
0885–3010/$25.00 © 2010 IEEE

1926 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 9, September 2010

Abstract—The spectrum and time-domain output of the fly-
ing-adder frequency synthesizer are derived analytically. The 
amplitude and phase of the average-frequency component are 
derived in closed forms. The theoretical results are verified by 
spectral measurements of an FPGA implementation and by 
numerical simulation.

I. Introduction

The flying-adder (FA) frequency synthesizer was intro-
duced to generate the clock signal for digital circuits 

[1], [2]. It has been treated in several publications [3]–[14], 
where it is also referred to as direct digital period syn-
thesizer (DDPS) or digital-to-frequency converter (DFC). 
A rigorous mathematical theory of the operation of the 
flying-adder frequency synthesizer has been developed in 
[15] and [16].

The FA is shown in simplified form in Fig. 1, driven 
by a multiphase clock like that in Fig. 2. It shares some 
building blocks with direct digital synthesizers (DDS) [17], 
[18] as well as other phase-switching prescalers and similar 
structures [19]–[25].

There is a significant structural difference between the 
FA and DDS. In DDS, the value of the phase accumulator 
is updated at the fixed reference clock rate, in contrast to 
FA which has a feedback path updating its register at a 
variable rate (for most parameters’ values). This results 
in a linear control of the period of the FA versus linear 
control of the frequency in the DDS.

The FA offers simplicity, good period resolution, wide 
output frequency range and design convenience (it is fully 
digital) and has been used successfully in driving digi-
tal circuits [11]. It suffers, however, from certain bounded 
timing irregularity of the pulses [16] which results in a 
rich spurious frequency content. Efforts have been devoted 
to estimate the spectrum of the FA [26]–[28] resulting in 
algorithmic approaches.

This work provides a rigorous mathematical derivation 
of exact analytic expressions of FA’s spectrum and output 
signal v(t), as well as compact closed-form expressions of 
the amplitude and phase of FA’s average-frequency com-
ponent [15]. This work responds to the request for theo-
retical analysis of FA’s operation in [29] and aims to lead 
to a better understanding of FA’s spectral properties and 
potential application of FA in analog and RF systems.

In the process of deriving the spectrum, the output of 
the FA is expressed as a uniformly sampled-and-held ideal 
50% duty cycle squarewave, providing a simple equivalent 
representation of FA’s signal processing operation.

Section II of the paper is a brief introduction to FA’s 
operation and the timing of the output signal v(t) which is 
used in Section III to express v(t) as a uniformly sampled 
ideal squarewave. Section IV derives analytically FA’s out-
put in the frequency-domain, converts it to time-domain, 
derives the frequencies of the frequency components and 
calculates the amplitude and phase of average-frequency 
component. Finally, Section V compares the theoretical 
results with measurements based on an FPGA implemen-
tation of the FA.

II. Notation and Operation of the FA

The basic structure of the FA is shown in Fig. 1. It is 
composed of the following.

An n-bit register, of value xk ∈ {0, 1, …, 2n − 1}, trig-
gered by the rising edges of signal s(t). Index k, of xk, is 
our discrete-time reference and is formally defined as the 
function of time:

k(t) = number of rising edges (or spikes) of signal s(t) 
within the time interval (0−, t+). 

Without loss of generality, we assume that the initial 
value of the register is x0 = 0, for t < 0.
A truncation block that keeps only the first •	 m most 
significant bits (MSB) of the register resulting in  yk 
∈ {0, 1, …, 2m − 1}. In this paper we assume that 1 < 
m < n. Note that if m = n, the FA operates simply as 
an integer frequency divider [16].
A multiplexer (MUX) driven by a family of 2•	 m phases, 
Φ0(t), Φ1(t), … , F2 1( )m t-  of a periodic 50% duty-cycle 
square-wave. The phases are uniformly shifted, i.e., 
Φk(t) = Φ0(t − kΔ) for k = 1, 2, …, 2m − 1, where Δ 
= T/2m = 1/(2mfclk), like those in Fig. 2, typically 
generated by a ring oscillator. The MUX selects the 
ykth phase, i.e., its output is s(t) = Fyk t t( ) .( )
An adder that adds the frequency control word •	 w to 
the value of the register xk. In this paper we assume 
that w ≥ 2n−m. It can be shown that for most values 
of w < 2n−m, the output of the FA is a very irregular 
waveform perhaps with limited applications [15].
The D-Flip-Flop (D-FF) counting the rising edges (or •	
spikes) of s(t) modulo 2. Without loss of generality, 
we assume that the initial value of the D-FF, at k = 
0, is Q = 0.
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From these, we can conclude the following equations 
describing the operation of the FA:

	 x kwk
n= ( ) 2mod 	 (1)

as well as

	 y x
x

k k
n m k

n m
= 2 =

2
div -

-

é

ë
ê
ê

ù

û
ú
ú
	 (2)

for k = 0, 1, 2, …, where [a] is the integer part of real num-
ber a. Eq. (2) can also be written as
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using1 (a  mod  2c)  div  2d = (a  div  2d)  mod  2c−d.
To illustrate the timing of the signals in the FA, let’s 

consider Fig. 3, presenting the MATLAB (The Math-
Works, Natick, MA) simulation results of the FA in Fig. 
1 with parameters n = 4, m = 2, and frequency word w 
= 7.

The x-axis in the graph is the (real) continuous time, 
t, measured in multiples of Δ = T/2m. The four input 
phases, Φ1, Φ2, Φ3, and Φ4 are shown in Fig. 3(a). The 
time intervals in which each phase is selected by the MUX 
are indicated with thick line segments.

The values of parameters n, m, and w used in this ex-
ample result in signal s(t), shown in Fig. 3(e), that is com-
posed only of spikes2 (in this example). By definition, dis-
crete-time k, shown in part Fig. 3(f), results from counting 

the rising edges of s. Discrete-time has value k between the 
kth and the k + 1 rising edges of s.

Figs. 3(b)–(d) present the continuous-time versions3 of 
the discrete-time sequences {xk}, {yk}, and {δk}, with the 
positive integer sequence {δk} defined as
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Fig. 3 shows that if yk−1 ≠ yk, the time moment the y 
register changes value from yk−1 to yk, the kth rising edge 
(or spike) of s(t) appears; moreover the k + 1 rising edge 
appears ((yk − yk−1) mod 2m)Δ seconds after the kth one 
because of the time-offset between the clock phases. In 
this example, the 2nd rising edge (a spike) of s(t) appears 
at t = Δ, and, because y1 = 1 and y2 = 3, the 3rd rising 
edge appears at t = 3Δ.

Consider now the case of the FA with n = 4, m = 2, 
and w = 14. MATLAB simulation provides the FA’s sig-
nals shown in Fig. 4. We observe that s(t) is a sequence 
of pulses and that because y2 = y1 the second rising edge 
of s(t) at t = 3Δ does not result in a change of selected 
input phase. This implies that the next rising edge of s(t) 
= Φ3(t) appears T = 2mΔ seconds later (a full cycle), i.e., 
at t = 7Δ.

The discussion leads to an important fact: the time 
interval between the kth and k + 1 rising edges (or spikes) 
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Fig. 1. Flying adder (shown with 4 input phases, Φ0 to Φ3). Fig. 2. The 2m input phases to the FA, typically generated by a ring 
oscillator.

3	That is, xk(t), yk(t), etc.

1	The identity is valid for all non-negative integers a, c, d, with c ≥ d.
2	Spikes are considered as zero-length pulses, i.e., with rising and fall-

ing edges appearing at the same time.



of s(t) is δkΔ long. Moreover, the D-FF at the output of 
the FA counts the rising edges (or spikes) of s(t) modulo 
2, resulting in the output signal v(t) shown in Figs. 3(g) 
and 4(g).

From this discussion, we conclude that the rising and 
falling edges of the jth pulse in the output signal v(t) ap-
pear at

	 t j
k

j

k=
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D
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(we agree that t1 = 0) and at

	 t dj j jt= 2 1+ -D ,	 (6)

respectively, for all j = 1, 2, 3, …. It is shown in Lemma 1 
in the Appendix that our assumptions of 0 < m < n and 
2n−m ≤ w < 2n lead to
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for all j = 1, 2, 3, ….
Counting the pulses in v(t) from t = 0−, the first pulse 

begins at t = t1 = 0 and the 1 + 2n−m−1 pulse begins at t 
= t n m1 2 1+ - -  = wΔ. Therefore the time interval [ , )1 1 2 1t t n m+ - -  
is composed of exactly 2n−m−1 complete cycles. Moreover, 
for every4 r ∈  it is

	 t t rwj r jn m+ - - +2 1 = D,	

and so function v(t) has a period of wΔ seconds. We con-
clude that under our assumptions there are exactly 2n−m−1 
cycles per period5 of wΔ seconds, implying that v(t) has 
average frequency6
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Fig. 4. Flying adder, n = 4, m = 2, w = 14.Fig. 3. Flying adder, n = 4, m = 2, w = 7.

4	  is the set of integer numbers.
5	We consider the time intervals [rwΔ, (r + 1)wΔ).
6	The derivation of fav here is valid for w ≥ 2n−m and it is based on 

the wΔ-seconds-long period of v(t). A more general and stronger result 
is established in [15], where fav is derived for all values of w based on the 
fundamental period of v(t).
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III. Timing Details of the Output Signal

This section studies in more detail the timing of the 
output signal v(t) and compares it to that of the ideal 50% 
duty-cycle periodic squarewave, of frequency fav, formally 
defined as

	 g p( ) =
1
2

1
2

(2 )t f t+ ( )sgn avsin ,	 (10)

where sgn is the signum function. Note that the rising and 
falling edges of the jth pulse of this ideal periodic square-
wave appear at
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respectively, for all j = 1, 2, 3, ….
To derive the spectrum of the FA analytically, we ex-

press the output signal v(t) as a time-shifted version of 
γ(t) sampled by the impulse sequence
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r -¥

¥

å - D 	 (13)

and convolved with the pulse p(t) shown in Fig. 5. 
To achieve our goal, we need to establish certain timing 

bounds. First we notice that the lengths of the 1-intervals 
and the 0-intervals of the cycles in v(t) are at least Δ sec-
onds long as shown in Fig. 6. To derive this analytically 
we use (7) and (8), our assumption that w ≥ 2n−m, and 
the inequality [a + b] ≥ [a] + [b], which is valid for all real 
a and b, to get

	 t j jt- ³ D	 (14)

for the 1-intervals and

	 t j j+ - ³1 t D	 (15)

for the 0-intervals.
Next, we relate the timing of the pulses in v(t) to that 

of the pulses in γ(t) to express v(t) as a sampled-and-held 
version of γ(t). From (7) and (11) we have
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where β and α are the unique pair of integers satisfying 
both (j − 1)w = α2n−m−1 + β and 0 ≤ β < 2n−m−1. The 

last inequality, along with (16), implies that 0 ≤ t j  − tj ≤ 
Δ − Δ/2n−m−1, which gives
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Similarly, using (8) and (12) and the unique integers α′ 
and β′ satisfying (2j − 1)w = α′2n−m + β′ and 0 ≤ β′ < 
2n−m, we have 
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which, along with the bounds of β′, leads to
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Note that terms t j  + Δ/2n−m+1 and t j + Δ/2n−m+1 in 
inequalities (17) and (18), respectively, are the rising and 
falling times of the jth pulse of the time-shifted ideal peri-
odic squarewave
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The timing of v(t) and ĝ( )t  is shown in Fig. 6, illustrat-
ing inequalities (14), (15), (17), and (18). Observe that 
the rising edge of ĝ( )t  appears after the rising edge of v(t) 
and less than Δ seconds after it. Moreover, the rising edge 
of ĝ( )t  is at least Δ/2n−m+1 seconds away7 from the im-
pulses of θ(t). The situation is similar for the falling edges 
of ˆ .g( )t

Therefore, v(t) can be written as the result of sampling 
ĝ( )t  by the impulse sequence (13) and holding it by the 
pulse function p(t) shown in Fig. 5, i.e.,

	 v t t t p t( ) = ( ( ) ( )) ( )ˆ ,g q * 	 (20)

where * stands for convolution.
Note that pulse p(t) is not causal. This is not a problem 

here because we are not concerned with any implementa-
tion of the sample-and-hold process but rather with the 
mathematical expression of v(t), given by (20). However, 
(20) implies that
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Fig. 5. Pulse function p(t).

7	This way, we avoid sampling discontinuities at the transitions of the 
pulses that would create mathematical complications.
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where p(t − Δ) is causal. The right side of (21) has a cir-
cuit equivalent discussed in the following section.

Expression (20) of v(t) has the compact (almost) 
equivalent circuit interpretation shown in Fig. 7. Here the 
sample-and-hold process is performed by a rising-edge-
triggered D-FF clocked by signal h(t), instead of θ(t), and 
the output, Q, of the D-FF is v(t − Δ), instead of v(t).

IV. The Spectrum of FA

To calculate the spectrum of FA’s output,
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Eq. (20) is used, implying that [30]

	 V f f P f( ) = ( ) ( )ˆ ,G Q*( ) × 	 (23)

where Ĝ and Θ are the Fourier transforms of ĝ and θ, re-
spectively. The Fourier transform of the ideal squarewave 
γ(t) is derived from its Fourier series [30],
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Function ĝ( )t  is a time-shifted version of γ(t) and so
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which combined with (25) gives
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The Fourier transform of θ(t) is given [30] by
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The convolution Ĝ Q*  is derived using the identity δ(f − 
a) * δ(f − b) = δ(f − a − b), along with (26) and (27). The 
result is (28), see next page. Finally, the Fourier transform 
of the pulse p(t) is8

	 P f e dt e fift if( ) = = ( ).
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By replacing (28) and (29) into (23), doing some algebraic 
manipulation, and using the fact that sinc(0) = 1 and 
sinc(q) = 0 for all q ∈  − {0} we get the spectrum of the 
FA in (30), see next page. Finally, by applying the inverse 
Fourier transform,
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Fig. 7. Generation of v(t − Δ) using a rising-edge-triggered D-FF sam-
pling the time-shifted ideal periodic squarewave ˆ .g( )t

Fig. 6. The output signal v(t) around its jth pulse is shown as a solid line. The time-shifted ideal periodic squarewave ĝ( )t  is shown as a dashed thick 
line. Bounds (14), (15), (17), and (18) imply that the jth rising edge of ĝ( )t  appears strictly within the first Δ sub-interval of the jth 1-interval (pulse) 
of v(t) and that the jth falling edge of ĝ( )t  appears strictly within the first Δ sub-interval of the jth 0-interval of v(t).

8	The definition of the sinc function used here is sinc(x) = sin(πx)/(πx) 
for x ≠ 0 and 1 otherwise.
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to (30), we derive (32), see above, for the FA’s output 
signal in the time domain.

A. Frequency Components of FA’s Spectrum

It is worth identifying the frequency components in FA’s 
spectrum and deriving the amplitude of some of them. 
The frequencies of the terms in (31) and (32) are
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where ℓ is odd. Therefore, the set of values of fr,ℓ is
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Note that fr,ℓ and −fr,ℓ correspond to the same frequency 
component in (31) and (32). We set ℓ = 2p + 1 and let p, r 
∈  take every integer value. We also define
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and use it to express fr,ℓ as

	 f f
g

r
w
g

p
gr n m

n m

, 1
= 1

2

2
 av + +

æ

è
ççç

ö

ø
÷÷÷÷

æ

è
ççç

ö

ø
÷÷÷÷- -

-

,	 (36)

where we used ℓ = 2p + 1 and fav is defined in (9).
Because of (35), integers w/g and 2n−m/g are coprime 

and because r and p can take any integer values, we con-
clude that
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takes all integer values as well [31]. Therefore, from (36) 
the set of values of fr,ℓ is
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Note that some of these frequency components may not 
exist in the spectrum because their corresponding terms in 
(32) cancel each other.

It is convenient to define the parameter

	 L
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and use it to classify the set of frequencies (37). By the 
definition of g, L ∈ {1, 2, …, 2n−m}. We have three possible 
cases:

L = 1, then 

	  = (1 2 )+ Î{ }j f jav  .	 (39)

L = 2, then 

	  = jf jav Î{ } .	 (40)

L > 2, then g/2n−m−1 = 1/2h′, h′ ≥ 1, and

	  =
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Note that 1) and 2) can also be concluded from the rising 
and falling times of the pulses in v(t), (7) and (8), respec-
tively. Specifically L = 1 implies a perfect 50% duty-cycle 
periodic output, whereas L = 2 implies a perfect periodic 
output with duty-cycle different from 50%.
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	 Ĝ Q
D D D

*( ) -
æ
è
çç

ö
ø
÷÷÷ + -

+å å
-

( ) =
1

2
1 22

,

f f
r

i
e

f
rw

r r

i

w

d
p

d

p 





:odd

nn m

w

- -æ
è
ççç

ö
ø
÷÷÷

1


D
.	 (28)

	 V f
f

i
e rwr

r

n m
i

w
n m

( ) =
( )
2

1
( 1)

2

,

2 1 12d
p

p

+ - × ×
+å

- - - -









:odd

sinc
( )

 

w
f

rw
w

n mæ
è
ççç

ö
ø
÷÷÷ × -

+æ
è
ççç

ö
ø
÷÷÷

- -

d
2 1

D
.	 (30)

	

v t
rw

w

r

r

n m n

( ) =
1
2

1 ( 1) 2 (2

,

1

+
-

×
+æ

è
ççç

ö
ø
÷÷÷ ×å

- -

p 





:odd

sinc sin
-- - --

+
+æ

è
ççç

ö
ø
÷÷÷

m n m

w
rw

w
t

1)
2

2( 2 )1
 p p

D
.

	 (32)



Note also that a value in   may be attained by fr,ℓ for 
more than one pair (r,ℓ). Moreover, there is no distinction 
between fr,ℓ and − fr,ℓ in (32). To calculate the amplitude 
of a frequency component, say of frequency fr0 0,  , ℓ0: odd, 
one can use Lemma 2 in the Appendix, which states that 
given the pair (r0,ℓ0), it is fr0 0,   = | fr,ℓ | if and only if9 
(r,ℓ) ∈  È  where the two sets are
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Therefore, we can decompose the output v(t) into the sum 
of its (non-negative)-frequency components vf(t),
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and  and  are defined by (42) and (43), where (r0, ℓ0), 
ℓ0: odd is a (any) pair satisfying fr0 0,   = f.

B. Exact Amplitude and Phase of the Average-Frequency 
Component

In several applications it is important to know the pow-
er of the average-frequency component, v tfav( ) [12], [29]. 
From (9) and (33), we have that fav = f0,1 and so for r0 = 
0 and ℓ0 = 1, sets  and  become
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and
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By definition g ≤ w. If g = w, then our assumption w ≥ 
2n−m leads to L = 1 which implies that v(t) is the ideal 
50% duty-cycle squarewave, see comments in Section IV-A 
and [16].

From here on, we assume that L ≥ 2, and so g < w, 
which implies that integer11 w/g ≥ 2. In this case, there 
exists no pair of integers j, j ′ satisfying the equation

	 1
2

= 1
2

+ - + ¢j
w
g

j
w
g

,	

and so sets 0,1 and 0,1 are disjoint. Then, (45) gives (51), 
which provides (52) via (38), (46), and (47).

Identities sin(kπ + a) = (−1)k sin(a), k ∈ , and sin(α 
+ β) = sin(α)cos(β) + sin(β)cos(α), and the correspond-
ing ones for the cosine, as well as setting

	 y p p( ) =
2 1

2
2 ,t

w
f t

n m- -
+ av 	

transform (52) into (53), where the sine and cosine terms 
have been grouped respectively. Using (61) in Fact 1 in the 
Appendix with parameters a = g/(2w) and x = π/g, and 
noting that (π/g) mod (2π) = π/g, the first sum on the 
right side of (53) is expressed as
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Similarly, using (62) in Fact 1 in the Appendix with the 
same parameter values, the second sum on the right side 
of (53) is expressed as
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Fig. 8. The amplitude, v fav , of the average frequency, fav, component for 
n = 7, m = 2, 4, 6, and w = 2n−m, …, 2n.

9	Attention must be paid to avoid counting pairs in  Ç  twice.
10The zero-frequency component v0, i.e., the dc term, is offset by 1/2 

for convenience of notation. The dc term has been derived in [16]. 11Recall the definition of g in (35).
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After substituting (48) and (49) into (53) and performing 
some algebraic manipulation, we conclude that the aver-
age frequency component of the output signal v(t) is given 
by (54), which is valid for w ≥ 2n−m and L ≥ 2. If L = 1, 
then v(t) is 0–1 (digital) 50% duty-cycle periodic square-
wave [16], and so fav is also the fundamental frequency 
with corresponding amplitude12 v fav /= 2 p.

Combining the previous conclusions, we have for w ≥ 
2n−m and any value of L
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Fig. 8 shows v fav  for n = 7, m = 2, 4, 6, and w = 
2n−m, …, 2n. Note that for large values of w, v fav  ap-
proaches 2/π, which is the amplitude of the fundamental 
frequency component of a 0–1 (digital) 50% duty-cycle 
periodic squarewave.

V. Measurements and Simulation

The FA has been implemented in a Xilinx field-pro-
grammable gate array (FPGA) (Xilinx Inc., San Jose, 
CA) and its spectrum has been measured to verify the 

developed theory. The implementation was with n = 8 and 
m = 4. The 2m = 16 clock phases were generated using 
shift registers clocked at 50 MHz and resulting in clock 
frequency of the FA, fclk = (50/16) MHz = 3.125 MHz.

Fig. 9 shows the measured spectrum of the implement-
ed FA when w = 142, along with the spectrum derived 
using (30), indicated by the dots. The strongest frequency 
component is at

	 f
w
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2
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2
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and because w = 142 ≥ 2n−m = 16, g = gcd(2n−m, w) = 2, 
and L = 8 > 2, the expected frequencies of the predicted 
spectrum are given by (41).

The matching between the measurements and theory is 
very good for all predicted frequency components within 
the measured frequency span13 with relative errors less 
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12  v fav  denotes the amplitude of  v fav.
13The spectrum analyzer used operates at above 9 kHz. This explains 

the larger error in the amplitude of the dc component.

Fig. 9. Measured and analytically derived (dots) spectrum of the flying 
adder FPGA implementation with n = 8, m = 4, and w = 142.



than 1 dB. There are, however, some additional compo-
nents, at least 50 dB below fav which are not predicted 
by the theory. Most probably, they are due to leakage of 
the spectrum of internal states xk, yk to the output, or are 
the impact of the lack of a perfect 50% duty cycle of the 
driving clock [16].

Both frequency and time-domain expressions of the 
FA’s output perfectly match the results of MATLAB sim-
ulation.

VI. Conclusions

This work has rigorously derived analytic expressions 
of the exact spectrum and output signal of the flying-
adder frequency synthesizer and compact closed-form 
expressions of the amplitude and phase of flying-adder’s 
average-frequency component, and has expressed the fly-
ing-adder’s output as a uniformly sampled-and-held ideal 
50% duty-cycle squarewave.

Appendix

Lemma 1: If positive integers m, n, and w are such that 
m ≤ n and 2n−m ≤ w < 2n, then the definitions of δk, tj, 
and τj, given by (4), (5), and (6) respectively, imply (7) 
and (8).

Proof: Using inequality [a − b] ≤ [a] − [b] ≤ ⌈a − b⌉, 
which is valid for all a,b ∈ R, (⌈ ⌉ is the ceiling function) 
we get

	
w kw k w w
n m n m n m n m2 2

( 1)

2 2- - - -

é

ë
ê
ê

ù

û
ú
ú
£

é

ë
ê
ê

ù

û
ú
ú
-

-é

ë
ê
ê

ù

û
ú
ú
£

é

ê
ê
ê

ù

úú
ú
ú
,	

which with our assumption of 2n−m ≤ w < 2n implies
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and consider the case z = 2m first. It is implied by (3) that 
yk = yk−1, and so definition (4) gives
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Next, suppose that z < 2m, which, along with (3) and (55), 
implies that yk ≠ yk−1 as well as z  mod  2m = z. Identity

	 ( ) = ( )x a y a a x y amod mod mod mod± ± 	

is valid for all integers x, y, a with a ≥ 1 and implies
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Again, from definition (4) we have δk = z, which, along 
with the previous case resulting in (56), implies that
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for all values of w such that 2n−m ≤ w < 2n. Eq. (7) and 
(8) result directly from replacing (57) into (5) and (6), 
respectively. 

Lemma 2: Let r0,ℓ0 ∈ , ℓ0: odd. Then, fr0 0,   = |fr,ℓ| if 
and only if (r,ℓ) ∈  È , where sets  and  are defined 
by (42) and (43), respectively.

Proof: To prove the lemma it is sufficient to show that
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for some j ∈ , and
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for some j ′ ∈ . Eq. (36) implies that f fr r0 0, ,=
 

 if and 
only if
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where ℓ = 2p + 1 and ℓ0 = 2p0 + 1. Because w/g and 
2n−m/g are coprime integers, (60) holds if and only if [31] 
r = r0 − j2n−m/g and p = p0 + jw/g for some j ∈ , or 
equivalently if and only if r = r0 − j2n−m/g and ℓ = ℓ0 + 
2jw/g for some j ∈ . (Note that ℓ is odd because ℓ0 is odd 
and w/g is an integer.) This proves (58). Equivalence (59) 
is established similarly. 

Fact 1: For every real number a, x with a ∉  [32],
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where for x, y ∈ , y > 0, x mod y is defined as x − [x/y]y.

References

[1]	 H. Mair and L. Xiu, “An architecture of high-performance frequency 
and phase synthesis,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 
835–846, Jun. 2000.

[2]	 H. Mair, L. Xiu, and S. A. Fahrenbruch, “Precision frequency and 
phase synthesis,” U.S. Patent 6 329 850, Dec. 11, 2001.

1934 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 9, September 2010



[3]	D . Calbaza and Y. Savaria, “A direct digitally delay generator,” in 
Int. Semiconductor Conf. (CAS), Sinaia, Romania, Oct. 2000, vol. 1, 
pp. 87–90.

[4]	L . Xiu and Z. You, “A flying-adder architecture of frequency and 
phase synthesis with scalability,” IEEE Trans. Very Large Scale In-
tegr. (VLSI) Syst., vol. 10, pp. 637–649, Oct. 2002.

[5]	L . Xiu and Z. You, “A new frequency synthesis method based on fly-
ing-adder architecture,” IEEE Trans. Circuits Syst. II, Exp. Briefs, 
vol. 50, pp. 130–134, Mar. 2003.

[6]	L . Xiu, W. Li, J. Meiners, and R. Padakanti, “A novel all digi-
tal phase lock loop with software adaptive filter,” IEEE Journal of 
Solid-State Circuit, vol. 39, no. 3, pp. 476–483, Mar. 2004.

[7]	L . Xiu and Z. You, “`A “Flying-Adder” frequency synthesis architec-
ture of reducing VCO stages,” IEEE Trans. Very Large Scale Integr. 
(VLSI) Syst., vol. 13, no. 2, pp. 201–210, Feb. 2005.

[8]	B . Pontikakis, H.-T. Bui, F.-R. Boyer, and Y. Savaria, “Precise free-
running period synthesizer (FRPS) with process and temperature 
compensation,” in IEEE MidWest Symp. Circuits and Systems, 2007, 
pp. 1118–1121.

[9]	L . Xiu, “A novel DCXO module for clock synchronization in MPEG2 
transport system,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 
55, pp. 2226–2237, Sep. 2008.

[10]	L. Xiu, “A flying-adder based on-chip frequency generator for com-
plex SoC,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, pp. 
1067–1071, Dec. 2007.

[11]	L. Xiu, “A flying-adder PLL technique enabling novel approaches 
for video/graphic applications,” IEEE Trans. Consum. Electron., 
vol. 54, no. 2, p. 591–599, May 2008.

[12]	L. Xiu, “The concept of time-average-frequency and mathematical 
analysis of flying-adder frequency synthesis architecture,” IEEE Cir-
cuits Syst. Mag., vol. 8, no. 3, pp. 27–51, 2008.

[13]	C.-W. Huang, P. Gui, and L. Xiu, “A wide-tuning-range and re-
duced-fractional-spurs synthesizer combining Σ-Δ fractional-N and 
integer flying-adder techniques,” in IEEE Int. Symp. Circuits and 
Systems, 2009, pp. 1377–1380.

[14]	L. Xiu, C.-W. Huang, and P. Gui, “Simulation study of time-aver-
age-frequency based clock signal driving systems with embedded 
digital-to-analog converters,” in IEEE Int. Symp. Circuits and Sys-
tems, 2009, pp. 465–468.

[15]	P. Sotiriadis, “Theory of flying-adder frequency synthesizers—Part 
I: Modeling, signals’ periods and output average frequency,” IEEE 
Trans. Circuits Syst. I, Reg. Papers, to be published.

[16]	P. Sotiriadis, “Theory of flying-adder frequency synthesizers—Part 
II: Time- and frequency-domain properties of the output signal,” 
IEEE Trans. Circuits Syst. I, Reg. Papers, to be published.

[17]	V. F. Kroupa, Direct Digital Frequency Synthesizers. New York, NY: 
Wiley-IEEE Press, 1998.

[18]	J. Vankka and K. Halonen, Direct Digital Synthesizers: Theory, De-
sign and Applications. New York, NY: Springer 2006.

[19]	R. B. Staszewski and P. T. Balsara, All-Digital Frequency Synthe-
sizer in Deep-Submicron CMOS. New York, NY: Wiley-Interscience 
2006.

[20]	U. L. Rohde, Microwave and Wireless Synthesizers: Theory and De-
sign, 1st ed., New York, NY: Wiley-Interscience, 1997.

[21]	J. Nieznanski, “An alternative approach to the ROM-less direct 
digital synthesis,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 
169–170, Jan. 1998.

[22]	P. Nuytkens and P. Van Broekhoven, “Digital frequency synthe-
sizer,” U.S. Patent 4 993 890, Jun 12, 1990.

[23]	K. Shu, E. Sanchez-Sinencio, J. Silva-Martinez, and S. H. K. Emba-
bi, “A 2.4-GHz monolithic fractional-N frequency synthesizer with 
robust phase-switching prescaler and loop capacitance multiplier,” 
IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 866–874, Jun. 2003.

[24]	P. K. Hanumolu, V. Kratyuk, G.-Y. Weil, and U. Moon, “A sub-
picosecond resolution 0.5–1.5  GHz digital-to-phase converter,” in 
Symp. VLSI Circuits, pp. 75–76, Jun. 2006.

[25]	Z. Ye and M.P. Kennedy, “Noise reduction in fractional-N frequency 
synthesizers with multiphase VCO,” in IEEE Prime, Jul. 2007, pp. 
173–176.

[26]	B. Izouggaghen, A. Khouas, Y. Savaria, “Spurs modeling in direct 
digital period synthesizers related to phase accumulator trunca-
tion,” in Int. Symp. Circuits and Syst. 2004, vol. 3, pp. 389–392.

[27]	M.E. Salomon, A. Khouas, Y. Savaria, “A complete spurs distri-
bution model for direct digital period synthesizers,” in Int. Symp. 
Circuits and Syst. 2005, vol. 5, pp. 4859–4862.

[28]	M. E. Salomon, B. Izouggaghen, A. Khouas, and Y. Savaria, “Spur 
model for a fixed-frequency signal to period jitter,” IEEE Trans. 
Instrum. Meas., vol. 57, no. 10, pp. 2320–2328, Oct. 2008.

[29]	L. Xiu “Some open issues associated with the new type of compo-
nent: Digital-to-frequency converter,” IEEE Circuits Syst. Mag., vol. 
8, no. 3, pp. 90–94, 2008.

[30]	R. Bracewell, The Fourier Transform and Its Applications, 3rd ed., 
New York, NY: McGraw-Hill, 1999.

[31]	D. E. Flath, Introduction to Number Theory. New York, NY: Wiley, 
1989.

[32]	A. Jeffrey and D. Zwillinger, Eds., Table of Integrals, Series, and 
Products, 7th ed., New York, NY: Academic Press 2007.

Paul P. Sotiriadis (S’99–M’02–SM’09) received 
the Ph.D. degree in electrical engineering and 
computer science from the Massachusetts Insti-
tute of Technology in 2002, the M.S. degree in 
electrical engineering from Stanford University in 
1996, and the diploma in electrical and computer 
engineering from the National Technical Univer-
sity of Athens, Greece, in 1994. In 2002, he joined 
Johns Hopkins University as Assistant Professor 
of Electrical and Computer Engineering. In 2007, 
he joined Apex/Eclipse INC as the Chief Technol-

ogy Officer and shortly after that he started Sotekco Electronics LLC, an 
electronics research company in Baltimore, MD.

His research interests include design, optimization, and mathematical 
modeling of analog and mixed-signal circuits, RF and microwave circuits, 
advanced frequency synthesis, biomedical instrumentation, and intercon-
nect networks in deep-sub-micrometer technologies. He has led several 
projects in these fields funded by US organizations and has collabora-
tions with industry and national labs. He has authored and co-authored 
more than seventy technical papers in IEEE journals and conferences, 
holds one patent, has several patents pending, and has contributed chap-
ters to technical books.

He served as an Associate Editor of the IEEE Transactions on Cir-
cuits and Systems II from 2005 to 2010 and has been a member of tech-
nical committees of several conferences. He regularly reviews for many 
IEEE transactions and conferences. He also serves on proposal review 
panels at the National Science Foundation.

1935sotiriadis: exact spectrum and time-domain output of flying-adder frequency synthesizers


