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Single-Bit Digital Frequency Synthesis via
Dithered Nyquist-rate Sinewave Quantization

Paul P. SotiriadisSenior Member, |IEEE ,

Abstract—Single-Bit Nyquist-rate quantization of sinewavethw
random dithering is studied as a means for alltaligirequency
synthesis. Quantizer's output spectrum is analfyicderived and
related to the cumulative distribution functiontbe random dither
formed by independent and identically distributaddom variables.
Necessary and sufficient conditions for spurs-fretput are derived.
The noise floor level due to random dithering isicel analytically
and the output dynamic range is defined. The taftldetween
selective frequency-spurs presence and dynamierangrovement
is studied. Several MATLAB examples illustrate theory and its
applications.

Index Terms—Clock generation, digital-to-analog converter,
digital-to-frequency converter, direct digital siyasis, frequency

spurs, quantization.

[. INTRODUCTION

Over the past few years the interest in digital+istee and
all-digital frequency synthesis has been revitalidee to
the challenges in traditional analog-RF design edusy the
reduced power supply voltage and co-integratiorh wligital
engines in standard-CMOS processes [1]-[29]. Mege
digital-intensive frequency synthesizers are be¢eafby the
automated design, verification and layout toolsilaiée for
digital circuits, and can be migrated to newer échinologies
with less effort than their traditional analog ctemarts [2].
Direct Digital Synthesizers (DDS) [31]-[33] andl-Digital

Natalia Milior, Member, IEEE

In addition to the design and implementation adwges of
a completely digital RF frequency synthesizer, actyonous
single-bit digital signal which can be used as taerier or
local-oscillator signal in an RF chain has also taiar
advantages: A) It can be amplified, for transmissio internal
use, without distortion and with very high efficagnusing a
switching amplifier; B) It can be used directly,thut the
need of a limiter or comparator, to drive a swibchup- or
down—converting frequency mixer; C) It can be gaf8d to
some phase detectors or related blocks for synctaton
purposes.

Digital phase and frequency modulation of a syachus
single-bit digital signal with sinewave-like spestr can be
easily achieved when the signal is generated biaiceall-
digital synthesizers [24]. Amplitude modulationncalso be
implemented using a Look-Up-Table (LUT) or by linga
combining two or more such signals [2], [24]. Ma@mplex
modulation schemes result from combinations ofdheve.

This work studies in detail the spectral propertigs
synchronous single-bit digital signals generatedsimgle-bit,
dithered Nyquist-rate quantization of sinewavesptactice,
such signals are generated using a phase accumfalddaved
by a sinewave LUT whose output is additively digeerand
guantized to single bit. This is the same with hgva DDS
with a 1-Bit Nyquist-rate DAE and amplitude dithering.

Phase-Locked Loops (ADPLL) [2] are the two dominan>iNC€ @ 1-Bit DAC is a comparator or simply a Most

digital-intensive frequency synthesis architectunéth many
applications and realizations. Despite their sucee®l impact
on modern IC design, both of them require critexalog and
mixed signal blocks like the Digital to Analog Caanter
(DAC) of the DDS, the Time-to-Digital Converter () and
the Digital Control Oscillator (DCO) of ADPLL.

Eliminating these last mixed-signal/analog blocks
frequency synthesizers implies the extreme requérgmnof
generatingsingle-bit digital signals of desirablgnewave-like
spectrum using only a digital circuit with a refece clock.
Efforts towards this can be traced at least thyears back
[34]-[36]. Recent developments in this directiorclude a
number of architectures [12]-[30] most of whicloctis
primarily on generating variable-frequency clocigrsils for
clocking other digital circuits [12]-[22]. Techqies for
generating RF signals with relatively clean speuatinclude
[24]-[29] and they use additional retiming blockdeanup-
PLLs and dithering methods, where only some ofdseones
are purely digital.

Copyright (c) 2013 IEEE. Personal use of this miakés permitted. Howeve
permission to use this material for any other psggomust be obtained fr
the IEEE by sending an email to pubs-permissions@aeg.

Significant Bit (MSB) truncator, this approach rigsin direct
all-digital frequency synthesis architectures witha DAC at
the output and without the need for oversampling.

Considering signal quantization from a frequencytsgsis
perspective, the paper focuses on a special catbe gfeneral
guantization theory [37]-[38] providing a deembsis on the
j relationship between dithering and spectral conféhé main
results of the paper are listed in the table below.

The spectrum of dithered single-bit quantiz eldneorem 1
sinewave as a function of the dither’s distribution

Necessary and sufficient conditions for dither’.Fheoremz
distribution forspurs-free spectrum.
The trade-off between frequency-spurs present @FampleS

dynamic range improvement.

Table 1: Main results of the paper

Starting in Section Il the use of dithering is simot® be
unambiguous in single-bit quantization for RF fregcy
synthesis. Section 1l defines the mathematicallstoand

! clocked by the DDS’ clockjot an oversampling DAC [45]
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introduces the Chebyshev polynomial series expansiadhe
dither’s cumulative distribution function.

Two main results of the paper are captured in Téraerl
and 2 in Sections IV and V respectively. Specificabection
IV derives analytically the spectrum of the ditteersignal
providing the frequency locations and amplitudes adif

frequency components and the noise floor power lleve

Section V provides necessary and sufficient coowlgti for
spurs-free output and introduces a metric of thépuiis
dynamic range illustrating a trade-off between thmamic
range and selectively acceptable frequency spurglly
Section VI provides the concluding remarks.

One way to generate a synchronous single-bit digitgal
is to use a DDS with a 1-Bit Nyquist-rate output ©Avhere
the DAC essentially acts as a comparatofhis crude
quantization is by far the dominant source of fiaty spurs
at the output compared to the sinewave representatirors
introduced by any reasonably-sized LUT. The schame
practically equivalent to that in Fig. 1 of sindl&-sinewave
guantization where the Zero-Order-Hold (ZOH) fuaonti
captures the behavior of the 1-Bit DAC.

+

Figure 1: Undithered single-bit quantization of a sinewave

UN-DITHERED SINGLE-BIT SINEWAVE QUANTIZATION
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cog(QK)— ZOH —x,(t)

0

In Fig. 1 we havex, (t)= Y sgn( cogQk))- p(t Ts—k)

k=—0

where T, is the sampling period and is the ZOH function

p(t):{l if te[0,1) M

0 otherwise

Then the Fourier transform of, (t) can be expressed as

X,(1)=w(f)- ¥ (_1)m‘5£f

ki 2M+1

212 1)
whereW( f)=(2/7)e"™"sinqTsf) is a weighting function
with sinc(a) = sin(za) {za) for a=0 and sinc( 0)= 1. For
all practical purposes it i =2zw/q .

Assumption: Throughout the paper w,q are positive
integers satisfying0<w<q/2.

Fig. 2 shows a typical case of the spectrum. Thputisignal
is unusable for most applications due to the dgnaitd
strength of spurs, this motivates the use of ditiger
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Figure 2: Spectrum ofindithered single-bit-quantized sinewave with
w=25, g=64 and f,=1/T; derived ignoring the weighting
function W( f ). The strongest frequency components are at
frequenciesQ)/ (22T,) and1/T,—Q/(27Ty).

Remark 1. Motivation for using dithering in the quantizatio
of the sinewave is gained by comparing the spectruRig. 2
to the one in Fig. 7 achieved with the ditheringtmoelology
described in the following sections. Another pdispectra of
undithered and dithered single-bit quantized sinemahere

w=5831 and q=2"® is shown in Fig. 3 and Fig. 15.
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Figure 3: Spectrum of undithered single-bit quantized siaeswvith
w=5831, q=2' and f, =1/Ty, ignoring weighting factoiv (f ).

Ill.  DITHERED SINGLE-BIT SINEWAVE QUANTIZATION

Dithering is used widely to suppress the spurssirape the
noise spectrum of quantization in DDS [31] and data
converters in general [44]. Single-bit quantizatiaithout
oversampling [45], as in Fig. 4, is an extremeeca&et, we
show that using random dithering, of appropriate statistics
we can eliminate all spurs, or, keep some of thelactively
to allow for lower noise floor (introduced by thieher).

Xk
_¥>

£

- S

cogQk) ZOH »X(t)

Uy

ReplacingQ =2zw/q in (2) it can be concluded that the set

of frequency tones at the output xu(t) is
-ged( 2w
{Tivmwgc—(q) le Z}. Therefore the output is full of
s q

(strong) spurs for most values & with very few exceptions.

2

or simply keep only the MSB of the LUT's outputsaming an
appropriate numerical representation is used.

Figure 4: Dithered single-bit quantization of a sinewave

A. Déefinitions, Notation and Assumptions

Dithered single-bit quantization is shown in Fig. he
random sequence{u,} is subtracted from the sinewave
resulting in the discrete-time signaj, = sgn( co§Qk)-u, )
which is written more explicitly as
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1 if u,<coyQk)
X, =4-1 if u,>cogQk)
0 otherwise

3

Although dithering sequence$u,} with any statistical

properties can be used, those with Independentdemdically
Distributed (1ID) random variables are easier tmagate in
hardware, mathematically tractable and can achieveplete
spurs elimination as demonstrated in the followgegtions.

Assumption: Sequence {u,} is formed of IID random

variables with Cumulative Distribution Function (CDF)
G:[-1,1]—[0,1] which is continuous and has continuous

first and second derivatived in [-1,1], i.e. GeC*([-1,1]).

We use this assumption from here on and so foryekerZ
andue[-11] itis Pr(u, <u)=G(u).
Eqg. (3) implies that the random variablés,} are also

independent (to each other) but not identicallytriiated.
Specifically it is

Pr(x, = 1) =G( cogQk))

Pr(x, =-1)= 1-G( cogQk)) @

Note that ifQ/(27) is rational, i.e.Q=2zw/q, which is
always true in practice{xk} is cyclostationary (in the strict

sense) [39] of period)/ gcd(q,w) . Finally, the output signal
of the quantizer is the continuous-time stochgsticess

t)= i xkp(Ti—kJ )

where p(t)
, EQ. (5) can also be written as
x(t) =x

part function { - ]”

(6)

[trTs] *

is the ZOH function in Eqg. (1). Using the integer

Note that wher = 2zw/(q, the stochastic procesgt) is

cyclostationary and (7) reduces to the correspandéfinition
in [39]. Finally, the discrete-time average-autoelation

function of the random sequen{nek} is defined similarly as
M

7 (k)= lim 9

(k) M- 2M +1m:Z_“,\,I ©

where 1, (n,m)=E{x x,} is its autocorrelation function.

Definition (9) is identical to that used [A40] except that the
averaging here is bilateral.

r.(k+mm)

IV. PSDOFDITHERED SINGLE-BIT QUANTIZED SINEWAVE
The spectral properties of the continuous-time hsetic
signal x(t) are inherited from those of the discrete-time

random signal{xk}. This is shown by the more generally
applicable Lemma 1 whose proof is in the Appendix.
Lemma 1 Let {x,} bea real random sequence with bounded
autocorrelation function r,
function T,. Also let p(t) be given by Eq. (1). Then the PSD
z X p(t/Tg—k) is

k=—0

and average autocorrelation

of the random process x(t) =

S, (f)=Ts-sin¢(fT,)-s (2 fTy) (10)

where s (o) = i T, (k)e™ is the Discrete-Time Fourier

k=—o0

Transform (DTFT) of the average autocorrelation function Ty

and Tg-sinc (f Tg) isduetothe shapeof pulse p(t)*. o

To derive a closed form expression of the dithesiadle-bit
qguantized sinewave spectrum using (10) we calctiistethe

discrete-time average autocorrelation functigr(k). To do
so it is convenient to express the CIBF[-1,1] —[0,1] as a

The Power Spectral Density (PSD) of a Wide-Sensgeries of Chebyshev polynomials of the first kiinel,

Stationary (WSS) process(t) is the Fourier transform of its
autocorrelation function [39]. Sequen@ek} however is not

WSS and neither the continuous-time stochasticgz®xg(t)

is. Therefore we have to employ the more generaleme-
autocorrelation function fox(t), defined as

ﬁx()_llm—

lim J.RX (t+7,7)dr 7

where Rx(tl,tz):E{x(tl)x(tz)} is the autocorrelation

function. Thenthe PSD ofx(t) is defined via the Fourier
transform

©

[ Re(t)e "t

—0

S(f) ®)

® There exist milder but more technical conditionffisient for the validity
of our analysis especially taking into accountrti@notonicity ofG [41][48].

(11)

1 1

—+=>aT (u
2+21:zo J J( )
where thel/2 summand and multiplying factor simplify the

algebraic manipulation to follow. The coefficients are

derived based on the orthogonality properties [4if]
Chebyshev polynomials according to

_ CU) 4u_1. a 4 GU)T, (u
lel u? A0 J. Vi1-u?

Our assumption thaG e C? ([-1,1]) guaranties that series

du

(12)

expansion (11) converges © everywhere in[-1,1], [41].
Reversely, we can defin& using coefficientsa; but we

must verify thatG is indeed a CDF. The two equations and
the inequality in (13) form a necessary and sudfitiset of
conditions forG to be a CDF.

4 Eq. (10) can be modified accordingly for othergof p(t) .
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G(-1)=0, G()=1 & G'(u)20 Vue[-1] (13) andT,(u)=16u"-2@’+ &. Egs. (14) implya, +a,=1 and
! 2G'(u) = P(u)=0 f -1,1 wh h
Since it isT,(1)=1 and T,(-1)=(-1)’ for j=0,12,.., (u)=a+aP(u) or everyue[-L4 where we have
. set P(u)=80u*-6@’+ L The maximum and minimum
and T/ (u)=j-U,_,(u) for j=1,2,3,.., whereU, is thej"

values of P(u) in [-1,1] are 25 and -25/4 respectively and
Chebyshev polynomial of thé%kind [41], Egs. (13) become ( ) [ ] P y

s0 G'(u) >0 for everyue[-1,1] if and only if a, +25a,> 0

Y(-1)'a=-1, Ya-=1 and 4a, — 25, > 0. Combining the above we conclude tigt
- e (14) is a CDF if and only ifa+a,=1, a+25,>0 and
2 g, (u)>0 Vue[-1] 4a, -25,> 0. The feasible set ofa,a, is given by

25, . 25 1 4 o
Example 1A A case of particular importance is that of theal_zl( —p)* Pra af»__ﬂ( —p)+ Pra pelo]

dithering sequence{u,} with uniformly distributed 1ID with a graph very similar to that in Fig. 5.
random variables, i.eG'(u)=1/2 in [-1,1] and therefore Example 1E Let a,,a,,a; = 0 and all other coefficients,
G(u)=(u+1)/2. SinceT,(u)=u this leads by inspection to

(u)=(u+) (W) yinsp be zero. It isG(u):£+3T1(u)+$T3(u)+3T5(u) and
a,=0, a=1anda, =0 for k=2,3,4,... 2 2 2 2

Example 1B The undithered case of Figure 1 can be thougﬁ‘%laﬂonSh'pS (14) becoma, +a,+a;=1 and 2G (u):

of as theimiting case of u, =0 which has CDFG(u)=0 for ~ 80au’+(12,- 6@,)u’+a,~ B+ &> ( for  every
e[-1,0) and G(u)=1 for ue(0,q. Although G is ue[-11]. It turns out that the feasible setaf, a;, with a,

discontinuous au =0 its series expansion is valid far=0  derived froma, +a,+a, =1, is shown in Fig. 6 below.

4(-1)

implyin =0 and =——— for k=0,1,2,... 0.15
py g a2k a2k-¢-l (2k+1)71' o1
Example 1C Let a,a,=0 and all other coefficients, be 350'25
zero. Since T,(u)=u and T,(u)=4u’-3u we have 0.05
LA 0.1 "
G(u)= St 2(4u ~3u). For G to be a CDF Egs. (14) 03 02 01 0, 01 02 03 04

imply a, +a,=1 and ZG'(u) =a + a3(12f - 3)2 C for every Figure 6: Feasible set of,,a; in Example 1E shown in gray.

e[-1,1]. Since 2G'(u) achieves its minimum either at Coefficient a, is derived froma, +,+2,=1.

u=0 or atu=1, depending on the sign af,, itis G'(u)>0 The following Lemma whose proof is available in the

for every Ue[—l,l] if and only if a-3a,>0 and Appendix expresses the average autocorrelatiofxp}‘ as a

a, +9a,> 0. Combining the above is a CDF if and only if function of the coefficients; , j=0,12,....

a+a;=1, a+9,20 and a-3a,20. The (solution) |emma 2: Consider the Chebyshev series expansion in Eq.
feasible set ofa,,a, is a, =(6+3p)/8 and a,=(2-3p) /8 (11) of the CDF G of the IID random sequence {u,}. The

with p €[0,1] shown in thick line in Fig. 5. average autocorrelation of the random sequence {x,} is
given by (15) where ¢, isthe discrete-time Dirac function.
a, ai+§-3 1 _
S 3 3a,-0 T (k)=ay += Za cog jQk) [1 a, ——Za jﬁk (15)
== e } > According to Eq. (15),r, is composed of a DC term, an
3 +98=0 e impulse term atk=0 and harmonics ofcos(Qk). It is
Figure 5: Feasible set of,,a, in Example 1C (thick line) remarkable that the amplitude of tj{& harmonic is a’l2,

i.e. proportional to the square of the projectiérC®OF G to

Example 1D Let a,a, =0 and all other coefficients, be the | Chebyshev polynomial according to Egs. (12).
Therefore, by selecting CDE appropriately we can “shape”

zero. It is G(u )_—+i T,(u )+3T (u) where T, (u)=u the average autocorrelatia. Note that since time is discrete
2 2 2° ' . .
here, all frequency components in Eq. (15) witk Q/ 7z



To Appear in IEEE T-CAS-lI (Accepted & Considered for Best Paper Award on 2013-05-14) 3
TCAS-1 13452

suffer from aliasing and fold into the frequencyeival
we[0,27). Specifically, since the DTFT ofos( jQk) is

[471 7Y ((w-Q-27m)+5(w+ jQ-27m))
frequency contributions ofos( jQk) are at(w—jQ) mod 2z

the

E) SX( f) has no power at the fundamental and harmonics of
the sampling frequency fg=1/Tg because the factor
sind (fTy),

quantization scheme in Fig. 4, is zero for &l k/Tg, k=0.

corresponding to the ZOH stage in the

and (@+j) mod 2z . Some of the harmonics may fold verySo we can ignore the term&( f —k/Ts) with k#0.

close to the carrier frequency . The detailed spectrum &f
is given by Lemma 3 whose proof is in the appendix.

Lemma 3 The DTFT s (@) of the average autocorrelation

function T, can be expressed as

-2(s.(N)+s(1)+s(1))
where the three components S, (f), S, (f) and S (f) are
R k jo kK jo

Sl e

(18)

s (27 fTs) (16)

and

(19)

%(f)=a§-§5[f—%]

Combining Lemmas 1 and 3 we derive the PSD of the

stochastic process(t) parameterized on the coefficieras
of the Chebyshev polynomial series of CGFin Eq. (11).

Corollary 1: The PSD of the stochastic process x(t) is

S(f)=siné (fTe)(S.()+8.(1)+8(F) ) 0
where the three components S, (f), S (f) and S,(f) are
given by Egs. (17), (18) and (19) respectively. o
Remark 2: A) Since s, (w) with @ =27fTg is the result of
DTFT, itis periodic onf with period f,=1/Tg. Such are all
three component§, (f), S, (f) and§ (f) as well.

B) Note that the PSD componer, (f) captures the

desirable signal at frequencp2/(2zTg) as well as the

intermodulation products at frequencikg Tg+ jQ/(27Tg),
j=12,3. andkeZ.

If Q=27w/q then the frequency components §f ( f)
appear at(k+ jw/q)/Ts=(ok+ jw)/(qT) for j=1,2,3,..
and k e Z which are positive and negative harmonics of the
fundamental frequency/(qTS). Based on this and after some
algebraic manipulation of Eqg. (20) we get Theoremtich
provides explicitly the power of each harmonicha!t(qTS),
heZ. The proof of Theorem 1 is available in the Apgrnd

Theorem 1 For angular frequency Q=2zw/q with

0<w<q/2 and gcd(w,q) = 1 we havethat
S.(f)=sinc (fTo)( & (1)+S(H)+&(F) ) (1)
where S, (f) isasinLemma3and S, (f) and §(f) are
Zq{ (f—q—TS +5 f+—] (22)

and

Z{[ S] [f+_|_—ksj]+b°%?§§(f) (23)

respectively. Here, for h=0,1,2,... we have defined®

b2 alz(h,r)
r=—o0wo

where 1 (h,r)=|jh+ar| and the integer pdir(j,k,) is a

(24)

(any) solution of theDiophantine equation wj, +gk, =1. In
particular, coefficient b, of the frequency component at

+Q/(27Ts)=+w/(dTs) ish, =Y " a:,, - Finaly,itis
Si(1)+S(1)=5,(f)+S(1) (25)
where S, (f) and §,(f) aredefinedin Egs. (17) and (19)p
Both expressionsS, (f) and S, (f) capture the desirable

signal and the intermodulation products, they diffiely in the
DC and harmonic components =k/Tg, k=0. However,

S, (f) sums with respect to coefficients,, j=1,2,3,..
(first) each of which contributes to the amplltudfe many

C) PSD componen§, () is independent of the frequencyfrequency components. S§, (f) relates directly with the

and captures the noise floor level (in the contirmitme
spectrum) introduced by the dithering.

D) If° Q=2zw/q, then S, (f) may partially include the

DC component whose other part is capturedSp(/f) along
with harmonics of the sampling frequency.

5 Thatis, if Q/(Z/r) is a rational number.

Chebyshev expansion of the CDB of the dithering
sequence. On the other ha&{(f) provides the amplitude

® R, is the amplitude of the frequency component at +h/(qT) for
h=1,2,...and b, ispart of the DC component.
7 k, isnot involved in the expressions of Theorem 1.
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of each frequency componerty,, h=1,2,3,.. as a sum of [y 0
squares of infinitely mang, s. é 10 f.=1GHz

5 20| |RBW = 3125 Hz
Remark 3: To derive coefficienth,, h=0,1,2,... we first L

= -40
have to find a solutior( j,,k,) of the Diophantine equation g 50
wj, + gk, =1 using the Euclidean algorithm (e.g. the “gcd” 2 -60,, 0.2 0.4 0.6 0.8 1

Lo . . fIf
function in MATLAB). Since by assumptiomed(w q) = 1 Figure 7: PSD of simulated random sequer{og} whena, =0,

this is always possible and any other solutionhef équation 5 —1 anda, =0, k=2,3,4,..; w=25 andq=64; f,=1GHz,

is of the form Resolution BW = 3125 Hz and waveform averaging Ni@vruns.
(Jl kK ) =(luki)+p(a.-w) (26) Example 2B The PSD s (2zfT;) corresponding to

for somepeZ. Thenh, £ 3 a% . where only j, is used Example 1B is shown in Fig. 2.

. . _ _ Example 2C Following Example 1C withp =1 we get that
in the index|j;h+qr|. Moreover note that the sum is OVery —9/8, a,=-1/8 and all other coefficients, are zero.

reZ and so according to Eq. (26) it does not depenthen .. - 25 and q=64 the PSD of the simulated random
particular choice of the solution of the Diophastiaquation,
sequencex, =sgn( co$Qk)-u, ), keZ is shown in Fig. 8.
From Egs. (17), (18) and (19) we derive directlgttthe only
Remark 4: From Eq. (24) we conclude that the contributionfrequency components present are at frequencies
of coefficientsa., j=0,1,2,... to the power of frequenc ,

i 1=5 P equency k ,_Q :(kiz—Sst and K+ %2 :(ki7—5}fs with
component ath/(qTg) in Eq. (22) are cumulative since Ts 27Tg 64 Ts 27Tg

a’,,>0. Therefore the smaller the set of nonzerdeZ. So the only frequencies in the spectrinfs) are at

coefficientsa, is, the smaller the set of frequency component§0+25/64 fs and (1-25/64) fs from the first expression,
corresponding to the fundamental and its image;, and
(-1+3-25/64 fg and (2—-3-25/64 fg from the second
one, corresponding to the™3harmonic and its image.
Example 2A: Following Example 1A witha, =0, a, =1 and Alternatively one can identify the frequency comeots
a,=0 for k=2,3,4,.., Lemma 3 implies that S, (f)=0 within (0, fg) from Eq. (24) of Theorem 1 via the following
FYoTo/? ' d ’ (i antl steps: find a solution of the Diophantine equation
S (f)=Ts/2 and most importantly, 25j,+ 64, =1, e.g. (j.k)=(-239 and use it to solve

S, (f):% 3 (5{1’ _L_i}rg{f _TLJF 27?'_ j] Diophantine  equations | (h,r)=|-2%+64|=1 and
e s s I(hr)=|]-2h+64|=23 for h=0,12,.,6: and reZ

(since a, and a, are the only nonzero coefficients). We
fs, keZ. So the only two frequency derive that for h=0,1,2,...,6! the only nonzeroh,’'s are
b,=(1/87, b.,=(9/87, b,=(9/8¢ and h,=(1/8y,

corresponding to frequencies(11/64) fg, (25/64)fs,
(1-w/q) fg, and have the same power. Also, the spectrum |&9/64)

i.e. replacingj, by j, would only shiftr e Z by hp .

present inS, () will be. The same is true fa8 (f) and so
for § () as well sinceq; s also act cumulatively in Eq. (23).

If Q=2zw/q the frequency components &, (f) are at
L+i:kqiw
Tg 27Tg q

components in the interva(0,fs) are at (w/q)fg and

fs and (53/64) fg respectively. The result agrees
any interval (rfs,(r+1)fs), reZ is a replica of the with the simulation in Fig. 8.

spectrum in(0, f5) according to Remark 2. Fow=25 and 0 I
g=64 the PSD of the simulated random sequence -10 Cich

-20 e
x, =sgn( cogQk)—u, ), keZ is shown in Fig. 7. It agrees 30 ES\\/N:‘lglzs o

Normalized Power (dB)

completely with S, (f). Finally, the PSDS, (f) of x(t) is -40
-50
that of Fig. 7 weighted by the factincd ( f T,) according to 5, O S A S O S D PR PO D

o 02 04, 06 08 1
Eqg. (10). fIA,
Figure 8 PSD of simulated random sequerfoe} whena, =9/8,
a, =—1/8 and all other coefficientg, =0; w=25 and q=64;

and with the same remaining parameters as in Fig. 7
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Example 2D Fig. 9 shows the PSD of the simulated randomand § () (see also Remark 2A) which are stated below. The
sequencex, =sgn( cogQk)-u, ), keZ when a =25/24,  proof of the Lemma is in the Appendix.
a; =—1/24 and all other coefficients, =0, i.e., following | emma 4 For everyh=0,1,2,... and k,/eZ such that
Example 1D withp =0, w=25 and q=64. The derivation q:h>0 and /q-h>0 it is B =B =by- In particular
of the frequencies of the components(l f,) is similar to e have thab, =B, ogq = By (o mecq
that in Example 2C. From Theorem 1 we derive tlat f
h=012,..6: it is b=(1/24f, by=(25/24f, V. SPURSFREESPECTRUM DYNAMIC RANGE AND THE
b,=(25/24f and h,=(1/24f, corresponding to TRADE-OFF BETWEEN NOISE FLOOR AND HARMONICS

frequencies (3/64)fs, (25/64)fs, (39/64fs and In most practical cases the desirable frequencypoomnt
is the one atQ/(27T;)=(w/q) fg. Example 2A illustrated

that if a,=0, a, =1 and a =0 for k=2,3,4,... then the
only two components in the frequency interyal f;) are at

) foreveryh=0,1,2,... o

(61/64) f5 respectively; and all otheh, are zero. This
agrees with the simulation in Fig. 9.

[en]
S .10 I (w/q) fg and (1-w/q) fg. This spurs-free outplihowever
) = f.=1GHz - .
% _22 > 83.35.; RBW = 3125 Hz § comes at the cost of noise floor lev& (f)=Tg/2. A
. Nz A0 . natural question is whether a different choice @éfficients
g a, could lead to lower noise floor, or, whether tlése floor
o
=z

can be reduced by allowing some of the harmonicdeo
present in the spectrum.

This Section provides necessary and sufficient itiomd
for coefficients a,, for achieving spurs-free output, i.e. for

Figure 9: PSD of simulated random sequer{ag} when
a, =25/24, a;=-1/24 and all other coefficientg, =0; w=25 ]
and q= 64 and with the same remaining parameters as in7rig. 1aving only the frequency components av/q) fs and

Example 2E Fig. 10 shows the PSD of the simulated randon(al_W/q) fs in the interval (0, ). These can potentially

sequencex, :sgn( coiQk)—uk), keZ when a, =1.1906, lead to values of coefficients; resulting in lower noise floor
level S,(f) than that witha,=0, a =1 and a =0 for

zero. It follows Example 1E witr(ag,a5) corresponding to k=2,3,4,.."|'.he _Sectlon a_lso illustrates how_ we can trade off
spectral clarity (i.e. allowing some harmonics t® firesent)

the big dot on the ellipse in Fig. 6. The derivatiof the for reducing the noise floor level.

frequencies of the components (@, fs) is similar to that in Note that the weighting factosincz(fTs) in Eq. (21)
Example 2C. The '8and the B harmonics (and only those) . . " _
are present in the spectrum as expected. From &tetrwe eliminates all components at frequenciés, k < Z_{O}’ €.
derive that forh=0,1,2,...,6¢ it is b, =0.0022, b, = 0.0564, all clock harmonics except the DC, and only theBhis

b, =14175 b, =1.4175 h,=0.0564 and b, =0.0022, indicates the qualitative difference between th®®S, (f),

corresponding to frequenciess, 11, 25,39,5 and 61 34 (f) and how these two can be used indistinguishably in

xf5/64 respectively; and all othelp, are zero. This agrees the following Lemmas and Theorem.
with the simulation in Fig. 10. We have the following Lemma whose proof resultectiy
from Lemma 4 and is omitted.

a, =-0.237%, a,=0.0469 and all other coefficients, are

—~ 0 T

) 10 3 . 9'13';38 Lemma 5 Following the assumptions of Theorem 1; if the

% -20( 5 i - -lGHz. frequency component aB/(27T;)=w/(qT) is present in

o o 57

B 30 [| 18 RBW = 3125 Hz S,(f).ie.ifb, >0, then all frequency components at

E -40 Nav = 10

R ———— - —————_————— K, @ (W) o7
6% 0.2 04 . 06 0.8 1 T_s_Z”Ts = —E S ez (27)

Figure 10: PSD of simulated random sequer{oq} when
a, =1.1906, a, =-0.237%, a; =0.0469 and all other coefficients
a, =0; w=25 and q=64; same parameters as in Fig. 7.

are present as well, i.eb,,,

>0 andbqk_w>0, k=12,3,..0

Consider Lemma 5 in conjunction with Lemma 4. Témst
Finally, coefficientsh,, h=0,1,2,... have periodicity and One also implies that if a component at a frequepeyond

mirroring properties inherited by those of the PSD(f)
® Note that the image frequency componenflatw/q) f; has to be there
because of the discrete-time nature of the quahsizeewave.
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those in Eq. (27) is presers, (f), then, because of the implies a spurs free spectrum, shown in Fig. 7.0AlBig. 11

Lo N below captures a part of a realization of the ramédequence
spectral periodicity and mirroring, a correspondireguency d i | | ith dithered
component is present withifo, f. /2). {x,} generated in Example 2A along with undithere

) . . sequence sgn( co$ Zkw q)) and the corresponding
We cannot avoid having all frequencies in Eq. (@@sent i i } ] Cis cf
when the desirable frequency component vat(qTS) is contlnues-tlme sinewave. S|nc&/q=25/§4: 0.3¢ is close
ted. Yet determine thaximal set of to 1/2 (Nyquist frequency) both discrete-time wawefs tend
gene_rge - Yetwe can_ etermine ! ) SEL of Nonzero change sign almost at every clock. However, tieey to
coefficients a; generatingonly frequenciesw/(qTs) and giffer from each other when the sampling of their@ccurs
those in Eq. (27). Note that the maximal set dogst because near its zero crossings.
of Remark 4. Lemma 6 provides the answer.

1t

Lemma 6 Assume thatQ=2zw/qg with O<w<q/2 and
ged(w,g)=1, and let J£{0,1rqrq+1r=1,2.3,.}. and

H2£{0,w,rq,rq+wr=1,2,3.} be two sets of nonnegative 4 fd

2 4 6 8 10 12 14 16 18 20

integers. Thera, =0 for every j €{0,1,2,..}—J if and only Discrete Time Indes

if b, =0 for everyhe {0’1' 2 "}_ H. . Figure 11: Time-Domain signals related to Example 2A. Sequence
The proof of Lemma 6 is available in the Appendigmma % is the solid+1 waveform.sgn( co¢ 2kw £)) is the dashed

7 below provides a similar and partially complenagptresult waveform scaled to 60%. The corresponding contisttone

based directly on expressids), = Z:O:_w aTiqr\ of Theorem 1. sinewavecos( 2rtw /(qTs)) is shown in dotted line.

Its proof is by observation and is omitted. Example 3: More examples of PSD of the simulated random

Lemma 7: Under the assumptions of Lemma 6, the frequen®equence x, =sgn( co$Qk)—uk), keZ when a,=0,
component at/(27T,)=(w/q) fs is preserit i.e., b, >0 a, =1 anda, =0 for k=2,3,4,... are shown in Figs. 12, 13
if and only if there exists somge {1,rq+1/r=1,2,3,} such and 14 for a variety of values of/, q, f, and waveform

thata =0. g averaging runs Nav. In Fig. 14, the PSD for differealues of
: w (arbitrarily chosen) are graphically overlappeds A
The following Theorem states conditions for spiue® expected from Theorem 2, all PSD are spurs-free.
output within the frequency intervgD, f5 /2). It results from

& 0
[a1]
combining Lemma 6 and Lemma 7 and its proof is tdit S .10
) f=icGh
Theorem 2: [Spurs-Free Output]: Under the assumptions of % 20 RBW = 15226 Hz DR = %
Lemma 6 there is only one frequency component ptése B 'jg Nav = 10 B o
(0,f5/2), which is at frequencyw/q) fg, if and only if g =0
a;=0 for every je{0,1,2,.}-J and there exists some = -60,

0.2 0.4 1, 0.6 0.8 1

je{tra+1fr=123,} such thata, #0. = Figure 12 PSD of simulated random sequerfeg} when a, =0,

a,=1 anda, =0, k=2,3,4,..; w=17723, q=2"°; f,=1GHz,

The result of Theorem 2 extends to frequency waler Resolution BW = 1526 Hz and waveform averaging N#&vruns.

(0,fs) where both(w/q)fg and (1-w/q) fg frequency

i & O
components are present, as well as to the perregiccas of g 10
the spectrum (see Remark 2) &, (f), and to those of % -20 e 3
BW = = N
S,(f) taking into account the weighting factainc (f T;) . % -30 sz\\//v:_légm . 5
S .40
Remark 5: According to Theorem 2, the case ef =0, g 60%
a =1 and a =0 for k=2,3,4,... is probably the simplest = 60 0.2 04 . 06 0.8 1
one gua?ran_tying Spur-less outpler every pair of integers Figure 13: PSD of simulated random sequer{og} when a, =0,
w,q satisfying 0<w<q/2 andged(w.q) = 1. a,=1 anda, =0, k=2,3,4,.;w=2"~1, q=2°; f,=2GHz,

. Resolution BW = 1907 Hz and waveform averaging N@vruns.
Example 2A illustrates the case @, =0, a =1 and

a =0 for k=2,3,4,.. which according to Theorem 2

° One can consider PSB,(f) or §,(f).
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~ 0 (@ (b ©(d (@) b @ Replacing the value of, from Theorem 1 and expressing
g 10 DR in logarithmic scale we have (in dB):
% zg f.= 2 GHz N &,
' . . DR=10l0g,| —==——— |+ 10log, ( fs) - 6.0 (28)
g -50 ymapandph. A s 1—a§——Za.2
5 o e e i — — 24!
Z 60 ‘ =

0 0.2 0.6 0.8 1

04 f/1, The definition of DR applies directly to the total output
Figure 14: PSD of simulated random sequer{eg} when a, =0, spectrum S, (f) using Eq. (28) as well because the factor

3,=1 anda =0, k=2,3,4,..;w=9023(a), 21241(b), 37981(c) sinc (fTg) in Eq. (21) multiplies both§, and S, . Also,
and 43197(d), and|=10°; f¢ =2GHz, Resolution BW = 4 kHz
and waveform averaging Nav=20 runs. note that the summandOlogy,( fs) is expected since the
) ; ower of the sinewave’s quantization error is rea
Example 4: Another case of PSD of the simulated rando equency bandwidth propor?ional 1o the samplimg.pf?gncy.
sequence(x,} wheng, =0, a,=1 anda, =0, k=2,34,.. Finally, the DR can be defined similarly in the case that a
is shown in Fig. 15. It corresponds to the PSDim B of the different frequency component is the desirable one.

undithered quantized sinewave.
Example 5A:. In the case ofa, =0, a, =1 and a, =0 for

g _1?, k=2,3,4,.., i.e., when the probability density function oéth
% -20 f=2GHz dither is uniform, we have from Eq. (28) that th®R is
3 30 L DR=10log,( fg)- 3.0: dB. In the case of Example 2A
% -40 where the PSD is shown in Fig. 7, the dashed wiiiie
5 :Zg I R ] indicates the averaged noise floor level. Fer=1GHz we

0 02 04 ., 06 0.8 1 get DR=87 dB. Subtracting10log,(RBW) dB, where

RBW =3125Hz, to account for the resolution BW used for

the simulation in Fig. 7, we get a very good matchthe
simulated 52 dB (Fig. 7).

Example 5B: The undithered case in Fig. 2 h@iR=w
since there is no noise floor although the spectisiriull of
strong spurious frequency components.

Figure 15: PSD of simulated random sequeriog } when a, =0,
a, =1 anda, =0, k=2,3,4,..; w=5831, q=2"; f,=2GHz,
Resolution BW = 545 Hz and waveform averaging N&vrins.
The corresponding time-domain waveforms of thisngxa
are shown in Fig. 16 below. Sinee/ q=5831/2%= 002 is
very small the dithered wavefornsefuencex,) resembles

Pulse Width Modulation with some randomness. Example 5C: We follow Example 1C witha, = (6+3p) /8,

a,=(2-3p)/8 and p<[0,1], and all othera, equal zero.
Assuming thatg > 4 implies " qiqr‘ =a/ and Eq. (28) gives

DRleIogm[z—af}+ 10log,( fg)— 6.0: dB. Using
2—(af +a3)

the expressions ofy and a, above, DRbecomes a function
of p, strictly increasing, and with maximum value
DRleIogw(fS)-O.SE (dB) for p=1, corresponding to
a,=9/8 and a,=-1/8. DR here is about 2.5 dB higher
than in Example 5A but thé®harmonic is present here as it is

0 10 20 30 40 50 60 70 80 90
Discrete Time Indexk

Figure 16: Time-Domain signals related to Example 4. Sequexce

is the solid+1 waveform.sgn( cog 2kw £)) is the dashed
waveform scaled to 60%. The corresponding contisttone
sinewavecos( 2rtw /(qTs)) is shown in dotted line.

A. Noise Floor & Dynamic Range shown in Fig. 8.
Consider the frequency components §3 and the noise Example 5D Following Example 1D we assume that
i i i 25 25 1 4
floor captured byS; in Eqg. (21). We define the Dynamic al:_(l_p)+§ap’ as:—ﬁ(l—P)JrEP and p <[0,1]

Range OR) of the output as the ratio of the powgy/4 of 24
_ and all othera, are zero. Again, it is convenient to assume
the desirable frequency componentcaf (22Tg) =(w/q) fg

over the noise power spectral density at the saeguéncy, further thatq>6 implying i aﬁw‘ =a’ which via Eq. (28)
ie., S,((w/q)fg), which equaIsTS(l—a§—(ZT:1af)/2). o
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5 The spectrum of the output stochastic process besn
% +10log,( fg)— 6.0: dB. derived analytically as a function of the coeffidi® of the
2—(31 +a5) Chebyshev polynomials series expansion of the dihe

Replacing the expressions ef and a, in DR, the last one Cumulative Distribution Function (CDF).
The frequencies and the powers of the frequency

becomes a function op , strictly decreasing with maximum components have been derived explicitly. Necessary
value DR=10log,( fs) -2.25 dB forp =0, corresponding to sufficient conditions for spurs-free output havesbealerived

B B . and related to the dither's CDF. In particular, famnly
8 =25/24 and & =-1/24. DR here is only about 0.75 dB it dither with range equal to that of thimewave

higher than in Example SA and thd Barmonic is present results in a spectrum identical to that of samiegwave (of
here as it is shown in Fig. 9. infinite amplitude resolution) with an additive seifloor.

Example 5E: The values of and iven in Example The noise floor level due to random dithering Hoeen
=Xampe ot a8 % 9 P derived analytically and the output dynamic rangs been

2E are the ones maximizingR when all other coefficients gefined and calculated explicitly for certain clessof the

a, ., k=1,3,5are zero; the pai(“as,as) corresponds to the big dither's CDF.

dot on the ellipse in Fig. 6. In this case it is L’hed trade-off between selected frﬁquergcy-spursgp? .

DR=10I £.)+1.31 (dB). which is about 4.3 dB higher &" ynamic range improvement has been studied an
i Ogm(, S)+ ) (, ) w I_C s a .ou gner dynamic range optimization has been establishedcdotain

than using uniformly distributed dither as in ExdenpA. classes of the dither's CDF. An improvement of abb@ dB

Example 6: Differentiating the CDF G we derive the has been found when the third and fifth harmontesadiowed
probability density functionG’ which is shown in Fig. 17 t© Pe present.
below for each of the cases in Examples 5A, C, ® BnThe A number of examples based on MATLAB simulatiowéna

function G' is a polynomial of zero, second, fourth and fourtrl?een discussed illustrating the presented theory.

2

gives DR=10 Iogl{

order respectively with nonnegative values[+r1,1] . VII. APPENDIX
1.2 Proof of Lemma 1 To simplify the notation, we assume that
1.0 : the sampling period i3 =1 and we restore its arbitrary value
0.8 at the end. Following the definitions in SectiohAland using
0.6 Eq. (6), we have for evertjz e R that
04 A

. Ry (t+7,7)= E{X(t+7)X =r ([t+z],

7. (t+7.7) 2 Efx(t+ o) x(0)} =1, ([t+7].[¢])

Now we consider a fixed and express it as= A+a where
AeZ andae€[0,1). Then for every integem we have

0

m+1 m+1

Figure 17: Probability density functions of Examples 5A,C,Didna J‘ Ry (t T r)dr _ I r (A+[a+ r] [r])dz-
Examples 5C, D and E, where th& Barmonic, the B m m (29)
harmonic, and both of them, are present, respégtive =(1-a)-r,(A+mm)+a-r, (A+m+1m)

demonstrate higheDR relatively to uniformly distributed
dither in Example 5A. In some sense, the dithesipigads the
harmonics’ power over the sampling bandwidth cotivgr [a+r]:m+1 for every re[m+1—a,m+1). Moreover,
their line spectral power into continuous noiseflaKeeping
some of the harmonics present in the spectrum mksnss
power is converted to noise.
One can also compare all four Examples 5A, C, B Bn "5 oL I Ry(t+7,7)dz = lim 2M 11,4 Z .[ Rx(t+7.7)

with the (extreme) undithered case of Example 5Eclvihas

infinite DR (no noise floor) but also countably infinite andWhich along with Eq. (29) and the definition B imply that

powerful discrete spurious tones (harmonics).

because it isfa+z]=m for every re[mm+1-a) and

sincer, is bounded so iRy and so

m+1

The above comparisons demonstrate the possitlishape ﬁx( )— ['Lﬂo—f Ry(t+7,7)dr
the CDF so that théDR is improved (compared to uniform y
dithering) by allowing a number (or all) of the hmammics, _
located in unconcerned frequency intervals, to besent =(1- a l\!I"Ic]:c 2M Z‘ A+m m)
without harming the quality of the generated signal M
+a- lim Z (A+m+1,m)

M >
VI. CONCLUSIONS -=2M +1,.7,

Single-Bit Nyquist-rate quantization of sinewaveithw ThereforeRx(t)z(l—a)- X(A) a-T,(A+1). Note that since

random dithering using sequences of independent amg<t< A+1, R (t) is the linear interpolation betwedp( A)
identically distributed random variables has be@alyzed

mathematically. and T, (A+1) weighted by the fractional pars, of t. Hence,



in general we can writR (t)= i T (k)tri(t—k) for every

k=—o0

teR, where tri(t

R (t) can be written alternatively in the form

)=1-]t| for <1 and zero otherwise.
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M
(- mzm & nlkemm
M 0
34
M*WO 2M + 1sz ;)Cp ( )
im'S 1 2 K
B MITpr;(ZM +1m;M Cp( 'm)J

RW-(¥

k=—0

Tx(k)d(t—kTS)J*tri (Tij

where we have also restored the valueTpf Now, since
=[R(1)
convolution equals the product of the transformatiore get,

Sx(f):(iFx(k)e‘z”i”TSJ-TSsincz(f-TS). 0

k=—o0

e?™"dt and the Fourier transform of the

Since a, =0(1/(*) there exists a fixed numbeA such that

for p=1,2,3,... it is |cp(k,m)|< A/ p? for every k,meZ

M
and so > 1 1 > c,(k.m)<A/p® for every keZ and
m=-M
M =1,2,3,.. as well. This implies theniform convergence

M

2 <

(k, mj with respect tok,M , [43].

of Z(ZM 1,8

Proof of Lemma 2 From Eq. (4) we calculate directly thatpmoreover,

E{x,}=2G(cogQn))- 1. ReplacingG from Eq. (11) and
using the propertyT; (cos(¢))= cog je) of the Chebyshev
polynomials, valid for everyj =0,1, 2,... we get

= iaj cos(Qnj).
j=0
Note that forn=m, random variables, ,x,, are independent
m)=E{x,}E{x,} and so

m) = [jioaj cos(an))[%af coséQmé)] (31)

To proceed further we need the series in (30) toveme
sufficiently fast. Our assumption thatG e C*([-1,1])

implies”® a, =0(1/¢?), [42] and so series (30) &@solutely
convergent implying that the Cauchy product oftine series
in Eq. (31) converges (absolutely) to(n,m), [43], therefore

r.(n,m) Z[Zaqap . €0(Qnq) co$Qm(p- q))j. (32)

p=0\_g=0
Consider the case=m and express1i=k+m with k=0.
Then Eg. (32) becomes

k+m m :ic
p=0

(30)

implying thatr, (n,

(33)

P

where

P
¢, (k,m)= %Zaqap_q cog Qkg+Qmp)
q=0

+%Zp:aqap_q cog(Qkg+Qm( - p))
q=0

By the definition ofT, in Eq. (9) we have

0 Milder conditions, sufficient for proving Lemma &xist

a if p=0

2
im —— i c,(k,m)= Mco's(Q—kpj if p=2,4,6,..
Mon 2M + 1,55, P 2 2

0 otherwise

where the only terms oo‘:p(k,m) remaining after taking the

limit M — o« are the ones independent of. The uniform
convergence and the existence of the limit for yvke Z
allow us to interchange the order of the limit ahd infinite

sum in the last expression gf(k) in Eq. (34), i.e.,
© . 1 M
T (k)= | K,
rx( ) ZEMIToc 2M +1m:Z—M CP( m))

p=0
it is Tx(k):a§+%~iafcos(ﬂk£).
=1
Finally for k=0 it is r,(mm)=E{xx,}=1. Combining

the results we express,, using the discrete-time Dirac
function g, , as

£ =27+ 5 cos j) [ ao——ZaJ ;

(35)

Therefore, for k=0

Proof of Lemma 3 The DTFT of: cog( jQk), constant

function 1 and Dirac functions, are = Z 5(wt jQ-27k),

ZHZK}

DTFT of the average autocorrelation function in )(1S

s () = %iajz i 5(w—27k £ jQ)
j=1 K=o

(w—27k) and1 respectively [47]. Therefore, the

k=—x

+2r3) Zé'a) 27k) + [ Za]
Replacingw =27z f T, and using the identity of the Dirag

function, 5(Mx)=5(x)/|M|, we get
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i . S \@®
D ol | N EPL I Y
Ts k;o ( TSJ [ ® 21‘2:; J )

resulting inT-s, (27 fT5) =S, (f)+ S, (f)+S(f) where
the three componentS, (f), S,(f) and S(f) are given
by expressions (17), (18) and (19) respectively. o

Proof of Theorem I From S, (f) in Lemma 3 we get that

Z 3 qjé[f _dwe kq] a2y §(f ——] (37)

=-0 k=—0 q S k=—c0
1there exists an integer solutiqrj,,k,) of

Since gcd(w.q) =

the Diophantine equationwj, + gk, =1, [46]. Now consider
ihooafflh

k, - r

} =-1. Therefore we

the mapping fromZ? to itself such tha{ﬂ {

q

which is bijective becauseletLii

can replace the indices in the summations of (3&)ding

ZZ«W( JW+kq] 25 (f-f1,) Zahr where

j=—0 k=—0

we have setl (h,r)=|jh+ar|,

equation wj, +gk, =1. Coefficients b, = Za are well

r=—w

1(h.r)

defined because, = 0(1/52) (see the proof of Lemma 2) and jh+qr =

so the series converges. Note thdt-h,r)=1(h,-r) gives
b,=h, with  f, =-f1, imply

25 (f-f,)h, = an( S(F=f)+o(f+1,) +ho(f).

Comblnlng it with the intermediate results and &Y.) yields

:%gq(a f 5(t+1,))

& ¥k
4~ Ts
Adding s)(f) from expression (19) to (38) we get that

Sy (f) ZQ( (f-1,) +5(f+fh))

%2[ (o )

b+ %
3 5(1)

which along

(38)
By siey
+45(f)

+

and soS, (f)+S(f)=S,(f)+S,(f) where S, (f) and
S () are defined in Egs. (22) and (23) respectively. o

f,=h/(dTs) and used the that |jh+ar|=|jh+ar|. If

Proof of Lemma 4: For everykeZ and h=0,1,2,... we

. © 2 :
have thatb,,=> " & nn =2 &g, i and since

I (kg+h,r—jk)=1(h,r) we concludeb,,, =b,. Similarly
we have thatb, , = Zi waf([q h) =z:°%a|2([q_h,_r_hf) and
since | (¢(q—h,—r—j¢)=1(h,r) itis b, , =h, . Using them

along with the fact thah— (h modq) is always a multiple of

q we getthaty, =b, 4, = m

( h modq) *

Proof of Lemma 6: For h=0,1,2,...[q /2 we define the set

of integersl , £ {|jlh+qr| | re Z} and so we can write

b, => a’.
iely

We first show that setk, form a partition of{0,1,2,..} ,l.e.,

(39)

012.- (J 1,

h=0.1,..[q /3
Since wj, + 0k, =1, it is ged( j,,q) = 1, [46], and so for every
j€{0,1,2,..} there existhe{0,1,2,...q0— } and r e Z such
that jjh+ar=j. If h>[q/2] then it is |jh'+qr|=] for

[a12] |
h=0 h°*

(40)

h'=g-h and r'=—j —r. Therefore{0,1,2,..} =
Now let h,h'e{0,1,2,..[q /2} and r,r'eZ, and suppose
jh+ar=jh+agr’ then
j;(h—h") is a multiple ofq and sinceged( j, )= 1, g must
divide h-h" implying that h=h'. Similarly, if
—(j;h"+ar’) then j,(h+h') is a multiple ofq and
so g must divideh+h" which is possible only ih=h"=0
or h=h"=q/2 whenq is even. In all cases it must le=h'
and so the set$,, h=0,1,2,...[q /2 are mutually disjoint.
Lemma 4 implies thaty =0 for every he{0,1,2,..}—H if
and only if b =0 for every he{0,1,2,.[q /3}-{ Ow}.
Because of Egs. (39), (40) the last one is equitdte having
a; =0 for every je{0,1,2,.}—1,-I,,. Using wj,+qgk =1
we write |jw+ar|=|jw+kg-kg+ar|=[1+(r-k,)q and
={Lrq+1|r=1,2,3.}. Also, I,={rq|r=0,1,2,.

and so we havdaOUI ~ =J Wwhich concludes the proof. o

so |,
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