 
The noise floor level due to random dithering is derived analytically 
and the output dynamic range is defined. The trade-off between 
selective frequency-spurs presence and dynamic range improvement 
is studied. Several MATLAB examples illustrate the theory and its 
applications.  
 

Index Terms—Clock generation, digital-to-analog converter, 
digital-to-frequency converter, direct digital synthesis, frequency 
spurs, quantization. 

I. INTRODUCTION 

ver the past few years the interest in digital-intensive and 
all-digital frequency synthesis has been revitalized due to 

the challenges in traditional analog-RF design caused by the 
reduced power supply voltage and co-integration with digital 
engines in standard-CMOS processes  [1]- [29]. Moreover 
digital-intensive frequency synthesizers are benefited by the 
automated design, verification and layout tools available for 
digital circuits, and can be migrated to newer IC technologies 
with less effort than their traditional analog counterparts  [2]. 

Direct Digital Synthesizers (DDS)  [31]- [33] and All-Digital 
Phase-Locked Loops (ADPLL)  [2] are the two dominant 
digital-intensive frequency synthesis architectures with many 
applications and realizations. Despite their success and impact 
on modern IC design, both of them require critical analog and 
mixed signal blocks like the Digital to Analog Converter 
(DAC) of the DDS, the Time-to-Digital Converter (TDC) and 
the Digital Control Oscillator (DCO) of ADPLL.  

Eliminating these last mixed-signal/analog blocks in 
frequency synthesizers implies the extreme requirement of 
generating single-bit digital signals of desirable sinewave-like 
spectrum using only a digital circuit with a reference clock. 
Efforts towards this can be traced at least thirty years back 
 [34]- [36]. Recent developments in this direction include a 
number of architectures  [12]- [30] most of which focus 
primarily on generating variable-frequency clock signals for 
clocking other digital circuits  [12]- [22]. Techniques for 
generating RF signals with relatively clean spectrum include 
 [24]- [29] and they use additional retiming blocks, cleanup-
PLLs and dithering methods, where only some of the last ones 
are purely digital. 

In addition to the design and implementation advantages of 
a completely digital RF frequency synthesizer, a synchronous 
single-bit digital signal which can be used as the carrier or 
local-oscillator signal in an RF chain has also certain 
advantages: A) It can be amplified, for transmission or internal 
use, without distortion and with very high efficiency using a 
switching amplifier; B) It can be used directly, without the 
need of a limiter or comparator, to drive a switching up- or 
down–converting frequency mixer; C) It can be easily fed to 
some phase detectors or related blocks for synchronization 
purposes. 
 Digital phase and frequency modulation of a synchronous 
single-bit digital signal with sinewave-like spectrum can be 
easily achieved when the signal is generated by certain all-
digital synthesizers  [24]. Amplitude modulation can also be 
implemented using a Look-Up-Table (LUT) or by linearly 
combining two or more such signals [2],  [24]. More complex 
modulation schemes result from combinations of the above. 

This work studies in detail the spectral properties of 
synchronous single-bit digital signals generated by single-bit, 
dithered Nyquist-rate quantization of sinewaves. In practice, 
such signals are generated using a phase accumulator followed 
by a sinewave LUT whose output is additively dithered and 
quantized to single bit. This is the same with having a DDS 
with a 1-Bit Nyquist-rate DAC1 and amplitude dithering. 
Since a 1-Bit DAC is a comparator or simply a Most 
Significant Bit (MSB) truncator, this approach results in direct 
all-digital frequency synthesis architectures without a DAC at 
the output and without the need for oversampling. 

Considering signal quantization from a frequency-synthesis 
perspective, the paper focuses on a special case of the general 
quantization theory  [37]- [38] providing a deep analysis on the 
relationship between dithering and spectral content. The main 
results of the paper are listed in the table below. 

The spectrum of dithered single-bit quantized 
sinewave as a function of the dither’s distribution 

Theorem 1 

Necessary and sufficient conditions for dither’s 
distribution for spurs-free spectrum. 

Theorem 2 

The trade-off between frequency-spurs present and 
dynamic range improvement. 

Example 5 

Table 1: Main results of the paper 

Starting in Section II the use of dithering is shown to be 
unambiguous in single-bit quantization for RF frequency 
synthesis. Section III defines the mathematical tools and 

 
1  clocked by the DDS’ clock; not an oversampling DAC  [45] 
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introduces the Chebyshev polynomial series expansion of the 
dither’s cumulative distribution function.  

Two main results of the paper are captured in Theorems 1 
and 2 in Sections IV and V respectively. Specifically, Section 
IV derives analytically the spectrum of the dithered signal 
providing the frequency locations and amplitudes of all 
frequency components and the noise floor power level. 
Section V provides necessary and sufficient conditions for 
spurs-free output and introduces a metric of the output’s 
dynamic range illustrating a trade-off between the dynamic 
range and selectively acceptable frequency spurs. Finally, 
Section VI provides the concluding remarks. 

II. UN-DITHERED SINGLE-BIT SINEWAVE QUANTIZATION  

One way to generate a synchronous single-bit digital signal 
is to use a DDS with a 1-Bit Nyquist-rate output DAC, where 
the DAC essentially acts as a comparator2. This crude 
quantization is by far the dominant source of frequency spurs 
at the output compared to the sinewave representation errors 
introduced by any reasonably-sized LUT. The scheme is 
practically equivalent to that in Fig. 1 of single-bit sinewave 
quantization where the Zero-Order-Hold (ZOH) function 
captures the behavior of the 1-Bit DAC. 

( )cos kΩ
kx

( )ux t
sT

 

Figure 1: Undithered single-bit quantization of a sinewave 

In Fig. 1 we have ( ) ( )( ) ( )sgn cos /u S
k

x t k p t T k
∞

=−∞

= Ω ⋅ −∑  

where ST  is the sampling period and p  is the ZOH function 

( ) [ )1 if  0,1

0 otherwise  

t
p t

∈
= 


 .       (1) 

Then the Fourier transform of ( )ux t  can be expressed as 

      ( ) ( ) ( )
,

1 2 1

2 1 2

m

u
k m S S

m k
X f W f f

m T T
δ

π

∞

=−∞

−  + Ω
= ⋅ − − 

+  
∑    (2) 

where ( ) ( ) ( )2 / sincSi T f
SW f e T fππ −=  is a weighting function 

with ( ) ( ) ( )sinc sin /a a aπ π=  for 0a ≠  and ( )sinc 0 1= . For 

all practical purposes it is 2 /w qπΩ = .  

Assumption: Throughout the paper ,w q  are positive 
integers satisfying 0 / 2w q< < . 

Replacing 2 /w qπΩ =  in (2) it can be concluded that the set 

of frequency tones at the output ( )ux t  is 

( )gcd 2 ,1

S

w w q

T q

 + ⋅ 
⋅ ∈ 

  

ℓ
ℓ ℤ . Therefore the output is full of 

(strong) spurs for most values of Ω  with very few exceptions.  

 
2 or simply keep only the MSB of the LUT’s output assuming an 

appropriate numerical representation is used. 

Fig. 2 shows a typical case of the spectrum. The output signal 
is unusable for most applications due to the density and 
strength of spurs, this motivates the use of dithering. 
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Figure 2: Spectrum of undithered single-bit-quantized sinewave with 
25w = , 64q =  and 1 /s Sf T= ; derived ignoring the weighting 

function ( )W f . The strongest frequency components are at 
frequencies ( )/ 2 STπΩ  and ( )1 / / 2S ST Tπ−Ω . 

Remark 1: Motivation for using dithering in the quantization 
of the sinewave is gained by comparing the spectrum in Fig. 2 
to the one in Fig. 7 achieved with the dithering methodology 
described in the following sections. Another pair of spectra of 
undithered and dithered single-bit quantized sinewave where 

5831w =  and 182q =  is shown in Fig. 3 and Fig. 15. 
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Figure 3: Spectrum of undithered single-bit quantized sinewave with 
5831w = , 182q =  and 1 /s Sf T= , ignoring weighting factor ( )W f . 

III.   DITHERED SINGLE-BIT SINEWAVE QUANTIZATION  

Dithering is used widely to suppress the spurs and shape the 
noise spectrum of quantization in DDS  [31] and in data 
converters in general  [44]. Single-bit quantization without 
oversampling  [45], as in Fig. 4, is an extreme case. Yet, we 
show that using random dithering ku  of appropriate statistics 

we can eliminate all spurs, or, keep some of them selectively 
to allow for lower noise floor (introduced by the dither). 

( )cos kΩ
kx

( )tx

ku

sT

 

Figure 4: Dithered single-bit quantization of a sinewave 

A. Definitions, Notation and Assumptions 

Dithered single-bit quantization is shown in Fig. 4. The 
random sequence { }ku  is subtracted from the sinewave 

resulting in the discrete-time signal ( )( )sgn cosk kk= Ω −x u  

which is written more explicitly as 
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( )
( )

1 if   cos

1 if   cos

0 otherwise           

k

k k

k

k

< Ω

= − > Ω



u

x u      (3) 

Although dithering sequences { }ku  with any statistical 

properties can be used, those with Independent and Identically 
Distributed (IID) random variables are easier to generate in 
hardware, mathematically tractable and can achieve complete 
spurs elimination as demonstrated in the following sections.  

Assumption: Sequence { }ku  is formed of IID random 

variables with Cumulative Distribution Function (CDF) 
: [ 1,1] [0,1]G − →  which is continuous and has continuous 

first and second derivatives3 in [ ]1,1− , i.e. ( )2 [ 1,1]G C∈ − . 

We use this assumption from here on and so for every k∈ℤ  

and [ ]1,1u∈ −  it is ( ) ( )Pr k u G u≤ =u . 

Eq. (3) implies that the random variables { }kx  are also 

independent (to each other) but not identically distributed. 
Specifically it is  

( ) ( )( )
( ) ( )( )

Pr 1 cos

Pr 1 1 cos

k

k

G k

G k

= = Ω

= − = − Ω

x

x
     (4) 

 Note that if ( )/ 2πΩ  is rational, i.e. 2 /w qπΩ = , which is 

always true in practice, { }kx  is cyclostationary (in the strict 

sense)  [39] of period ( )/ gcd ,q q w . Finally, the output signal 

of the quantizer is the continuous-time stochastic process  

( ) k
k S

t
t p k

T

∞

=−∞

 
= − 

 
∑x x        (5) 

where ( )p t  is the ZOH function in Eq. (1). Using the integer 

part function “[ ]⋅ ”, Eq. (5) can also be written as  

 [ ]/( )
St Tt =x x  .        (6)   

The Power Spectral Density (PSD) of a Wide-Sense 

Stationary (WSS) process ( )tx  is the Fourier transform of its 

autocorrelation function  [39]. Sequence { }kx  however is not 

WSS and neither the continuous-time stochastic process ( )tx  

is. Therefore we have to employ the more general average-

autocorrelation function for ( )tx , defined as 

( ) ( )1
lim ,

2

L

L
L

R t R t dx xL
τ τ τ

→∞
−

+∫≜  

 

    (7) 

where ( ) ( ) ( ){ }1 2 1 2,R t t E t tx = x x  is the autocorrelation 

function. Then
 
the PSD of ( )tx

 
is defined via the Fourier 

transform 

( ) ( ) 2 ift
xS f R t e dtx

π
∞

−

−∞

= ∫         (8) 

 
3 There exist milder but more technical conditions sufficient for the validity 

of our analysis especially taking into account the monotonicity of G  [41] [48]. 

 Note that when 2 /w qπΩ = , the stochastic process ( )tx  is 

cyclostationary and (7) reduces to the corresponding definition 
in  [39]. Finally, the discrete-time average-autocorrelation 
function of the random sequence { }kx  is defined similarly as 

 ( ) ( )1
lim ,

2 1

M

x x
M

m M

r k r k m m
M→∞

=−

+
+ ∑≜    (9) 

where ( ) { },x n mr n m E= x x  is its autocorrelation function. 

Definition (9) is identical to that used in  [40] except that the 
averaging here is bilateral. 

IV. PSD OF DITHERED SINGLE-BIT QUANTIZED SINEWAVE 

The spectral properties of the continuous-time stochastic 

signal ( )tx
 

are inherited from those of the discrete-time 

random signal { }kx . This is shown by the more generally 

applicable Lemma 1 whose proof is in the Appendix. 

Lemma 1: Let { }kx  be a real random sequence with bounded 

autocorrelation function xr  and average autocorrelation 

function xr . Also let ( )p t  be given by Eq. (1). Then the PSD 

of the random process ( )( ) /k S
k

t p t T k
∞

=−∞

= −∑x x  is  

( ) ( ) ( )2sinc 2x S S x SS f T f T s f Tπ= ⋅ ⋅       (10) 

where ( ) ( ) ik
x x

k

s r k e ωω
∞

−

=−∞

= ∑  is the Discrete-Time Fourier 

Transform (DTFT) of the average autocorrelation function rx  

and ( )2sincS ST f T⋅  is due to the  shape of pulse ( )p t 4.     □ 

 
To derive a closed form expression of the dithered single-bit 

quantized sinewave spectrum using (10) we calculate first the 

discrete-time average autocorrelation function ( )r kx . To do 

so it is convenient to express the CDF : [ 1,1] [0,1]G − →  as a 
series of Chebyshev polynomials of the first kind, i.e., 

( ) ( )
0

1 1

2 2 j j
j

G u a T u
∞

=

= + ∑      (11) 

where the 1/ 2  summand and multiplying factor simplify the 
algebraic manipulation to follow. The coefficients ja  are 

derived based on the orthogonality properties  [41] of 
Chebyshev polynomials according to  

1

0 2
1

2 ( )
1

1

G u
a du

uπ −
= −

−
∫ ,    

( )1

0 2
1

( )4

1

j
j

G u T u
a du

uπ>

−

=
−

∫   (12) 

 Our assumption that ( )2 [ 1,1]G C∈ −  guaranties that series 

expansion (11) converges to G  everywhere in [ 1,1]− ,  [41]. 

Reversely, we can define G  using coefficients ja  but we 

must verify that G  is indeed a CDF. The two equations and 
the inequality in (13) form a necessary and sufficient set of 
conditions for G to be a CDF. 
 

4 Eq. (10) can be modified accordingly for other shapes of ( )p t . 
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( ) ( ) ( ) [ ]1 0, 1 1 & 0    1,1G G G u u′− = = ≥ ∀ ∈ −   (13) 

Since it is ( )1 1jT =  and ( ) ( )1 1
j

jT − = −  for 0,1,2,...j = , 

and ( ) ( )1j jT u j U u−
′ = ⋅  for 1,2,3,...j = , where jU  is the jth  

Chebyshev polynomial of the 2nd kind  [41], Eqs. (13) become  

 

( )

( ) [ ]

0 0

1
1

1 1 , 1

0   1,1

j

j j
j j

j j
j

a a

ja U u u

∞ ∞

= =

∞

−
=

− = − =

≥ ∀ ∈ −

∑ ∑

∑
.    (14) 

Example 1A: A case of particular importance is that of the 
dithering sequence { }ku  with uniformly distributed IID 

random variables, i.e. ( ) 1/ 2G u′ =  in [ ]1,1−  and therefore 

( ) ( )1 / 2G u u= + . Since ( )1T u u=  this leads by inspection to 

0 0a = , 1 1a =  and 0ka =  for 2,3,4,...k = .  

Example 1B:  The undithered case of Figure 1 can be thought 
of as the limiting case of 0k ≡u  which has CDF ( ) 0G u =  for 

[ )1,0u∈ −  and ( ) 1G u =  for ( ]0,1u∈ . Although G  is 

discontinuous at 0u =  its series expansion is valid for 0u ≠  

implying 2 0ka =  and 
( )2 1

4( 1)

2 1

k

ka
k π+

−
=

+
 for 0,1,2,...k =  

Example 1C: Let 1 3, 0a a ≠  and all other coefficients ka  be 

zero. Since ( )1T u u=  and ( ) 3
3 4 3T u u u= −  we have 

( ) ( )3311
4 3

2 2 2

aa
G u u u u= + + − . For G  to be a CDF Eqs. (14) 

imply 1 3 1a a+ =  and ( ) ( )2
1 32 12 3 0G u a a u′ = + − ≥  for every 

[ ]1,1u∈ − . Since ( )2G u′  achieves its minimum either at 

0u =  or at 1u = , depending on the sign of 3a , it is ( ) 0G u′ ≥  

for every [ ]1,1u∈ −  if and only if 1 33 0a a− ≥  and 

1 39 0a a+ ≥ . Combining the above, G  is a CDF if and only if 

1 3 1a a+ = , 1 39 0a a+ ≥  and 1 33 0a a− ≥ . The (solution) 

feasible set of 1 3,a a  is ( )1 6 3 / 8a ρ= +  and ( )3 2 3 / 8a ρ= −  

with [ ]0,1ρ ∈  shown in thick line in Fig. 5. 

1 39 0a a+ =

1 33 0a a− =

1a

1 3 1a a+ =
3a

 

Figure 5: Feasible set of 1 3,a a  in Example 1C (thick line) 

Example 1D: Let 1 5, 0a a ≠  and all other coefficients ka  be 

zero. It is ( ) ( ) ( )51
1 5

1

2 2 2

aa
G u T u T u= + +  where  ( )1T u u=  

and ( ) 5 3
5 16 20 5T u u u u= − + . Eqs. (14) imply 1 5 1a a+ =  and 

( ) ( )1 52 0G u a a P u′ = + ≥  for every [ ]1,1u∈ −  where we have 

set ( ) 4 280 60 5P u u u= − + . The maximum and minimum 

values of ( )P u  in [ ]1,1−  are 25 and 25 / 4−  respectively and 

so ( ) 0G u′ ≥  for every [ ]1,1u∈ −  if and only if 1 525 0a a+ ≥  

and 1 54 25 0a a− ≥ . Combining the above we conclude that G  

is a CDF if and only if 1 5 1a a+ = , 1 525 0a a+ ≥  and 

1 54 25 0a a− ≥ . The feasible set of 1 5,a a  is given by 

( )1

25 25
1

24 29
a ρ ρ= − + , ( )5

1 4
1

24 29
a ρ ρ= − − + , [ ]0,1ρ ∈  

with a graph very similar to that in Fig. 5. 

Example 1E: Let 1 3 5, , 0a a a ≠  and all other coefficients ka  

be zero. It is ( ) ( ) ( ) ( )3 51
1 3 5

1

2 2 2 2

a aa
G u T u T u T u= + + +  and 

relationships (14) become 1 3 5 1a a a+ + =  and  ( )2G u′ =  

( )4 2
5 3 5 1 3 580 12 60 3 5 0a u a a u a a a+ +− − + ≥  for every   

[ ]1,1u∈ − . It turns out that the feasible set of 3a , 5a , with 1a  

derived from 1 3 5 1a a a+ + = , is shown in Fig. 6 below. 
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-0.1

-0.05

0
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0.1

0.15

a3

a5

 

Figure 6: Feasible set of 3 5,a a  in Example 1E shown in gray. 

Coefficient 1a  is derived from 1 3 5 1a a a+ + = .  

The following Lemma whose proof is available in the 

Appendix expresses the average autocorrelation of { }kx  as a 

function of the coefficients ja , 0,1,2,...j = . 

Lemma 2: Consider the Chebyshev series expansion in Eq. 
(11) of the CDF G  of the IID random sequence { }ku . The 

average autocorrelation of the random sequence { }kx  is 

given by (15) where kδ  is the discrete-time Dirac function. 

( ) ( )2 2 2 2
0 0

1 1

1 1
cos 1

2 2x j j k
j j

r k a a j k a a δ
∞ ∞

= =

 
= + Ω + − − 

 
∑ ∑  (15) 

According to Eq. (15), xr  is composed of a DC term, an 

impulse term at 0k =  and harmonics of ( )cos kΩ . It is 

remarkable that the amplitude of the jth harmonic is 2 / 2ja , 

i.e. proportional to the square of the projection of CDF G  to 
the jth Chebyshev polynomial according to Eqs. (12). 
Therefore, by selecting CDF G  appropriately we can “shape” 
the average autocorrelation xr . Note that since time is discrete 

here, all frequency components in Eq. (15) with /j π≥ Ω  
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suffer from aliasing and fold into the frequency interval 

[ )0,2ω π∈ . Specifically, since the DTFT of ( )cos j kΩ  is 

 [47] ( ) ( )( )2 2
m

j m j mπ δ ω π δ ω π
∞

=−∞
− Ω− + + Ω−∑  the 

frequency contributions of ( )cos j kΩ  are at ( )mod 2jω π− Ω  

and ( )mod 2jω π+ Ω . Some of the harmonics may fold very 

close to the carrier frequency Ω . The detailed spectrum of xr  

is given by Lemma 3 whose proof is in the appendix. 

Lemma 3: The DTFT ( )xs ω  of the average autocorrelation 

function xr  can be expressed as   

( ) ( ) ( ) ( )( )0

1
2x S H N

S

s f T S f S f S f
T

π = + +    (16) 

where the three components ( )HS f , ( )NS f  and ( )0S f  are 

( )
2

1 4 2 2
j

H
j k

a k j k j
S f f f

T T T Ts s s s
δ δ

π π

∞ ∞

= =−∞

    Ω Ω
= − − + − +         
∑ ∑  (17) 

( ) 2 2
0

1

1
1

2N j
j

S f T a as
∞

=

 
= − − 
 

∑     (18) 

and 

( ) 2
0 0

k S

k
S f a f

T
δ

∞

=−∞

 
= ⋅ − 

 
∑      (19) 

Combining Lemmas 1 and 3 we derive the PSD of the 
stochastic process ( )tx  parameterized on the coefficients ja  

of the Chebyshev polynomial series of CDF G  in Eq. (11).  
 
Corollary 1: The PSD of the stochastic process ( )tx  is  

( ) ( ) ( ) ( ) ( )( )2
0sincx S H NS f f T S f S f S f= ⋅ + +   (20) 

where the three components ( )HS f , ( )NS f  and ( )0S f  are 

given by Eqs. (17), (18) and (19) respectively.       □ 

Remark 2: A) Since ( )xs ω  with 2 Sf Tω π=  is the result of 

DTFT, it is periodic on f  with period 1/s Sf T= . Such are all 

three components ( )HS f , ( )NS f  and ( )0S f  as well. 

B) Note that the PSD component ( )HS f  captures the 

desirable signal at frequency ( )/ 2 TsπΩ  as well as the 

intermodulation products at frequencies ( )/ / 2k T j Ts sπ± Ω , 

1,2,3,...j =  and k∈ℤ .  

C) PSD component ( )NS f  is independent of the frequency 

and captures the noise floor level (in the continuous-time 
spectrum) introduced by the dithering.  

D) If5 2 /w qπΩ = , then ( )HS f  may partially include the 

DC component whose other part is captured by ( )0S f  along 

with harmonics of the sampling frequency. 

 
5 That is, if ( )/ 2πΩ  is a rational number. 

E) ( )xS f  has no power at the fundamental and harmonics of 

the sampling frequency 1/f Ts s=  because the factor 

( )2sinc Sf T , corresponding to the ZOH stage in the 

quantization scheme in Fig. 4, is zero for all / Sf k T= , 0k ≠ . 

So we can ignore the terms  ( )/ Sf k Tδ −  with 0k ≠ . 

If 2 /w qπΩ =  then the frequency components of ( )HS f  

appear at ( ) ( ) ( )/ / /S Sk jw q T qk jw qT± = ±  for 1,2,3,...j =  

and k∈ℤ  which are positive and negative harmonics of the 

fundamental frequency ( )1/ SqT . Based on this and after some 

algebraic manipulation of Eq. (20) we get Theorem 1 which 
provides explicitly the power of each harmonic at ( )/ Sh qT , 

h∈ℤ . The proof of Theorem 1 is available in the Appendix. 

Theorem 1: For angular frequency 2 /w qπΩ =  with 

0 / 2w q< <  and ( )gcd , 1w q =  we have that 

( ) ( ) ( ) ( ) ( )( )2
0sincx S H NS f f T S f S f S f= ⋅ + +ɶ ɶ   (21) 

where ( )NS f  is as in Lemma 3 and ( )HS fɶ  and ( )0S fɶ  are  

( )
1

1

4H h
h

h h
S f b f f

qT qTs s
δ δ

∞

=

    
= − + +         
∑ɶ    (22) 

and  

( ) ( )
2 2
0 0 0

0
1

3 3

4 4k

a b ak k
S f f f f

T Ts s
δ δ δ

∞

=

     +
= − + + +         
∑ɶ   (23) 

respectively.  Here, for 0,1,2,...h =  we have defined6 

( )
2

,h I h r
r

b a
∞

=−∞
∑≜          (24) 

where ( ) 1,I h r j h qr= +  and the integer pair7 ( )1 1,j k  is a 

(any) solution of the Diophantine equation 1 1 1wj qk+ = . In 

particular, coefficient wb  of the frequency component at 

( ) ( )/ 2 /S ST w qTπ±Ω = ±  is 2
1w qrr

b a
∞

+=−∞
=∑ . Finally, it is    

( ) ( ) ( ) ( )0 0H HS f S f S f S f+ = +ɶ ɶ      (25) 

where ( )HS f  and ( )0S f  are defined in Eqs. (17) and (19).□ 

Both expressions ( )HS f  and ( )HS fɶ  capture the desirable 

signal and the intermodulation products, they differ only in the 
DC and harmonic components / Sf k T= , 0k ≠ . However, 

( )HS f  sums with respect to coefficients ja , 1,2,3,...j =  

(first) each of which contributes to the amplitude of many 
frequency components. So ( )HS f  relates directly with the 

Chebyshev expansion of the CDF G  of the dithering 
sequence. On the other hand ( )HS fɶ  provides the amplitude 

 
6 hb  is the amplitude of the frequency component at ( )/ Sh qT±  for 

1,2,...h =  and 0b  is part of the DC component. 
7 1k  is not involved in the expressions of Theorem 1. 
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of each frequency component, hb , 1,2,3,...h =  as a sum of 

squares of infinitely many ja s.  

Remark 3: To derive coefficient hb , 0,1,2,...h =  we first 

have to find a solution ( )1 1,j k  of  the Diophantine equation 

1 1 1wj qk+ =  using the Euclidean algorithm (e.g. the “gcd” 

function in MATLAB). Since by assumption ( )gcd , 1w q =  

this is always possible and any other solution of the equation 
is of the form  

( ) ( ) ( )1 1 1 1, , ,j k j k q wρ′ ′ = + −       (26) 

for some ρ ∈ℤ . Then 
1

2
h j h qr

r

b a
∞

+
=−∞
∑≜  where only 1j  is used 

in the index 1j h qr+ . Moreover note that the sum is over 

r∈ℤ  and so according to Eq. (26) it does not depend on the 
particular choice of the solution of the Diophantine equation, 

i.e. replacing 1j  by 1j ′  would only shift r∈ℤ  by hρ . 

Remark 4: From Eq. (24) we conclude that the contributions 
of coefficients ja , 0,1,2,...j =  to the power of frequency 

component at ( )/h qTs  in Eq. (22) are cumulative since 

( )
2

, 0I h ra ≥ . Therefore the smaller the set of nonzero 

coefficients ja  is, the smaller the set of frequency components 

present in ( )HS fɶ  will be. The same is true for ( )xS f  and so 

for ( )0S fɶ  as well since ja s also act cumulatively in Eq. (23). 

Example 2A: Following Example 1A with 0 0a = , 1 1a =  and 

0ka =  for 2,3,4,...k = , Lemma 3 implies that  ( )0 0S f = , 

( ) / 2NS f Ts=  and most importantly,  

( ) 1

4 2 2H
k

k k
S f f f

T T T Ts s s s
δ δ

π π

∞

=−∞

    Ω Ω
= − − + − +         
∑ . 

If 2 /w qπΩ =  the frequency components of ( )HS f  are at 

2

k kq w
fsT T qs sπ

Ω ±
± = , k∈ℤ . So the only two frequency 

components in the interval ( )0, Sf  are at ( )/w q fs  and 

( )1 /w q fs− , and have the same power. Also, the spectrum in 

any interval ( )( ), 1S Srf r f+ , r∈ℤ  is a replica of the 

spectrum in ( )0, Sf  according to Remark 2. For 25w =  and 

64q =  the PSD of the simulated random sequence 

( )( )sgn cosk kk= Ω −x u , k∈ℤ  is shown in Fig. 7.  It agrees 

completely with ( )HS f . Finally, the PSD ( )xS f  of ( )tx  is 

that of Fig. 7 weighted by the factor ( )2sinc Sf T  according to 

Eq. (10). 
 

0 0.2 0.4 0.6 0.8 1
-60

-50

-40

-30

-20

-10

0

fs = 1 GHz
RBW = 3125 Hz
Nav = 10

f / fs

N
or

m
al

iz
ed

P
ow

er
(d

B
)

52
 d

BDR = 
87 dB

0 0.2 0.4 0.6 0.8 1
-60

-50

-40

-30

-20

-10

0

fs = 1 GHz
RBW = 3125 Hz
Nav = 10

f / fs

N
or

m
al

iz
ed

P
ow

er
(d

B
)

52
 d

BDR = 
87 dB

 
Figure 7: PSD of simulated random sequence { }kx  when 0 0a = , 

1 1a =   and 0ka = , 2,3,4,...k = ; 25w =  and 64q = ; 1Sf GHz= , 
Resolution BW = 3125 Hz and waveform averaging Nav=10 runs.   

Example 2B: The PSD ( )2x Ss f Tπ  corresponding to 

Example 1B is shown in Fig. 2. 

Example 2C: Following Example 1C with 1ρ =  we get that 

1 9 / 8a = , 3 1/ 8a = −  and all other coefficients ka  are zero. 

For 25w =  and 64q =  the PSD of the simulated random 

sequence ( )( )sgn cosk kk= Ω −x u , k∈ℤ  is shown in Fig. 8. 

From Eqs. (17), (18) and (19) we derive directly that the only 
frequency components present are at frequencies 

25

2 64

k
k fsT Ts sπ

Ω  ± = ± 
 

 and 
3 75

2 64

k
k fsT Ts sπ

Ω  ± = ± 
 

 with 

k∈ℤ . So the only frequencies in the spectrum ( )0, Sf  are at 

( )0 25 / 64 fs+  and ( )1 25 / 64 fs−  from the first expression, 

corresponding to the fundamental and its image; and, 

( )1 3 25 / 64 fs− + ⋅  and ( )2 3 25 / 64 fs− ⋅  from the second 

one, corresponding to the 3rd harmonic and its image. 
Alternatively one can identify the frequency components 
within ( )0, Sf  from Eq. (24) of Theorem 1 via the following 

steps: find a solution of the Diophantine equation 

1 125 64 1j k+ = , e.g. ( ) ( )1 1, 23,9j k = −  and use it to solve 

Diophantine equations ( ), 23 64 1I h r h r= − + =  and 

( ), 23 64 3I h r h r= − + =  for 0,1,2,...,63h =  and r∈ℤ  

(since 1a  and 3a  are the only nonzero coefficients). We 

derive that for 0,1,2,...,63h =  the only nonzero hb ’s are 
2

11 (1/ 8)b = , 2
25 (9 / 8)b = , 2

39 (9 / 8)b =  and 2
53 (1/ 8)b = , 

corresponding to frequencies ( )11/ 64 fs , ( )25 / 64 fs , 

( )39 / 64 fs  and ( )53 / 64 fs  respectively. The result agrees 

with the simulation in Fig. 8. 
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Figure 8: PSD of simulated random sequence { }kx  when 1 9 / 8a = , 

3 1 / 8a = −  and all other coefficients 0ka = ; 25w =  and 64q = ; 
and with the same remaining parameters as in Fig. 7.      
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Example 2D: Fig. 9 shows the PSD of the simulated random 

sequence ( )( )sgn cosk kk= Ω −x u , k∈ℤ  when 1 25 / 24a = , 

5 1/ 24a = −  and all other coefficients 0ka = , i.e., following 

Example 1D with 0ρ = , 25w =  and 64q = . The derivation 

of the frequencies of the components in ( )0, Sf  is similar to 

that in Example 2C. From Theorem 1 we derive that for 
0,1,2,...,63h =  it is 2

3 (1/ 24)b = , 2
25 (25 / 24)b = , 

2
39 (25 / 24)b =  and 2

61 (1/ 24)b = , corresponding to 

frequencies ( )3 / 64 fs , ( )25 / 64 fs , ( )39 / 64 fs  and 

( )61/ 64 fs  respectively; and all other hb  are zero. This 

agrees with the simulation in Fig. 9. 
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Figure 9: PSD of simulated random sequence { }kx  when 

1 25 / 24a = , 5 1 / 24a = −  and all other coefficients 0ka = ; 25w =  

and 64q = ; and with the same remaining parameters as in Fig. 7.      

Example 2E: Fig. 10 shows the PSD of the simulated random 

sequence ( )( )sgn cosk kk= Ω −x u , k∈ℤ  when 1 1.1906a = , 

3 0.2375a −= , 5 0.0469a =  and all other coefficients ka  are 

zero. It follows Example 1E with ( )3 5,a a  corresponding to 

the big dot on the ellipse in Fig. 6. The derivation of the 
frequencies of the components in ( )0, Sf  is similar to that in 

Example 2C. The 3rd and the 5th harmonics (and only those) 
are present in the spectrum as expected. From Theorem 1 we 
derive that for 0,1,2,...,63h =  it is 3 0.0022b = , 11 0.0564b = , 

25 1.4175b = , 39 1.4175b = , 53 0.0564b =  and 61 0.0022b = , 

corresponding to frequencies 3, 11, 25, 39, 53 and 61 

/ 64fs×  respectively; and all other hb  are zero. This agrees 

with the simulation in Fig. 10. 
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Figure 10: PSD of simulated random sequence { }kx  when 

1 1.1906a = , 3 0.2375a −= , 5 0.0469a =  and all other coefficients 
0ka = ; 25w =  and 64q = ; same parameters as in Fig. 7.      

 Finally, coefficients hb , 0,1,2,...h =  have periodicity and 

mirroring properties inherited by those of the PSD ( )HS fɶ  

and ( )0S fɶ  (see also Remark 2A) which are stated below. The 

proof of the Lemma is in the Appendix. 

Lemma 4: For every 0,1,2,...h =  and  ,k ∈ℓ ℤ  such that 

0kq h+ ≥  and 0q h− ≥ℓ  it is kq h q h hb b b+ −= =ℓ . In particular 

we have that ( )mod modh h q q h qb b b −= =  for every 0,1,2,...h = .  □ 

V. SPURS-FREE SPECTRUM, DYNAMIC RANGE AND THE 

TRADE-OFF BETWEEN NOISE FLOOR AND HARMONICS  

In most practical cases the desirable frequency component 
is the one at ( ) ( )/ 2 /ST w q fsπΩ = . Example 2A illustrated 

that if 0 0a = , 1 1a =  and 0ka =  for 2,3,4,...k =  then the 

only two components in the frequency interval ( )0, Sf  are at 

( )/w q fs  and ( )1 /w q fs− . This spurs-free output8 however 

comes at the cost of noise floor level ( ) / 2NS f Ts= . A 

natural question is whether a different choice of coefficients 

ja  could lead to lower noise floor, or, whether the noise floor 

can be reduced by allowing some of the harmonics to be 
present in the spectrum.  

This Section provides necessary and sufficient conditions 
for coefficients ja , for achieving spurs-free output, i.e. for 

having only the frequency components at ( )/w q fs  and 

( )1 /w q fs−  in the interval ( )0, Sf . These can potentially 

lead to values of coefficients ja  resulting in lower noise floor 

level ( )NS f  than that with 0 0a = , 1 1a =  and 0ka =  for 

2,3,4,...k = The Section also illustrates how we can trade off 
spectral clarity (i.e. allowing some harmonics to be present) 
for reducing the noise floor level.  

Note that the weighting factor ( )2sinc Sf T  in Eq. (21) 

eliminates all components at frequencies kfs , { }0k∈ −ℤ , i.e. 

all clock harmonics except the DC, and only these. This 
indicates the qualitative difference between the PSDs ( )xS f , 

( )HS fɶ  and how these two can be used indistinguishably in 

the following Lemmas and Theorem. 
We have the following Lemma whose proof results directly 

from Lemma 4 and is omitted. 

Lemma 5: Following the assumptions of Theorem 1; if the 
frequency component at ( ) ( )/ 2 /S ST w qTπΩ =  is present in 

( )xS f , i.e. if 0wb > , then all frequency components at  

2

k w
k fsT T qs sπ
 Ω

± = ± 
 

,      k∈ℤ      (27) 

are present as well, i.e., 0qk wb + >  and 0qk wb − > , 1,2,3,...k = □ 

 Consider Lemma 5 in conjunction with Lemma 4. The last 
one also implies that if a component at a frequency beyond 

 
8 Note that the image frequency component at ( )1 / Sw q f−  has to be there 

because of the discrete-time nature of the quantized sinewave. 
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those in Eq. (27) is present ( )xS f , then, because of the 

spectral periodicity and mirroring, a corresponding frequency 
component is present within ( )0, / 2Sf . 

We cannot avoid having all frequencies in Eq. (27) present 
when the desirable frequency component at ( )/ Sw qT  is 

generated. Yet we can determine the maximal set of nonzero 
coefficients ja  generating only frequencies ( )/ Sw qT  and 

those in Eq. (27). Note that the maximal set does exist because 
of Remark 4. Lemma 6 provides the answer. 

Lemma 6: Assume that 2 /w qπΩ =  with 0 / 2w q< <  and 

( )gcd , 1w q = , and let { }0,1, , 1 1,2,3,...rq rq r± =J ≜  and 

{ }0, , , 1,2,3,...w rq rq w r± =H ≜  be two sets of nonnegative 

integers. Then 0ja =  for every { }0,1,2,...j∈ − J  if and only 

if 0hb =  for every { }0,1,2,...h∈ −H .         □ 

The proof of Lemma 6 is available in the Appendix. Lemma 
7 below provides a similar and partially complementary result 

based directly on expression 2
1w qrr

b a
∞

+=−∞
=∑  of Theorem 1. 

Its proof is by observation and is omitted. 

Lemma 7: Under the assumptions of Lemma 6, the frequency 
component at ( ) ( )/ 2 /ST w q fsπΩ =  is present9, i.e., 0wb >  

if and only if there exists some { }1, 1 1,2,3,..j rq r∈ ± =  such 

that 0ja ≠ .                     □ 

 The following Theorem states conditions for spurs-free 
output within the frequency interval ( )0, / 2Sf . It results from 

combining Lemma 6 and Lemma 7 and its proof is omitted. 

Theorem 2: [Spurs-Free Output]: Under the assumptions of 
Lemma 6 there is only one frequency component present9 in 

( )0, / 2Sf , which is at frequency ( )/w q fs , if and only if 

0ja =  for every { }0,1,2,...j∈ − J  and there exists some 

{ }1, 1 1,2,3,..j rq r∈ ± =  such that 0ja ≠ .       □ 

 The result of Theorem 2 extends to frequency interval 

( )0, Sf  where both ( )/w q fs  and ( )1 /w q fs−  frequency 

components are present, as well as to the periodic replicas of 
the spectrum (see Remark 2) of ( )HS fɶ , and to those of 

( )xS f  taking into account the weighting factor  ( )2sinc Sf T .  

Remark 5: According to Theorem 2, the case of 0 0a = , 

1 1a =  and 0ka =  for 2,3,4,...k =  is probably the simplest 

one guarantying spur-less output for every pair of integers 
,w q  satisfying  0 / 2w q< <  and ( )gcd , 1w q = . 

 Example 2A illustrates the case of 0 0a = , 1 1a =  and 

0ka =  for 2,3,4,...k =  which according to Theorem 2 

 
9 One can consider PSD ( )xS f  or  ( )HS fɶ . 

implies a spurs free spectrum, shown in Fig. 7. Also Fig. 11 
below captures a part of a realization of the random sequence 

{ }kx  generated in Example 2A along with undithered 

sequence ( )( )sgn cos 2 /kw qπ  and the corresponding 

continues-time sinewave. Since / 25 / 64 0.39w q = ≅  is close 

to 1/2 (Nyquist frequency) both discrete-time waveforms tend 
to change sign almost at every clock. However, they tend to 
differ from each other when the sampling of the cosine occurs 
near its zero crossings.  
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Figure 11: Time-Domain signals related to Example 2A. Sequence 

kx  is the solid 1±  waveform. ( )( )sgn cos 2 /kw qπ  is the dashed 

waveform scaled to 60%. The corresponding continuous-time 

sinewave ( )( )cos 2 / Stw qTπ  is shown in dotted line. 

Example 3: More examples of PSD of the simulated random 

sequence ( )( )sgn cosk kk= Ω −x u , k∈ℤ  when 0 0a = , 

1 1a =  and 0ka =  for 2,3,4,...k =  are shown in Figs. 12, 13 

and 14 for a variety of values of w , q , sf  and waveform 

averaging runs Nav. In Fig. 14, the PSD for different values of 
w  (arbitrarily chosen) are graphically overlapped. As 
expected from Theorem 2, all PSD are spurs-free. 
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Figure 12: PSD of simulated random sequence { }kx  when 0 0a = , 

1 1a =   and 0ka = , 2,3,4,...k = ; 17723w = , 162q = ; 1Sf GHz= , 
Resolution BW = 1526 Hz and waveform averaging Nav=10 runs.    

0 0.2 0.4 0.6 0.8 1
-60

-50

-40

-30

-20

-10

0

fs = 2 GHz
RBW = 1907 Hz
Nav = 18

f / fs

N
or

m
al

iz
ed

P
ow

er
(d

B
)

DR = 90 dB

57
.2

 d
B

0 0.2 0.4 0.6 0.8 1
-60

-50

-40

-30

-20

-10

0

fs = 2 GHz
RBW = 1907 Hz
Nav = 18

f / fs

N
or

m
al

iz
ed

P
ow

er
(d

B
)

DR = 90 dB

57
.2

 d
B

 
Figure 13: PSD of simulated random sequence { }kx  when 0 0a = , 

1 1a =   and 0ka = , 2,3,4,...k = ; 162 1w = − , 192q = ; 2Sf GHz= , 
Resolution BW = 1907 Hz and waveform averaging Nav=18 runs.    
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Figure 14: PSD of simulated random sequence { }kx  when 0 0a = , 

1 1a =   and 0ka = , 2,3,4,...k = ; w = 9023(a), 21241(b), 37981(c) 
and 43197(d), and 510q = ; 2Sf GHz= , Resolution BW = 4 kHz 

and waveform averaging Nav=20 runs.      

Example 4: Another case of PSD of the simulated random 
sequence { }kx  when 0 0a = , 1 1a =  and 0ka = , 2,3,4,...k =  

is shown in Fig. 15. It corresponds to the PSD in Fig. 3 of the 
undithered quantized sinewave. 
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Figure 15: PSD of simulated random sequence { }kx  when 0 0a = , 

1 1a =   and 0ka = , 2,3,4,...k = ; 5831w = , 182q = ; 2Sf GHz= , 
Resolution BW = 545 Hz and waveform averaging Nav=10 runs.      

The corresponding time-domain waveforms of this example 
are shown in Fig. 16 below. Since 185831/ 2 0 02/ . 2w q = ≅  is 

very small the dithered waveform (sequence kx ) resembles 

Pulse Width Modulation with some randomness.   

0 10 20 30 40 50 60 70 80 90

-1

0

1

Discrete Time Index: k
0 10 20 30 40 50 60 70 80 90

-1

0

1

Discrete Time Index: k  

Figure 16: Time-Domain signals related to Example 4. Sequence kx  

is the solid 1±  waveform. ( )( )sgn cos 2 /kw qπ  is the dashed 

waveform scaled to 60%. The corresponding continuous-time 

sinewave ( )( )cos 2 / Stw qTπ  is shown in dotted line. 

A. Noise Floor & Dynamic Range 

 Consider the frequency components in HSɶ  and the noise 

floor captured by NS  in Eq. (21). We define the Dynamic 

Range (DR ) of the output as the ratio of the power / 4wb  of 

the desirable frequency component at ( ) ( )/ 2 /T w q fs sπΩ =  

over the noise power spectral density at the same frequency, 

i.e., ( )( )/NS w q fs , which equals ( )( )2 2
0 1

1 / 2jj
T a as

∞

=
− − ∑ . 

Replacing the value of wb  from Theorem 1 and expressing 

DR  in logarithmic scale we have ( in dB ): 

( )
2
1

10 10
2 2
0

1

10log 10log 6.02
1

1
2

qr
r

j
j

a
DR fs

a a

∞

+
=−∞

∞

=

 
 
 = + −
 − − 
 

∑

∑
   (28) 

The definition of DR  applies directly to the total output 
spectrum ( )xS f  using Eq. (28) as well because the factor 

( )2sinc Sf T  in Eq. (21) multiplies both HSɶ  and NS . Also, 

note that the summand ( )1010log fs  is expected since the 

power of the sinewave’s quantization error is spread in 
frequency bandwidth proportional to the sampling frequency. 
Finally, the DR  can be defined similarly in the case that a 
different frequency component is the desirable one. 

Example 5A: In the case of 0 0a = , 1 1a =  and 0ka =  for 

2,3,4,...k = , i.e., when the probability density function of the 
dither is uniform, we have from Eq. (28) that the DR  is 

( )1010log  3.01DR fs= −  dB. In the case of Example 2A 

where the PSD is shown in Fig. 7, the dashed white line 
indicates the averaged noise floor level. For 1f GHzs =  we 

get 87DR ≅  dB. Subtracting ( )1010log RBW  dB, where 

3125RBW Hz= , to account for the resolution BW used for 

the simulation in Fig. 7, we get a very good match to the 
simulated 52 dB (Fig. 7). 

Example 5B:  The undithered case in Fig. 2 has DR = ∞  
since there is no noise floor although the spectrum is full of 
strong spurious frequency components. 

Example 5C: We follow Example 1C with ( )1 6 3 / 8a ρ= + , 

( )3 2 3 / 8a ρ= −  and [ ]0,1ρ ∈ , and all other ka  equal zero. 

Assuming that 4q >  implies 2 2
11 qr

r

a a
∞

+
=−∞

=∑  and Eq. (28) gives 

( )
( )

2
1

10 102 2
1 3

2
10log 10log  6.02

2

a
DR fs

a a

 
 = + −
 − + 

 dB. Using 

the expressions of 1a  and 3a  above, DR becomes a function 

of ρ , strictly increasing, and with maximum value 

( )1010log -0.55DR fs=  (dB) for 1ρ = , corresponding to 

1 9 / 8a =  and 3 1/ 8a = − . DR  here is about 2.5 dB higher 

than in Example 5A but the 3rd harmonic is present here as it is 
shown in Fig. 8. 

Example 5D: Following Example 1D we assume that 

( )1

25 25
1

24 29
a ρ ρ= − + , ( )5

1 4
1

24 29
a ρ ρ= − − +  and [ ]0,1ρ ∈   

and all other ka  are zero. Again, it is convenient to assume 

further that 6q >  implying 2 2
11 qr

r

a a
∞

+
=−∞

=∑  which via Eq. (28) 
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gives 
( )

( )
2
1

10 102 2
1 5

2
10log 10log  6.02

2

a
DR fs

a a

 
 = + −
 − + 

 dB. 

Replacing the expressions of 1a  and 5a  in DR , the last one 

becomes a function of ρ , strictly decreasing with maximum 

value ( )1010log - 2.25DR fs=  dB for 0ρ = , corresponding to 

1 25 / 24a =  and 5 1/ 24a = − . DR  here is only about 0.75 dB 

higher than in Example 5A and the 5th harmonic is present 
here as it is shown in Fig. 9. 

Example 5E: The values of 1 3,a a  and 5a  given in Example 

2E are the ones maximizing DR  when all other coefficients 

ka , 1,3,5k ≠  are zero; the pair ( )3 5,a a  corresponds to the big 

dot on the ellipse in Fig. 6. In this case it is 

( )1010log 1.31DR fs= +  (dB), which is about 4.3 dB higher 

than using uniformly distributed dither as in Example 5A. 

Example 6: Differentiating the CDF G  we derive the 
probability density function G′  which is shown in Fig. 17 
below for each of the cases in Examples 5A, C, D and E. The 
function G′  is a polynomial of zero, second, fourth and fourth 

order respectively with nonnegative values in [ ]1,1− . 
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0.8
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D
E

0.2

0.6

1.0 ( )G u′( )G u′

u  
Figure 17: Probability density functions of Examples 5A,C,D and E. 

 Examples 5C, D and E, where the 3rd harmonic, the 5th 
harmonic, and both of them, are present, respectively, 
demonstrate higher DR  relatively to uniformly distributed 
dither in Example 5A. In some sense, the dithering spreads the 
harmonics’ power over the sampling bandwidth converting 
their line spectral power into continuous noise floor. Keeping 
some of the harmonics present in the spectrum means less 
power is converted to noise.  
 One can also compare all four Examples 5A, C, D and E 
with the (extreme) undithered case of Example 5B which has 
infinite DR  (no noise floor) but also countably infinite and 
powerful discrete spurious tones (harmonics).  
 The above comparisons demonstrate the possibility to shape 
the CDF so that the DR  is improved (compared to uniform 
dithering) by allowing a number (or all) of the harmonics, 
located in unconcerned frequency intervals, to be present 
without harming the quality of the generated signal.  

VI. CONCLUSIONS  

 Single-Bit Nyquist-rate quantization of sinewave with 
random dithering using sequences of independent and 
identically distributed random variables has been analyzed 
mathematically.  

 The spectrum of the output stochastic process has been 
derived analytically as a function of the coefficients of the 
Chebyshev polynomials series expansion of the dither’s 
Cumulative Distribution Function (CDF).  
 The frequencies and the powers of the frequency 
components have been derived explicitly. Necessary and 
sufficient conditions for spurs-free output have been derived 
and related to the dither’s CDF. In particular, uniformly 
distributed dither with range equal to that of the sinewave 
results in a spectrum identical to that of sampled sinewave (of 
infinite amplitude resolution) with an additive noise floor.  
 The noise floor level due to random dithering has been 
derived analytically and the output dynamic range has been 
defined and calculated explicitly for certain classes of the 
dither’s CDF.  
 The trade-off between selected frequency-spurs presense 
and dynamic range improvement has been studied and 
dynamic range optimization has been established for certain 
classes of the dither’s CDF. An improvement of about 4.3 dB 
has been found when the third and fifth harmonics are allowed 
to be present.  
 A number of examples based on MATLAB simulation have 
been discussed illustrating the presented theory. 

VII.  APPENDIX 

Proof of Lemma 1: To simplify the notation, we assume that 
the sampling period is 1ST =  and we restore its arbitrary value 

at the end. Following the definitions in Section III.A and using 
Eq. (6), we have for every ,t τ ∈ℝ  that   

( ) ( ) ( ){ } [ ] [ ]( ), ,xR t E x t x r tx τ τ τ τ τ τ+ + = +≜
 

Now we consider a fixed t  and express it as t A a= +  where 

A∈ℤ  and [ )0,1a∈ . Then for every integer m  we have 

( ) [ ] [ ]( )

( ) ( ) ( )

1 1

, ,

1 , 1,

m m

x

m m

x x

R t d r A a dx

a r A m m a r A m m

τ τ τ τ τ τ
+ +

+ = + +

= − ⋅ + + ⋅ + +

∫ ∫    (29) 

because it is [ ]a mτ+ =  for  every [ ), 1m m aτ ∈ + −  and 

[ ] 1a mτ+ = +  for every [ )1 , 1m a mτ ∈ + − + . Moreover, 

since xr  is bounded so is Rx  and so 

( ) ( )
11 1

lim , lim ,
2 2 1

L mM

L M
m ML m

R t d R t dx xL M
τ τ τ τ τ τ

+

→∞ →∞
=−−

+ = +
+ ∑∫ ∫  

which along with Eq. (29) and the definition of xR  imply that 

( ) ( )

( ) ( )

( )

1
lim ,

2

1
1 lim ,

2 1

1
lim 1,

2 1

L

x
L

L

M

xM
m M

M

x
M

m M

R t R t dxL

a r A m m
M

a r A m m
M

τ τ τ
→∞

−

→∞
=−

→∞
=−

+

= − ⋅ +
+

+ ⋅ + +
+

∫

∑

∑

≜

 

Therefore ( ) ( ) ( ) ( )1 1x x xR t a r A a r A= − ⋅ + ⋅ + . Note that since 

1A t A≤ < + , ( )xR t  is the linear interpolation between ( )xr A  

and ( )1xr A+  weighted by the fractional part, a , of t . Hence, 
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in general we can write ( ) ( ) ( )trix x
k

R t r k t k
∞

=−∞

= −∑
 
for every 

t∈ℝ , where ( )tri 1t t= −  for 1t <  and zero otherwise. 

( )xR t  can be written alternatively in the form 

( ) ( ) ( ) trix x S
k S

t
R t r k t kT

T
δ

∞

=−∞

  
= − ∗   
   
∑  

where we have also restored the value of ST . Now, since 

( ) ( ) 2 ift
x xS f R t e dtπ

∞
−

−∞

= ∫  and the Fourier transform of the 

convolution equals the product of the transformations we get,  

( ) ( ) ( )2 2sincSikf T
x x S S

k

S f r k e T f Tπ
∞

−

=−∞

 
= ⋅ ⋅ ⋅ 
 
∑ .   □ 

 
Proof of Lemma 2: From Eq. (4) we calculate directly that 

{ } ( )( )2 cos 1nE G n= Ω −x . Replacing G  from Eq. (11) and 

using the property ( )( ) ( )cos cosjT jϕ ϕ=  of the Chebyshev 

polynomials, valid for every 0,1,2,...j =  we get 

{ } ( )
0

cosn j
j

E a nj
∞

=

= Ω∑x .      (30) 

Note that for n m≠ , random variables ,n mx x  are independent 

implying that ( ) { } { },x n mr n m E E= x x  and so 

( ) ( ) ( )
0 0

, cos cosx j
j

r n m a nj a m
∞ ∞

= =

   
= Ω ⋅ Ω   

  
∑ ∑ ℓ

ℓ

ℓ    (31) 

To proceed further we need the series in (30) to converge 
sufficiently fast. Our assumption that ( )2 [ 1,1]G C∈ −  

implies10 ( )21/a o=ℓ ℓ ,  [42] and so series (30) is absolutely 

convergent implying that the Cauchy product of the two series 
in Eq. (31) converges (absolutely) to ( ),xr n m ,  [43], therefore 

( ) ( ) ( )( )
0 0

, cos cos
p

x q p q
p q

r n m a a nq m p q
∞

−
= =

 
= Ω Ω − 
 
∑ ∑ . (32) 

Consider the case n m≠  and express n k m= +  with 0k ≠ . 
Then Eq. (32) becomes 

( ) ( )
0

, ,x p
p

r k m m c k m
∞

=

+ =∑        (33) 

where 

( ) ( )

( )( )

0

0

1
, cos

2

1
cos 2

2

p

p q p q
q

p

q p q
q

c k m a a kq mp

a a kq m q p

−
=

−
=

= Ω +Ω

+ Ω +Ω −

∑

∑
. 

By the definition of xr  in Eq. (9) we have 

 
10 Milder conditions, sufficient for proving Lemma 2, exist. 

( ) ( )

( )

( )

0

0

1
lim ,

2 1

1
lim ,

2 1

1
lim ,

2 1

M

x x
M

m M

M

p
M

m M p

M

p
M

p m M

r k r k m m
M

c k m
M

c k m
M

→∞
=−

∞

→∞
=− =

∞

→∞
= =−

= +
+

=
+

 
=  + 

∑

∑ ∑

∑ ∑

     (34) 

Since ( )21/a o=ℓ ℓ  there exists a fixed number A  such that 

for 1,2,3,...p =  it is ( ) 2, /pc k m A p<  for every ,k m∈ℤ  

and so ( ) 21
, /

2 1

M

p
m M

c k m A p
M =−

<
+ ∑  for every k∈ℤ  and 

1,2,3,...M =  as well. This implies the uniform convergence 

of ( )
0

1
,

2 1

M

p
p m M

c k m
M

∞

= =−

 
 + 
∑ ∑  with respect to ,k M ,   [43]. 

Moreover, 

( ) ( )

2
0

2
/2

if   0          

1
lim , cos if   2,4,6,...

2 1 2 2

0 otherwise         

M
p

p
M

m M

a p

a kp
c k m p

M→∞
=−

 =


Ω  = =  +  



∑  

where the only terms of ( ),pc k m  remaining after taking the 

limit M →∞  are the ones independent of m . The uniform 
convergence and the existence of the limit for every k∈ℤ  
allow us to interchange the order of the limit and the infinite 
sum in the last expression of ( )xr k  in Eq. (34), i.e.,  

( ) ( )
0

1
lim ,

2 1

M

x p
M

p m M

r k c k m
M

∞

→∞
= =−

 
=  + 
∑ ∑    (35) 

Therefore, for 0k ≠  it is ( ) ( )2 2
0

1

1
cos

2xr k a a k
∞

=

= + ⋅ Ω∑ ℓ

ℓ

ℓ . 

Finally for 0k =  it is ( ) { }, 1x m mr m m E= =x x . Combining 

the results we express xr , using the discrete-time Dirac 

function kδ , as  

( ) ( )2 2 2 2
0 0

1 1

1 1
cos 1

2 2x j j k
j j

r k a a j k a a δ
∞ ∞

= =

 
= + Ω + − − ⋅ 

 
∑ ∑    □ 

 
Proof of Lemma 3: The DTFT of: ( )cos j kΩ , constant 

function 1 and Dirac function kδ  are  ( )2
k

j kπ δ ω π
∞

=−∞

± Ω −∑ , 

( )2 2
k

kπ δ ω π
∞

=−∞
−∑  and 1 respectively  [47]. Therefore, the 

DTFT of the average autocorrelation function in (15) is 

( ) ( )

( )

2

1

2 2 2
0 0

1

2
2

1
2 2 1

2

x j
j k

j
k j

s a k j

a k a a

π
ω δ ω π

π δ ω π

∞ ∞

= =−∞

∞ ∞

=−∞ =

= − ± Ω

 
+ − + − − 

 

∑ ∑

∑ ∑
 

Replacing 2 Sf Tω π=  and using the identity of the Dirac δ  

function, ( ) ( ) /Mx x Mδ δ= , we get 
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( ) 2

1

2
2 20

0
1

1
2

4 2

1
1

2

x S j
j kS S S

j
k jS S

k j
s f T a f

T T T

a k
f a a

T T

π δ
π

δ

∞ ∞

= =−∞

∞ ∞

=−∞ =

 Ω
= − ± 

 

  
+ − + − −  

   

∑ ∑

∑ ∑
(36) 

 
resulting in ( ) ( ) ( ) ( )02S x S H NT s f T S f S f S fπ⋅ = + +  where 

the three components ( )HS f , ( )NS f  and ( )0S f  are given 

by expressions (17), (18) and (19) respectively.      □ 
 
 
Proof of Theorem 1: From ( )HS f  in Lemma 3 we get that 

( ) 2 2
04 H j

j k k

jw kq k
S f a f a f

qT Ts s
δ δ

∞ ∞ ∞

=−∞ =−∞ =−∞

   +
= − − −   

   
∑ ∑ ∑ (37) 

Since ( )gcd , 1w q =  there exists an integer solution ( )1 1,j k  of 

the Diophantine equation 1 1 1wj qk+ = ,  [46]. Now consider 

the mapping from 2ℤ  to itself such that 1

1

j qj h

k wk r

    
= ⋅    −    

 

which is bijective because 1

1

det 1
j q

k w

 
= − − 

. Therefore we 

can replace the indices in the summations of (37) yielding 

( ) ( )
2 2

,hj I h r
j k h r

jw kq
a f f f a

qTs
δ δ

∞ ∞ ∞ ∞

=−∞ =−∞ =−∞ =−∞

 +
− = − 

 
∑ ∑ ∑ ∑  where 

we have set ( ) 1,I h r j h qr= + , ( )/h Sf h qT=  and used the 

equation 1 1 1wj qk+ = . Coefficients ( )
2

,h I h r
r

b a
∞

=−∞
∑≜  are well 

defined because ( )21/a o=ℓ ℓ  (see the proof of Lemma 2) and 

so the series converges. Note that ( ) ( ), ,I h r I h r− = −  gives 

h hb b− =  which along with h hf f− = −  imply 

( ) ( ) ( )( ) ( )0
1

h h h h h
h h

f f b b f f f f b fδ δ δ δ
∞ ∞

=−∞ =

− = − + + +∑ ∑ . 

Combining it with the intermediate results and Eq. (37) yields  

( ) ( ) ( )( )

( )

1

2
0 0

1

4

4 4

H h h h
h

k

S f b f f f f

b a k
f f

Ts

δ δ

δ δ

∞

=

∞

=−∞

= − + +

 
+ − − 

 

∑

∑
   (38) 

Adding ( )0S f  from expression (19) to (38) we get that 

( ) ( ) ( ) ( )( )

( )

0
1

2
0

1

2
0 0

1

4

3

4

3

4

H h h h
h

k

S f S f b f f f f

a k k
f f

T Ts s

b a
f

δ δ

δ δ

δ

∞

=

∞

=

+ = − + +

    
+ − + +         

+
+

∑

∑  

and so ( ) ( ) ( ) ( )0 0H HS f S f S f S f+ = +ɶ ɶ  where ( )HS fɶ  and 

( )0S fɶ  are defined in Eqs. (22) and (23) respectively.     □ 

 

Proof of Lemma 4: For every k∈ℤ  and 0,1,2,...h =  we 

have that ( ) ( )1

2 2
, ,kq h I kq h r I kq h r j kr r

b a a
∞ ∞

+ + + −=−∞ =−∞
= =∑ ∑  and since 

( ) ( )1, ,I kq h r j k I h r+ − =  we conclude kq h hb b+ = . Similarly 

we have that ( ) ( )1

2 2
, ,q h I q h r I q h r jr r

b a a
∞ ∞

− − − − −=−∞ =−∞
= =∑ ∑ℓ ℓ ℓ ℓ

 and 

since ( ) ( )1, ,I q h r j I h r− − − =ℓ ℓ  it is q h hb b− =ℓ . Using them 

along with the fact that ( )modh h q−  is always a multiple of 

q  we get that ( )mod modh h q q h qb b b −= = .              □ 

 
Proof of Lemma 6: For [ ]0,1,2,..., / 2h q=  we define the set 

of integers { }1h j h qr r+ ∈I ≜ ℤ  and so we can write  
2

h

h j
j

b a
∈

=∑
I

.          (39) 

We first show that sets hI  form a partition of { }0,1,2,... , i.e., 

{ }
[ ]0,1,..., /2

0,1,2,... h
h q

⊕

=

= I∪        (40) 

Since 1 1 1wj qk+ = , it is ( )1gcd , 1j q = ,  [46], and so for every 

{ }0,1,2,...j∈  there exist { }0,1,2,..., 1h q∈ −  and r∈ℤ  such 

that 1j h qr j+ = . If [ ]/ 2h q>  then it is 1j h qr j′ ′+ =  for 

h q h′ = −  and 1r j r′ = − − . Therefore { } [ ]/2

0
0,1,2,...

q

hh=
= I∪ . 

Now let [ ]{ }, 0,1,2,..., / 2h h q′∈  and ,r r′∈ℤ , and suppose 

that 1 1j h qr j h qr′ ′+ = + . If 1 1j h qr j h qr′ ′+ = +  then 

( )1j h h′−  is a multiple of q  and since ( )1gcd , 1j q = , q  must 

divide h h′−  implying that h h′= . Similarly, if 

( )1 1j h qr j h qr′ ′+ = − +  then ( )1j h h′+  is a multiple of q  and 

so q  must divide h h′+  which is possible only if 0h h′= =  

or / 2h h q′= =  when q  is even. In all cases it must be h h′=  

and so the sets hI , [ ]0,1,2,..., / 2h q=  are mutually disjoint. 

Lemma 4 implies that 0hb =  for every { }0,1,2,...h∈ −H  if 

and only if 0hb =  for every [ ]{ } { }0,1,2,... / 2 0,h q w∈ − . 

Because of Eqs. (39), (40) the last one is equivalent to having 
0ja =  for every { } 00,1,2,... wj∈ − −I I . Using 1 1 1wj qk+ =  

we write ( )1 1 1 1 11j w qr j w k q k q qr r k q+ = + − + = + −  and 

so { }1, 1 1,2,3...w rq r= ± =I . Also, { }0 0,1,2,...rq r= =I  

and so we have 0 w =I I J∪  which concludes the proof.    □ 
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