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Paul P. Sotiriadis, Senior Member, IEEE

Abstract—This is a rigorous mathematical theory of the opera-
tion of the flying-adder (FA) frequency synthesizer (also called di-
rect digital period synthesizer). The paper consists of two parts.
Part I presents a detailed mathematical model of the FA synthe-
sizer, capturing the relationships between the properties of the FA’s
output and internal signals and the FA’s parameters. The counting
of the rising edges in the FA’s multiplexer’s output establishes a dis-
crete-time index that is used to analytically derive the fundamental
discrete-time periods of all the FA’s signals. The continuous-time
intervals between the rising edges are calculated and used to de-
rive the fundamental continuous-time periods of the signals from
the corresponding discrete-time ones. It is shown that the FA be-
haves differently within different ranges of the frequency word,
and the practically useful range is identified. The FA’s output av-
erage frequency, along with its maximum and minimum values,
is analytically derived by calculating the number of cycles in the
output signal within a fundamental continuous-time period of it.
The relationship between the average and the fundamental output
frequencies is also established, indicating the potential frequencies
and density of output spurious frequency components. Part II of
the paper characterizes the timing structure of the output signal,
providing analytical expressions of the pulses’ locations, analyt-
ical strict bounds of the timing irregularities, and exact analyt-
ical expressions of several standard jitter metrics. Spectral prop-
erties of the output waveform are presented, including the domi-
nance of the frequency component at the average frequency, and
analytical expressions of the dc value and average power of the
output signal are derived. The FA has been implemented in a Xilinx
Spartan-3E field-programmable gate array, and spectral measure-
ments are presented, confirming the theoretical results. Extensive
MATLAB simulation has also been used to generate numerous ex-
amples, illustrating the developed theory.

Index Terms—Clock generation, digital-to-frequency converter
(DFC), direct digital period synthesis, direct digital synthesis
(DDS), flying adder (FA), frequency synthesis, jitter, phase accu-
mulator, phase synthesis, spurs, truncation.

I. INTRODUCTION

T HIS is the second part of a two-part paper [1] presenting
a rigorous mathematical theory of the operation of flying-

adder (FA) frequency synthesizers.
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Fig. 1. FA (shown here with� � �, i.e., � input phases).

The FA [2], [3], which is also referred to as direct dig-
ital period synthesizer [4] or digital-to-frequency converter
(DFC), [5], appeared as an independent frequency synthesis
architecture1 in [2] and as a patented invention in [3], fol-
lowed by a number of related publications, including [4]–[20].
The FA shares some functionality with circuits that involve
phase-switching prescalers and digital phase accumulators and
have been used in the past [21]–[28] as well as in more recent
architectures [29], [30].

The FA, in abstract form, is shown in Fig. 1. It is driven by a
family of uniformly phase-shifted copies of a frequency refer-
ence clock. The FA is a simple fully digital frequency synthe-
sizer with good period (frequency) resolution and range. These
qualities make FA a very useful circuit for clocking digital cir-
cuits that can tolerate a certain amount of deterministic jitter.
Regarding analog and RF circuit applications, the FA suffers
from highly spurious output content (for most frequency words)
due to phase truncation, and research effort has been devoted in
estimating this spurious content [10], [12], [17].

The FA’s output signal resembles that of the pulse-output di-
rect digital synthesizer (PDDS) [24], although the FA’s internal
structure is significantly different from that of PDDS because

1To the best of the author’s knowledge.

1549-8328/$26.00 © 2010 IEEE



1950 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 57, NO. 8, AUGUST 2010

its register is updated at a variable rate. This makes the anal-
ysis of the FA’s operation different, yet similar in nature, to that
of DDS, which has been studied extensively in [24], [26], [27],
[31]–[41], and many other publications.

For most parameter values, the output signal is a periodic
juxtaposition of cycles of two possible lengths. This results in
timing irregularity of the output signal in the time domain and in
spurious frequency components in the output spectrum, which
both may impact the operation of any circuit clocked by the FA.

Part II of the paper studies in detail the timing of the pulses
in the output signal of the FA and relates the periodicity of the
FA’s signals to qualitative properties of its output spectrum. Part
II builds on the mathematical model of the FA introduced and
the fundamental discrete-time and continuous-time periods of
the FA’s signals derived in Part I [1].

Compact closed-form expressions are derived for the position
(beginning and ending) of the output pulses. The possible output
waveform types are analyzed and classified based on the FA
parameters. The lengths of the 0 and 1 intervals are derived, and
exact analytical expressions of the absolute, absolute cycle-to-
cycle, accumulated, cycle-average, and cycle-to-cycle average
jitter metrics are provided.

In addition, analytical expressions are derived for the output
average voltage (dc), the output average power, and bounds of
the power of the frequency component at the output average fre-
quency [5]. Moreover, the dominance of the signal compo-
nent at frequency is proven under certain conditions on the
FA parameters.

Section II expands the FA’s model in Part I by introducing
the additional notation and variables used here. Section III de-
rives the positions of the output pulses and the lengths of the 0
and 1 intervals and classifies the possible types of output wave-
forms based on the FA parameters. Section IV derives analytical
expressions of several standard jitter metrics. Section V derives
analytical expressions of the output average voltage, the average
power, and the dc power. It provides bounds of the power of
the frequency component at the output average frequency and
its dominance under certain conditions on the FA parameters.
Finally, Section VI connects the findings of all the previous
sections and the findings in [1] with qualitative spectral prop-
erties of the FA’s output signal derived by measurements and
simulation.

II. MODEL SUMMARY AND ADDITIONS

The model, notation, and operation of the FA in Fig. 1 is pre-
sented in detail in [1, Sec. 2]. The FA is driven by the family

of periodic square-wave 50% duty-cycle
(clock) signals of the same frequency and relative
phase offsets that form an arithmetic progression with step of

radians corresponding to time offset .
The main parameters of the FA used in this second part of the

paper [1] are summarized following Fig. 1.
The discrete-time reference variable is the counter of the

rising edges in signal at the output of the MUX. We refer to
the (real) continuous-time interval between the th and the
rising edges as the th discrete-time interval.

The modified difference sequence is defined such that
is the length of the th discrete-time interval.

The fundamental discrete-time period of is , as given
by [1, eq. (10)]. The fundamental continuous-time period2 of

is , as given by [1, eq. (24)].
The rising and falling edges of the output signal appear at

the time moments , , and , ,
respectively.

The (real) continuous-time period of the output is , as
given by [1, eq. (34)].

The average frequency of the output signal , which is
defined as the number of cycles within a fundamental contin-
uous-time period 2 , divided by , is given by [1, eq. (36)].

The frequency is the harmonic of the fundamental
frequency of , i.e., , where is
given by [1, eq. (42)]

A. Additional Notation

This section lists the definitions of variables and parameters
used here that have not been introduced in [1].

• : Duty cycle of the output signal defined only in the
special case that is a juxtaposition of identical cycles.

• , : The continuous-time moments at which the th
rising and falling edges, respectively, appear of the ideal
50% duty-cycle square wave of frequency , whose first
rising edge coincides with that of .

• : The average frequency period of the output signal
is equal to and can alternatively be de-

fined as the ratio of to the number of pulses of within
.

• : The output average voltage is the mean value of
within a fundamental continuous-time period of it.

• : The output average power is the mean power of
within a fundamental continuous-time period of it.

• : The output dc power is the power of the dc component
of .

• : The power of the harmonic of the output signal
. Note that the harmonic frequency is equal to

when (see [1, eq. (10)] and [1, Corollary 5.3]).
• : The power ratio of to the total power of the rest

of the harmonics, except the dc.

III. LENGTHS AND TIMING OF PULSES AND CYCLES

IN THE OUTPUT SIGNAL

This section examines the timing irregularities in . It pro-
vides tight bounds of the length of the individual cycles, the
lengths of the 0 and 1 intervals (see definition below), as well as
the duty cycle of the individual cycles in .

The output signal has average frequency , which is given
by [1, eq. (36)], in the sense of the number of pulses per period

. The timing of pulses however can be irregular. Consider,
for example, the waveforms of in [1, Fig. 3(g)] and [1,
Fig. 5(g)], where the time intervals between consecutive pulses
vary, and the cycles have unequal lengths. In other cases, the
cycles are identical but the duty cycle is not 50%.

Observe in [1, Fig. 4(g)] that is a highly irregular signal
(compared with the ideal periodic square wave). Following the
remarks in [1, Example 2.2], one can conclude that this is the

2All continuous-time intervals and periods we consider start and end at a
rising edge (or a spike) of signal ����. Note that every rising edge and spike
of ���� appear at continuous time � � �� for some nonnegative integer �.
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Fig. 2. Timing of the pulses in ���� within a fundamental continuous-time period � when � � � and assuming the initial conditions � � � and ��� � � �,
i.e., D-FF being reset at � � � , which imply that the first pulse starts at � � � � �.

most typical case when . Since such signals do
not resemble the ideal periodic square wave at all,3 we exclude
them from the analysis in this section.

Throughout this section, we assume that .
In the time-domain, deviation from the ideal square-wave pe-

riodic signal results in “deterministic jitter.” In the frequency
domain, it introduces (some of) the harmonic frequencies ,

, in the output spectrum, where , in
addition to the average frequency of .

Definition 3.1: A 1-interval is a continuous-time in-
terval such that for all and

. Pulse is another name for the 1 intervals. The 0
interval is defined accordingly. By the definition of , the
length of the th (0- or 1-) interval is seconds. A cycle is a
pair of 0 and 1 consecutive intervals in any of the orders 0–1 or
1–0.

For presentation convenience, we assume the initial condi-
tions and , i.e., D-FF being reset at ,
which imply that the first pulse starts at . In this case,
the output waveform is shown in Fig. 2, illustrating the above
definitions (it is convenient to focus on the 1–0 cycles).

Fig. 2 shows 1–0 cycles and pulses within the period
. This is the case when , resulting from [1, Corollary

5.3]. As shown in Theorem 3.1 below, the case is trivial.
Note that the th 1–0 cycle, in the fundamental continuous-

time period starting at , is
seconds long. In addition, the length of the th pulse is

seconds.

A. Pulse Widths and Cycle Lengths

The following theorem gives some insight in the properties
of the individual pulses and cycles in .

Theorem 3.1: If , then we have the
following:

A) If , i.e., if divides , then is the ideal 50%
duty-cycle square wave, and every pulse of corresponds
to two consecutive rising edges of . In addition, from
[1, eq. (34)], the length of the cycles is

(1)

3Although they may be very useful in certain applications requiring periodic
waveforms with rich spectrum.

B) If4 , i.e., , then all cy-
cles5 of are identical with length equal to

(2)

and duty cycle

(3)

(assuming that and the D-FF is initially reset,
i.e., ; it may be under other initial
conditions). Again, every pulse of corresponds to two
consecutive rising edges of .

C) If , i.e., is not a multiple of , then the
length of every 0 and 1 interval in is equal to one of the
two values

(4)

Moreover, within every fundamental continuous-time pe-
riod6 of , there exist at least two intervals (0 or 1 or
both), one of length equal to the lower value in (4) and
one of length equal to the higher value in (4). Finally, the
length of every cycle (1–0 or 0–1) can only take one of
the two values

(5)

and within every two consecutive fundamental contin-
uous-time periods of (or one fundamental period ex-
tended by one interval) there exist at least one 1–0 and one
0–1 cycles of length equal to the lower value in (5) and at
least one 1–0 and one 0–1 cycles of length equal to the
higher value in (5).

Example 3.1: Consider [1, Example 2.1] and [1, Fig. 3(f) and
(g)]. Using [1, eq. (10)] and [1, eq. (34)], we derive
and . A continuous-time fundamental period of is
shown in [1, Fig. 3(g)] between and . Observe that
the two 1 intervals have lengths and ; also, the two 1–0

4For � to be equal to 2, it is necessary that � � �� �.
5It is convenient to consider only 1–0 cycles here.
6All continuous-time periods and intervals we consider begin and end at a

rising edge (or spike) of signal 	���.
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cycles have lengths and . Referring to Theorem 3.1, we
have and

which imply that , and both values are taken by
. Therefore, the theorem is in agreement with the example.

Moreover, it is

and Theorem 3.1 implies that , and both
values are taken by . Again, the theorem fully agrees
with the observations in [1, Fig. 3(f) and (g)].

Example 3.2: Consider [1, Example 2.3] and [1, Fig. 5(f) and
(g)]. It is and . A continuous-time funda-
mental period of is shown between and .
Observe that the two 1 intervals have lengths and ; the
two 1–0 cycles have lengths and . Theorem 3.1 implies
that , with both values taken, and ,
with both values taken as well. Again, these fully agree with the
observations in [1, Fig. 5(f) and (g)].

Proof (of Theorem 3.1): Fact 1 in the Appendix implies

(6)

where is the ceiling function. In addition, our assumption
implies

which along with (6) gives

(7)

From (7), the definition of , and the two equations [1, eqs. (4)
and (5)], we get

(8)

which combined with (6) implies

and since the upper and lower bounds are either identical or
consecutive positive integers, it is7

(9)

Using (8) twice, we get

7With the understanding that if both numbers in the set (9) are the same, we
ignore one to comply with the standard definition of sets.

which along with Fact 1 in Appendix gives

Again, the upper and lower bounds are either identical or con-
secutive positive integers, so

(10)

Recall now from the definition of that is the time length
between the th and rising edges of , and therefore, it
is the length of the th interval. Moreover, the length of a (1–0
or 0–1) cycle is . We prove the statements of the
theorem in reverse order.

C) The assumption , along with [1, eq. (10)], gives
with implying , and

therefore, neither nor is an integer. This
means that for , inclusions (9) and (10) respectively be-
come

(11)

and

(12)

Moreover, a fundamental continuous-time period (note that
here it is because , and [1, eq. (23)]) consists
of exactly consecutive intervals ( are 0-intervals and
are 1-intervals) of (see [1, Theorem 4.1]). Assuming that

(13)

for all and using [1, eq. (22)] leads to

and so using [1, eq. (10)] and [1, eq. (24)] gives

(14)

which is a contradiction because is not an integer. Sim-
ilarly, assuming that

(15)

for all leads to a contradiction for the same reason. Therefore,
takes both values in (11) within every period .

We prove the rest of part (C) using the fact that
is not an integer when . Without loss of generality, we
assume the initial conditions and to be
consistent with Fig. 2. Suppose that all 1–0 cycles have length
equal to

(16)
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for all . Then, we have

(17)

which using [1, eq. (10)] and [1, eq. (24)] again results in the
contradiction

(18)

since is not an integer. The assumption that 1–0 cy-
cles have length equal to

(19)

for all leads to a contradiction for similar reasons.
The proof that the lengths of 0–1 cycles take

both values in (5) within a fundamental continuous-time period
is almost identical. In this case, we consider the fundamental

continuous-time period from to and use

(20)

This concludes the proof of part (C).
B) Since , inclusion (10) simplifies

to the equality , and so all cycles (1–0
and 0–1) of have length equal to

(21)

which is also equal to since . Once more,
implies that is not an

integer, and using the steps in the proof of part (C), we can
show that both values

are taken by sequence , and using (21), we derive the duty
cycle of to be

for the initial values stated in the theorem.
A) Since is a multiple of , it is for all

.
Corollary 3.1: Let and . Then, every fun-

damental continuous-time period starting at the beginning of
a 1–0 cycle8 consists of exactly

(22)

1–0 cycles of length equal to

8Like the one from � � � to � � � in Fig. 2.

and ones of length equal to

Proof: From [1, Corollary 5.3], we know that such a fun-
damental continuous-time period consists of exactly 1–0
cycles. Then, from part (C) of Theorem 3.1, we have

(23)

for some integer . Using [1, eq. (34)], (23) implies that

(24)

Applying Fact 2 in the Appendix leads to (22). Note that the
right-hand side of (22) is always a nonnegative integer.

Consider [1, Example 2.1] and [1, Example 2.3] with
and and , respectively. In both cases

it, is , and their fundamental continuous-time periods
starting at have one short and one long 1-0 cycle (as
shown in [1, Fig. 3(g)] and [1, Fig. 5(g)]) exactly as predicted
by Corollary 3.1, since . In many cases, the
cycles composing the fundamental continuous-time period are
all identical except one that is of different size, as illustrated in
[5]. This, however, is not true in general, e.g.,
and imply long and short 1-0 cycles
for the fundamental continuous-time period starting at .

B. Timing of Pulses and Cycles in

In Section III-A we studied the cycle-to-cycle timing irregu-
larities. Here, we examine the timing irregularities with respect
to continuous time and derive time windows within which the
rising and falling edges of the pulses in lie.

From Theorem 3.1, we know that when
and , the output is a perfect 50% duty-cycle square
wave. Moreover, from [1, Corollary 5.1], we know the frequency

of the square wave, and we know that the first
pulse starts at assuming that and the D-FF is reset
at . Therefore, for this case, there is nothing more to say.

On the other hand, the case of results in
highly irregular waveforms (see comments in the beginning of
the section).

Therefore, in this section, we assume that
and .

The time sequences , , and , ,
defined in [1, Sec. 2.1] correspond to the rising and following
edges of the pulses in the output signal . Based on the definition
of ’s, and with the convention that , we have9

(25)

and

(26)

9As before, we assume � � � and initially reset D-FF.
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Fig. 3. Timing of the �th pulse in ���� and the �th pulse in the ideal square
wave of frequency � when � � � � � and � � �.

for . Using (8), which is valid here because of our
assumptions, and are expressed as

(27)

and

(28)

From [1, eq. (34)] and our assumptions, the fundamental con-
tinuous-time period of can be expressed as

(29)

and because of , it contains cycles of (see also
[1, Corollary 5.3]), which is also confirmed by the equality

. In addition, our assumptions and [1, eq. (42)]
imply that the average frequency is the har-
monic of the fundamental frequency of the output.
Fig. 2 illustrates the timing of the waveform as described above.

Now, we compare the timing of to that of the ideal 50%
duty-cycle periodic square wave of frequency , whose first
rising edge coincides with that of . Since there are pulses
within the period , the rising edge of the th pulse of the ideal
signal is at

(30)

and the falling edge is at

(31)

Therefore, for all , it is

(32)

which imply the following bounds of and :

(33)

and

(34)

The timings of the th pulse in and that of the th pulse in
the ideal square wave are shown in Fig. 3.

Fig. 4. ���� and the ideal square wave of frequency � when 	 � �,
 � �,
and � � �. (Solid line) ����. (Dashed line) Ideal square wave.

Fig. 5. ���� and the ideal square wave of frequency � when 	 � �,
 � �,
and � � ��. (Solid line) ����. (Dashed line) Ideal square wave.

Note that the rising and falling edges of the th pulse in
appear before or simultaneously to the corresponding ones of
the th pulse of the ideal square wave. The time offset is less than

. This provides us with a coarse bound on the deterministic
jitter of .

Example 3.3: The output and the ideal square wave of
frequency are shown in Fig. 4 for the case of [1, Example
3.1], i.e., , , and .

Example 3.4: The output and the ideal square wave of
frequency are shown in Fig. 5 for the case of [1, Example
3.3], i.e., , , and .

In most cases with and , it is true (but
note a rule) that the larger the value of , the better the timing
matching between and the ideal square wave (percentage-
wise with respect to the length of the period).

Remark: From Theorem 3.1 and its proof, we know that every
0 or 1 interval of is of length equal to or greater than

(35)

Therefore, if the FA is used to clock a (synchronous) digital
circuit, then the designer should arrange so that is suffi-
ciently long for all signals to settle. In this case, the digital cir-
cuit will appropriately operate at the average clock frequency

[16]. Note that (35) is valid for all values of as long as
because of (9).

IV. OUTPUT DETERMINISTIC JITTER

The results of the previous section allow us to derive an-
alytic expressions of the output signal’s deterministic jitter.
Throughout this section, we consider the rising edges of the
output signal appearing at , , and all jitter
derivations are based on them. One can easily follow the same
steps for the falling edges as well. Throughout the paper, “jitter”
means deterministic jitter.

A time-shifted version of the ideal 50% duty-cycle periodic
square wave of frequency is used as a reference
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to derive the accumulated jitter of . When , [1, eq.
(36)] gives

(36)

Note that parts (A) and (B) of Theorem 3.1 imply that when
or , the jitter is zero because is a juxtaposition of

identical cycles; therefore, we can exclude these cases from the
calculations that follow. Part (C) of the same theorem implies
that jitter is nonzero when .

Moreover, from [1, Corollary 5.3], we know that when ,
there are exactly cycles of per fundamental continuous-
time period of it. Therefore, consecutive cycles of
provide us all the information we need to derive the value of
jitter metrics.

Finally, as discussed in the previous sections, as well as in
[1], the output waveform is very irregular for most values of
the frequency control word when . With the above
comments in mind, the following metrics can be used to quantify
the deterministic jitter when and .

• Absolute Jitter:

(37)

• Absolute Cycle-to-Cycle Jitter:

(38)

• Accumulated Jitter:

(39)

• Cycle Average Jitter:

(40)

• Cycle-to-Cycle Average Jitter:

(41)
The following lemma provides analytic expressions of the

above jitter metrics of .
Lemma 4.1: When and , all jitter metrics

(37)–(41) are zero. When and , the jitter
metrics (37)–(41), respectively, take the explicit expressions

(42)

(43)

(44)

(45)

(46)

where the nonnegative integer is defined by
, and .

Proof: The case of is trivial and results directly from
parts A) and B) of Theorem 3.1. For the case of , we have:

Equation (42): Part (C) of Theorem 3.1 implies that within
every continuous-time fundamental period, takes both
values in (5) and only them. Applying the definition of and
replacing (36), we have

Applying Fact 2 in the Appendix and using the definition of
in Lemma 4.1, we get (42).

Equation (43): Again, part (C) of Theorem 3.1 tells us that
takes both values in (5) and only them within every

period. Therefore, the maximum of
within a period is exactly the difference of the two values in
(5).

Equation (44): The definitions of and along with Fact
2 in the Appendix give

(47)

Using the definition of integer in Lemma 4.1, we have that
and . Since ,

we can apply the identity

to get

(48)
Combining (47) with (48) and applying Fact 3 in the Appendix,
we get that takes all values of the form ,

, within every period . There-
fore, the minimum in (39) is achieved for

(49)

leading to (44).
Equation (45): Combining Corollary 3.1 with (40) and

using the definition of directly leads to (45).
Equation (46): Define the function

(50)

From (25) and (27), we can express as

(51)

as well as

(52)
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Fig. 6. Jitter metrics � , � , � , � , and � when � � �,
� � �, and � � � � � � � � � � �.

Because of part (C) of Theorem 3.1 and inclusion (12), we have
that

(53)

for all indices , , which gives

(54)

and

(55)

for all . We notice that replacing with
in (51) does not change the value of , and so we can assume
that . From this, we conclude that the first
nonzero value of the sequence , , is 1.

Combining (53) with (55), we conclude that the nonzero
terms of the sequence form the alternating subsequence

whose first term is 1.
In addition, since is periodic, the number

of 1’s must equal the number of 1’s in the vector
. Therefore, to derive , we

only need to count the number of 1’s in this vector. This
is done by observing (52) and concluding that there are

1’s if , 1’s if , and
1’s if .

Example 4.1: The different metrics of jitter of the FA with
, , and are numerically

calculated using (42)–(46) and presented in Fig. 6. Note that
and so even values of imply or

and therefore zero jitter. The graphs indicate a period of 2
with respect to (2 is the smallest value of , implying
zero jitter).

Example 4.2: The values of the jitter metrics for the FA with
, , and are numerically

calculated using (37) –(41) and are shown in Fig. 7. Note that
, and so the values of that are multiples

Fig. 7. Jitter metrics � , � , � , � , and � when � � �,
� � �, and � � � � � � � � � � �.

of 8, 16, 32, etc., imply or and therefore zero jitter.
Here, the graphs indicate a period of 8 with respect to (note
that 8 is the smallest value of , implying zero jitter).

V. OUTPUT SPECTRUM SIGNAL-COMPONENTS POWER

Using the results of the previous sections, we derive the fol-
lowing information about the spectrum of the FA: 1) the average
voltage; 2) the average power; 3) the dc power; and 4) the power
of the signal component at ( harmonic when

) and its dominance in the spectrum.
Theorem 3.1 reveals the exact waveform of when

and or ; therefore, in this case, the
spectrum is known exactly.

In this section, we assume that and .
Since signal is periodic, it can be expanded as a Fourier

series in the form

(56)

where

(57)

and

(58)

for , and is the average value of . Recall also
Parseval’s identity [42]

(59)

The output average voltage within a time interval is
equal to the ratio , where is the total time length within
the interval , in which . From [1, Corollary 5.3],
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we know that there are cycles per fundamental continuous-
time period , and using the definitions of and , we have
that

(60)

Replacing (27) and (28) in (60) and setting
, we get

By assumption, is a positive integer, and the last two
sums can be calculated in closed form using identity (78) in the
Appendix, giving

(61)

Now, our assumptions, i.e., and , and
[1, eq. (34)] give10

(62)

In addition, implies that there exist a nonnegative
integer and an odd positive integer such that

. Since , it is

(63)

Since is odd, we have , which along with
(63) gives

(64)

Assuming that the output logical values correspond to 0 and
1 amplitude, the output average voltage is11

(65)

The output average power is the average power of
within a time interval , i.e.,

(66)

Again, assuming that the output logical values correspond to 0
and 1 amplitude, we get

(67)

10Compare (29) with (62).
11The quantities are dimensionless.

The output dc power is equal to , and using (65), it is
expressed as

(68)

Power of the harmonic . Note that our assumption
implies that (see [1, Corollary 5.3]), and

so the average frequency is the harmonic of the funda-
mental frequency of .

Based on the discussion in Section III-B and Figs. 3–5, we
can conclude that the major contribution to the power of the
harmonic is due to the term in the Fourier series
decomposition, since its cycles strongly overlap with those of
the ideal waveform. Therefore, from (56) to (59), a lower bound
of is

(69)

where

(70)

Observing Fig. 2 and following the discussion in
Section III-B, we write

(71)

which, using (29) –(31), gives

(72)

From (33) and (34), we have that and
, which along with (29) provide the lower bound

(73)

which is valid and useful when . Another lower
bound is given by

(74)

It is valid for , and it is derived in Lemma 8.2 in
the Appendix.

The lower bound (74) is tighter than (73) for small values of
(see Fig. 8). In addition, note that both expressions in the right

sides of (73) and (74) only depend on the ratio .
A similar procedure can provide us with an upper bound of

, as well as lower and upper bounds of the power of other
harmonics.
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Fig. 8. Lower bounds of� for � � � and� � �. Curves 1 and 2 correspond
to (73) and (74), respectively. The dashed line� corresponds to the value of�
in the case of ideal 50% duty-cycle square wave.

A. Dominance of the Harmonic

It is important to know what percentage of the total power of
is due to the harmonic, i.e., the frequency component

at . This is expressed by calculating the power ratio of
over the power of the rest of the harmonics, except the dc,

i.e.,

(75)

Replacing the values of and from (67) and (68) and
that of the lower bound (69) in (75), we get the following lower
bound of :

(76)

Example 5.1: The graph in Fig. 8 presents the power ratio
using both lower bounds (73) and (74) for when and

.
Note that Example 5.1 provides one more indication that the

larger the value of with respect to , the “cleaner” the output
spectrum may be. Intuitively, this makes sense and agrees with
the results in Section III-B because the timing error of the pulses
in is bounded by , and so the larger the average frequency
period , the smaller the percentile error

. Recall from [1, eq. (36)] that when , it
is , and so .

VI. MEASUREMENTS AND SIMULATION OF

FA’S OUTPUT SPECTRUM

Section III, and particularly Theorem 3.1, provided informa-
tion about the timing properties of the output signal . The
average frequency of was derived in [1, Sec. 5], and the
continuous-time fundamental period of it was derived in [1,
Sec. 4].

This section connects the above derivations with the spec-
tral properties of through a number of observations in a
collection of instances of the FA’s spectrum. The discussion

Fig. 9. Setup of the Xilinx Spartan 3E implementation of the FA. The clock
frequency of the FA is � � �� MHz�� .

Fig. 10. Output spectrum when � � �, � � �, and � � �. The average
frequency is � � � . (A) MATLAB-generated spectrum. (B) Measured
spectrum of the FPGA implementation with � � ��MHz�� � ����MHz
implying � � ���� MHz (indicated with a rhombus).

here complements the analytical results in Section V. We use
both spectral measurements from a Xilinx Spartan 3E field-
programmable gate array (FPGA) implementation of the FA
(shown in Fig. 9) and spectral estimates numerically derived
using MATLAB.

A. Case: ,

1) Consider first the spectra in Fig. 10, where , ,
and . The expression in [1, eq. (10)] gives ,
and we also have . Theorem 3.1 tells us that

is an ideal 50% duty-cycle square wave of period
, i.e., . Moreover,

since .
As expected, the ideal spectrum in Fig. 10(A) demon-

strates the existence (and relative power) of only odd har-
monics of plus a dc offset. Instead, the measured spec-
trum in Fig. 10(B) shows the contribution of even har-
monics. Since all of the internal and output frequencies of
the FA are identical, the even harmonics must be due to the
lack of perfect 50% duty cycle clock or parasitic coupling
of some register’s bits to the output.

2) Now, we examine Fig. 11. Here, it is , and so
, , , and , implying

, i.e., is the fundamental frequency of the
periodic signal . Moreover, .

From Theorem 3.1, we know that has one pulse
per period , but it is not 50% duty cycle. Fig. 11(A) is
in agreement, showing the ideal spectrum with even and
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Fig. 11. Output spectrum when � � �, � � �, and � � ��. The average
frequency is � ����� . (A) MATLAB-generated spectrum. (B) Measured
spectrum of the FPGA implementation with � � ��MHz�� � ����MHz
implying � ���� MHz (indicated with a rhombus).

Fig. 12. Output spectrum when � � �, � � �, and � � �. The average
frequency is � ����� . (A) MATLAB-generated spectrum. (B) Measured
spectrum of the FPGA implementation with � � ��MHz�� � ����MHz
implying � ����� MHz (indicated with a rhombus).

odd harmonics of the fundamental frequency in addi-
tion to a dc component. Fig. 11(B), however, shows

MHz and its harmonics, along with MHz
and its harmonics as well, indicating a leakage of the spec-
trum of the internal states , to the output or the impact
of lack of perfect 50% duty cycle of the driving clock.

3) The spectra of for the instances in [1, Examples
2.1–2.3] are shown in Figs. 12–14), respectively. In all
three cases, is odd, and so takes the maximum pos-
sible value , and [1, Corollary 5.3] implies that there
are two pulses of per fundamental continuous-time
period .

We observe the following.
a) results in an irregular waveform, as

mentioned in Section III and shown in [1, Fig. 4], that

Fig. 13. Output spectrum when � � �, � � �, and � � 	. The average
frequency is � � ����� (same as with � � �). (A) MATLAB-generated
spectrum. (B) Measured spectrum of the FPGA implementation with � �

�� MHz�� � ���� MHz implying � � ����� MHz (indicated with a
rhombus).

Fig. 14. MATLAB-generated spectrum when � � �, � � �, and � � ��.
The average frequency is � ���	� .

(typically for ) has very strong nonhar-
monic frequency components. As shown in Fig. 13,
the power of is lower than that of the fundamental

and its third and fourth harmonics ( is the
second harmonic of the fundamental).

b) Both sets and result in the same pe-
riod and the same (recall [1, Corollary
5.2(D)]) although in the second case is very ir-
regular.

c) In most cases, the larger the odd value of , the more
dominant the component in the spectrum (among
the nonharmonic signals).

3.1) For , it is , and
although the ideal spectrum in Fig. 12(a) only shows
and its harmonics, Fig. 12(b) demonstrates the leakage
of the spectrum of the internal states and to the
output ( MHz, MHz and

MHz) or possibly the impact of lack of perfect 50%
duty cycle of the driving clock.

3.2) For , we also have ,
which is exactly as in case (3ci). Similarly, Fig. 13(a)
shows the ideal spectrum with and its harmonics,
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Fig. 15. MATLAB-generated spectrum when � � �, � � �, and � � ��.
The average frequency is � ����� .

Fig. 16. Output spectrum when � � �, � � �, and � � ���. The av-
erage frequency is � ����� . (A) MATLAB-generated spectrum. (B)
Measured spectrum of the FPGA implementation with � � 	� MHz�� �


���	 MHz implying � ���� MHz (indicated with a rhombus).

whereas Fig. 13(b) shows the presence of and its har-
monics as well. Again, it is MHz,

MHz, and MHz.
3.3) For , we have .

Fig. 14 shows and its harmonics. (Measurements are
not presently available for this case.)

B. Case: ,

1) The ideal spectrum of is shown in Fig. 15 for .
It is and , so
is the second harmonic of the fundamental frequency
of . The spurious-free dynamic range (SFDR), consid-
ering only the nonharmonic signals, is about 16 dB within
the frequency range we observe here. (Measurements are
not presently available for this case.)

2) Figs. 16 and 17 show the spectrum when . Here,
we have and .
Fig. 16(A) confirms that is the fourth harmonic of the
fundamental frequency . Note that the higher value of
with respect to the previous case results in a higher SFDR
equal to 22.8 dB (within the observed frequency range and
considering only the nonharmonic signals).
Fig. 16(B) shows the measured spectrum. It is

MHz, MHz, and MHz.

Fig. 17. Zoomed-in measured spectrum of the FPGA implementation with� �

�, � � �, and � � ���, centered at � ���� MHz (rhombus).

Fig. 18. Output spectrum when � � �, � � �, and � � ���. The av-
erage frequency is � ��	
� . (A) MATLAB-generated spectrum. (B)
Measured spectrum of the FPGA implementation with � � 	� MHz�� �


���	 MHz implying � ���� MHz (indicated with a rhombus).

Fig. 17 is a zoom-in around , showing more clearly the
harmonics of , which are 16 times denser than those
of .

3) Increasing to 241 results in the ideal spectrum
in Fig. 18(A). SFDR increases to 27.4 dB (within
observed frequency range). It is and

, so is the
eight harmonic of the fundamental frequency . The
odd value of here results in higher
compared with that of the previous case with .
Fig. 18(B) shows the measured spectrum. It is

MHz, MHz, and MHz.
Fig. 19 is a zoom-in around , showing more clearly
the harmonics of . The graph suggests the presence of
the harmonics of , but due to their high density, it is
difficult to identify their position accurately.

C. Case: ,

Fig. 20 shows the ideal spectrum of when ,
, and . It is and .

The SFDR is 32.2 dB (within the observed frequency range and
considering only the nonharmonic signals), and .
(Measurements are not presently available for this case.)
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Fig. 19. Zoomed-in measured spectrum of the FPGA implementation with� �

�, � � �, and � � ���, centered at � ���� MHz (rhombus).

Fig. 20. MATLAB-generated spectrum when� � ��,� � �, and� � ����.
The average frequency is � 	���� .

VII. CONCLUSION

The flying adder frequency synthesizer with register size
bits, input (oscillator) phases, and frequency control word
has been modeled and analyzed mathematically. Several timing
and spectral properties of the output signal have been derived.

The FA architecture is compact and fully digital, which makes
it attractive for commercial circuit applications that can tolerate
its bounded timing irregularities.

For frequency control word , the timing irregu-
larity of the rising and falling edges of the output signal, as well
as that of the duty cycle of its pulses, is always smaller than or
equal to . This must be compared with the pe-
riod of the average frequency component, which for
is .

Exact analytical expressions of the absolute, absolute
cycle-to-cycle, accumulated, cycle-average, and cycle-to-cycle
average deterministic jitter metrics of the output have been
derived. All of them are less than or equal to and depend
strongly and periodically on the frequency control word .

The average-frequency frequency component is dominant in
the spectrum of the FA for reasonably large values of . The
SFDR is typically low in the range of 10–40 dB for most of the
values of , and the spectrum is typically populated with non-
harmonic spurs when . The spurs closest to the average
frequency component are at frequencies , where

is the fundamental continuous-time period of the output.
Since the FA is simple and compact and offers high period

resolution and range adjustment, the above properties make the
FA a useful frequency synthesis architecture for digital circuits
applications that can tolerate small deterministic jitter. The ap-
plication of the FA to analog and RF circuits is a subject for
future research due to the spurious components in the spectrum.

APPENDIX

The following facts can be found in [43] and other books on
discrete mathematics.

Fact 1

If , then .

Fact 2

Letting and be integers and , then

(77)

Fact 3

Let and be positive integers and . Then, the
function such that

is a bijection.

Lemma 8.1

Let be a nonnegative integer, be a positive integer, be
a real number, and . Then, from [43], we know
that

(78)

Lemma 8.2

Inequality (74) is valid for .
Proof: Since , assumption

, along with (33) and (34), implies that

and so setting or , we have

which using (72) gives

(79)

Using (78) and setting , we derive

(80)

(81)

(82)

(83)
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Adding (80)–(83) gives

(84)

Note that by assumption it is , which implies that is
an odd positive integer and so

(85)

Finally, (79), (84), and (85) give
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