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Theory of Flying-Adder Frequency
Synthesizers—Part I: Modeling, Signals’
Periods and Output Average Frequency

Paul P. Sotiriadis, Senior Member, IEEE

Abstract—This is a rigorous mathematical theory of the opera-
tion of the flying-adder (FA) frequency synthesizer (also called di-
rect digital period synthesizer). The paper consists of two parts:
Part I presents a detailed mathematical model of the FA synthe-
sizer, capturing the relationships between the properties of the FA’s
output and internal signals and the FA’s parameters. The counting
of the rising edges in the FA’s multiplexer’s output establishes a dis-
crete-time index that is used to analytically derive the fundamental
discrete-time periods of all FA’s signals. The continuous-time in-
tervals between the rising edges are calculated and used to derive
the fundamental continuous-time periods of the signals from the
corresponding discrete-time ones. It is shown that the FA behaves
differently within different ranges of the frequency word, and the
practically useful range is identified. The FA’s output average fre-
quency, along with its maximum and minimum values, is analyt-
ically derived by calculating the number of cycles in the output
signal within a fundamental continuous-time period of it. The re-
lationship between the average and the fundamental output fre-
quencies is also established, indicating the potential frequencies
and density of output spurious frequency components. Part II of
the paper characterizes the timing structure of the output signal,
providing analytical expressions of the pulses’ locations, analyt-
ical strict bounds of the timing irregularities, and exact analyt-
ical expressions of several standard jitter metrics. Spectral prop-
erties of the output waveform are presented, including the domi-
nance of the frequency component at the average frequency, and
analytical expressions of the dc value and average power of the
output signal are derived. The FA has been implemented in a Xilinx
Spartan-3E field-programmable gate array, and spectral measure-
ments are presented, confirming the theoretical results. Extensive
MATLAB simulation has also been used to generate numerous ex-
amples illustrating the developed theory.

Index Terms—Clock generation, digital-to-frequency converter
(DFC), direct digital period synthesis, direct digital synthesis
(DDS), flying adder (FA), frequency synthesis, jitter, phase accu-
mulator, phase synthesis, spurs, truncation.

I. INTRODUCTION

F REQUENCY synthesis is a critical part in a very wide
range of modern electronic systems. A large number of

frequency synthesis architectures are available in the literature,
addressing the often contradictory requirements of the broad
spectrum of applications [1]–[6].
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Fig. 1. FA (shown here with� � �, i.e., � input phases).

The flying-adder (FA) frequency synthesizer [7], [8], which
is also called direct digital period synthesizer (DDPS) [9], or a
digital-to-frequency converter (DFC) [10], is an architecture for
generating almost-periodic digital signals of a desired average
frequency [11], based on a frequency reference clock. The FA is
shown in abstract form in Fig. 1, driven by a family of uniformly
phase-shifted copies of a periodic square wave that can be gen-
erated by a ring oscillator, for example, as shown in Fig. 2.

Structures similar to FA, involving a phase-switching
prescaler and a digital phase accumulator, have been used in
the past [1]–[3], [12]–[18]. However, the FA appeared as an
independent frequency synthesis circuit first1 in [7] and was
a patented invention in [8]. A long list of related publications
followed, including [9]–[11] and [19]–[33].

The FA architecture results in simple compact fully digital
implementations offering design convenience and good period
resolution. These properties have made FA a successful circuit
block in several commercial integrated circuit products [25].

Although the FA has the aforementioned advantages (at least
as a digital period synthesizer) it also suffers from highly spu-
rious output content (for most of the frequency words) due to
phase truncation. Work has been done to estimate the output

1To the best of the author’s knowledge.
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Fig. 2. � input phases to the FA, typically generated by a ring oscillator. It is
� � ��� � ���� �� (shown here with � � �).

spurious content [21], [23], [26]. In some sense, the mecha-
nism generating the spurs in the FA is similar to that gener-
ating the spurs in direct digital synthesis (DDS), which has ex-
tensively been studied in [12], [14], [15], [34]–[44], and other
publications.

There is, however, a significant structural difference between
the abstract DDS and FA architectures. In DDS, the phase accu-
mulator is updated at the (fixed) reference clock rate in contrast
to FA, which has a feedback path updating its register at a vari-
able rate (for most values of the frequency word).

This work is a rigorous mathematical theory of operation of
the FA frequency synthesizers. It responds to the request in [10]
and [11] for a rigorous analysis of the FA. The paper consists
of two parts [45]. The present paper (Part I) presents a detailed
mathematical model of the FA, capturing the relationships be-
tween its signals and parameters.

The fundamental discrete-time periods of the FA’s signals
are mathematically derived using the rising edges of the multi-
plexer’s (MUX’s) output signal as our discrete-time reference
(see Fig. 1). The fundamental discrete-time periods are con-
verted into their corresponding fundamental continuous-time
periods by analytically deriving the time intervals between
consecutive rising edges of the MUX’s output signal .
Knowing the fundamental periods, and not only any periods
(multiples of the fundamental ones), is important because
the spectra of the signals are composed of harmonics of the
fundamental frequencies.

Note that the spectra of internal signals are also of concern
because they can leak to the output of the synthesizer through
direct parasitic coupling or through the power supply network.
Such signal leakage is shown in the spectrum of the field-pro-
grammable gate array FA implementation presented in Part II.

Using the FA’s output fundamental continuous-time period
and by counting the output pulses within it, the output average
frequency is analytically derived. Conditions are presented
under which the output average frequency is monotonically
related to the frequency word.

In Part I, Section II illustrates the behavior of the FA, captures
it in equations, and introduces the notation used throughout this
two-part paper. Section III derives the discrete-time periods of

the signals in the FA. Section IV converts the discrete-time pe-
riods of the FA signals into their corresponding continuous-time
(real-time) periods. The average frequency of the FA and its har-
monic index are analytically derived in Section V.

Part II of the paper is devoted to the timing and spectral prop-
erties of the FA’s output signal.

II. OPERATION, MODELING, AND NOTATION OF THE FA

Consider the FA2 in Fig. 1 that follows the architectures in-
troduced in [7] and discussed in [11].

A family of periodic, square-wave, 50% duty-cycle sig-
nals3 of the same frequency and relative phase offsets that
form an arithmetic progression of step rad, as shown
in Fig. 2(a) for , are fed into the -to-1 MUX in Fig. 1.

The period of the clock signals is , and the
phase step corresponds to time delay that is equal to ,
as shown in Fig. 2. The phase ensemble can be generated by a
ring oscillator, as shown in Fig. 2(b).

The MUX is controlled by the -bit word , which selects
the one of the input phases that propagates to the output of
the MUX forming signal .

The nonnegative integer variable counts the rising edges
of . is our discrete-time reference; specifically, for every

, the discrete-time (period) corresponds to the
(real) continuous-time interval between the th and rising
edges of . As shown in Section IV-A, does not correspond
linearly to (real) continuous-time .

The rising edges of trigger the -bit register, as shown in
Fig. 1, updating its value from to .

The register’s value is truncated by keeping the most
significant bits (MSB). This defines the variable , which con-
trols the MUX and can be expressed as .

The D-flip-flop (D-FF) is essentially a (frequency) divider by
2, i.e., it produces an output clock cycle for every two consec-
utive rising edges (or spikes—considered as pairs of rising and
falling edges) of . Without loss of generality, we assume that
the initial value of the register, at , is and that of
the D-FF is .

The following three examples illustrate major points of the
operation of FA, which are summarized in the corresponding
remarks at the end of the examples.

Example 2.1: The operation of the FA in Fig. 1 is illustrated
in Fig. 3(a)–(g) for the case of , , and frequency
word . Fig. 3(a)–(g) is the result of MATLAB simulation
of the FA structure in Fig. 1.

The axis is the (real) continuous time in multiples of . The
four input phases , , 1, 2, 3, are shown in Fig. 3(a). The
selection of the input phase that is propagated to the output,
i.e., , is done by the MUX according the value of

. The time intervals that each of the phases , , 1, 2, 3,
is selected are indicated with thick line segments in Fig. 3(a).

Fig. 3(b)–(d) shows the continuous-time waveforms4

of the discrete-time sequences , , and ,

2For presentation purposes, � , � � �, input phases are used.
3� ��� � ���� �	
���
���� �� ����� ����, � � �	 �	 
 
 
 	 � � �.
4The rising edges counter 
 is a function of continuous-time �, and thus, the

sequences �� �, �� �, and �
 � can be considered as the functions of contin-
uous time, i.e., � , � , and 
 , respectively.
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Fig. 3. FA, � � �, � � �, � � �.

where the nonnegative integer sequence is defined as
. It is shown later in the paper that

the continuous time between two consecutive rising edges of
is equal to if ; otherwise, it is equal to .

The set of parameters , , and used in
this example results in signal , as shown in Fig. 3(e), that is
only composed of spikes (in contrast to the cases of Figs. 4 and
5, where contains pulses, in addition or exclusively).

By its definition, the discrete-time , as shown in Fig. 3(f),
results from counting the rising edges of . “All action” in the
FA takes place at the rising edges of , and the discrete time has
value between the th and rising edges of signal .

The D-FF in the FA counts the spikes (or rising edges) in
modulo 2 (frequency division by 2), resulting in the output

signal shown in Fig. 3(g).
Remark: Note that, for discrete-time , if and only if

the th rising edge of signal results in a change of value from
to . Such a change results in a change of the selected

phase and a rising edge appearing seconds later. For
example, in Fig. 3(e), the second rising edge (here it is just a
spike) of appears at ; since and , we have

; indeed, the third rising edge appears at .
Example 2.2: Fig. 4 captures the operation of the FA when

, , and the frequency word is .
As in the previous example, the four input phases , ,

1, 2, 3, are shown in Fig. 4(a), and the intervals within which
each of them is selected by the MUX are shown in thick line
segments.

The important difference w.r.t. the case of Fig. 3 is that, in
Fig. 4(c), there are consecutive discrete-time values for which

the value of the sequence does not change,5 e.g., for
[see Fig. 4(f)], . Similarly, for ,

.
For values of such that , both the th and

rising edges are due to the (same) input phase .
Therefore, the rising edge appears seconds
after the th one.

Observe this case for in Fig. 4. This explains why
the discrete-time periods are (seconds)
long. Here, such (full-cycle) discrete-time intervals are isolated
because , which implies that, after two rising edges
of , the value of increases by , and thus,
changes. Moreover, during every such discrete-time period ,
signal contains a whole cycle of , as shown in Fig. 4(e),
instead of just a spike. Typically, this results in an “irregular”
duty cycle of output signal .

Remark: Since , it is if
and only if , and based on the previous discussion,
for every such that , the th discrete-time interval is

seconds long. Such (full-cycle) intervals may be repeated
if because, in some instances, three or more
consecutive edges of are needed to change the value of .

Finally, the time sequences , , and ,
, as shown between Fig. 4(f) and (g), correspond (by

definition) to the rising and falling edges of the output signal
and, therefore, to the even- and odd-number rising edges of .
Example 2.3: Fig. 5 captures the operation of the FA when

, , and the frequency word is .

5Although � increases modulo � .
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Fig. 4. FA, � � �, � � �, � � �.

Again, the four input phases , , 1, 2, 3, are shown in
Fig. 5(a), and the intervals within which each of them is selected
by the MUX are shown in thick line segments.

Here as well, we see consecutive discrete-time values for
which the sequence has the same value, e.g., for , 2,
3, 4 [see Fig. 5(f)], it is . (Compare this
with Fig. 4 of Example 2.2.)

Remark: Here, we have 3.75 consecutive full-cycle periods
before any change in [see Fig. 5(a)]. Again, observe that

zero values of correspond to discrete-time intervals that are
full-cycle long, i.e., seconds.

A. Notation, Definitions, and Basic Relationships

This section lists the definitions of all variables and parame-
ters used throughout this work, along with some of their basic
relationships. In addition, the term fundamental period is clari-
fied in Section II-A-3.

1) Parameters and Variables: With regard to the following
definitions, please refer to Figs. 1–4.

• : The size of FA’s register (bits).
• : The state of the FA. It is the -bit value of the reg-

ister during the th discrete-time interval (see below). We
refer to the sequence , , as the state se-
quence. It is .

• : The number of bits controlling the MUX, which selects
one of the input phases. It is .

• : The truncated state. It is formed by the MSB (trunca-
tion) of . We refer to the sequence , ,

as the truncated state sequence. It is
.

• : The frequency word that is fed to the adder. It is -bit
long, and thus, . The case is
trivial and is not considered.

• , : The input phases, which are
a family of periodic, square-wave, 50% duty-cycle
(clock) signals of the same frequency and
relative phase offsets that form an arithmetic progression
with step of rad. The phase step corresponds to
time delay that is equal to .

• : The frequency of the input phases.
• : The period of the input phases, .
• : The relative time delay between consecutive input

phases , . It is .
• : The output signal of the MUX. It coincides with the

input phase during the discrete-time interval .
• : The discrete-time index counts the rising

edges6 of signal at the output of the MUX. Index
is our discrete-time reference and can be defined as the
function of continuous-time number of rising edges
in signal within the continuous-time interval .

• th discrete-time interval: The (continuous) time interval
between the th and rising edges of . It corre-
sponds to the value of discrete-time .

• : The difference sequence, which is defined using the
truncated state sequence, . As

6Spikes in ����, as in Figs. 3(e) and 4(e), are considered to be pairs of rising
and falling edges.
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Fig. 5. FA, � � �, � � �, � � ��.

mentioned in Example 2.2, if , then the continuous-
time interval between the th and rising edges of
is seconds long.

• : The modified difference sequence, which is defined as
if
otherwise.

The (real) time interval between the th and rising
edges of is seconds long for every
(recall Examples 3–5). This is true for all possible values
of parameters , , and .

• : The output signal of the FA resulting from counting
modulo 2 the rising edges of signal .

• : The fundamental7 discrete-time period of the state and
truncated state sequences and , respectively.

• : The fundamental discrete-time period of the differ-
ence and modified difference sequences and ,
respectively.

• : The fundamental continuous-time period of the state
and truncated state sequences8 and .

• : The fundamental continuous-time period of the se-
quences9 and and signal .

• : The fundamental continuous-time period of the output
signal .

• : The fundamental frequency of the output signal .
It is

• : The average frequency of the output signal , which
is defined as the number of pulses within its fundamental
continuous-time period divided by .

7See Definition 2.1.
8Considered as the functions � and � of continuous-time �.
9Considered as the functions � and � of continuous-time �.

• : The average frequency is the harmonic of the
output signal , i.e., .

• , : The continuous time at which the th rising/falling
edge of appears, . The two sequences
correspond to the odd and the even rising edges (or spikes)
of , respectively.

Remark: All continuous-time intervals and periods we con-
sider start and end at a rising edge (or a spike) of signal .
Note that the assumptions and definitions above imply that every
rising edge and spike of appears at continuous-time

, for some nonnegative integer .
2) Basic Relationships: The state of the FA is updated based

on . Without loss of generality, we
can assume that , and thus, we have

(1)

Since is derived by keeping the first (MSB) out of total
bits of

(2)

which, using Fact 1 in the Appendix, can be written as

(3)

Using Fact 2 in the Appendix, the difference
can be expressed as

(4)
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and, by its definition, it is

if
otherwise

(5)

Remark: Although one may be tempted to remove the
modulo operation from (4), this cannot be done. For example,
for , , , and , it is

Remark: The reader familiar with DDS notices that (1) and
(2) are identical to the ones modeling the accumulator’s value
and the truncated phase value inputted into the sinusoidal lookup
table of DDS. There is, however, a fundamental difference be-
tween the operation of the FA and that of the DDS. In DDS, the
discrete-time index updates based on the clock, i.e., linearly
to the continuous-time . In contrast, the discrete-time index
of FA updates irregularly, in a nonlinear way w.r.t. the contin-
uous-time , for most values of [see Figs. 3(f), 4(f), and 5(f)].

3) Definitions of Periodicity:
Definition 2.1: Let , , be a discrete-time se-

quence. We say that a positive integer is a period of sequence
if, for every , it is . The smallest

period of is called the (discrete-time) fundamental period
of it.

As shown in Lemma 7.1 in the Appendix, the fundamental
period of a sequence divides every other period of it.
This is used in a following section to find the fundamental pe-
riod of the output signal . Also, Definition 2.1 and Lemma 7.1
are extended accordingly for the case that index starts from a
nonzero integer value.

We define the continuous-time fundamental period of a func-
tion accordingly.

III. DISCRETE-TIME PERIODS

The first step in investigating the behavior of the FA synthe-
sizer is to derive the periods and periodic patterns of its sig-
nals. This is done in the discrete-time domain first using the
discrete-time index that counts the rising edges (or spikes) of
signal . Later, the (real) time distances between the rising
edges (or spikes) are derived, and the derivations in this section
are converted into ones on the (real) continuous-time domain.

Every periodic signal in a synthesizer can potentially intro-
duce spurious frequency components at the output. This can di-
rectly be done or through leakage via direct coupling or sup-
porting circuits such as the power supply network.

The periodic behaviors of the state sequences and
and those of the difference sequences and are studied.
Throughout this section, we assume that the frequency word
is restricted within .

A. Fundamental Discrete-Time Period of the State Sequence
and the Reachable State Set

The state sequence of the FA generates all other signals.
The period and the reachable set of it are derived in this section.

Fig. 6. Fundamental discrete-time period � of the state sequences for � � �

and � � �� �� � � � � ��.

Theorem 3.1: The fundamental discrete-time period of the
state sequence is

gcd
(6)

and is an even integer.
Example 3.1: Fig. 6 shows the period of the state sequence

when and the frequency word ranges from 1 to
15. The graph is symmetric w.r.t. the center , and the
maximum period is attained if and only if is odd.

Proof of Theorem 3.1: Since if and only if
from Fact 2 in the Appendix, the funda-

mental period of the state sequence ,
, is the smallest positive integer solution of the

Diophantine equation [46]

From the definition of the modulo function, we have that
if and only if there exists an integer such

that , or equivalently, after dividing by gcd

gcd gcd
(7)

Note that both gcd and gcd are inte-
gers, and since they share no common divisor other than 1,
from (7), we get that gcd must divide , i.e.,

gcd , for some integer . The latter is a
solution of for every integer , and
gives the smallest positive one.

Finally, since , it must be gcd , and
since has no other divisors than 2, it must be gcd

for some integer , . Therefore,
gcd is even.

Theorem 3.1 has extensions with regard to the initial condi-
tion and the set of values of the state sequence , i.e., the
state reachable set.

Theorem 3.2: The state sequence with nonzero initial condi-
tion , i.e., , , has
fundamental discrete-time period given by (6) as well.

The proof is almost identical to that of Theorem 3.1.
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Corollary 3.1: Within every fundamental discrete-time pe-
riod , the state sequence takes all values in the set

(8)

exactly once, and only them, where integer is defined by
gcd . Moreover, the truncated state sequence takes
all values in the set

(9)

at least once.
Proof: Let integer be defined by gcd .

Then, and gcd for some positive odd
integer . Therefore, from Theorem 3.1, the sequence

, , has fundamental period
. Moreover, , and thus, the sequence
takes all values in exactly once,

within every fundamental period of it. Equality

gives , which, along with the fact that ,
conclude the proof of the first part. Equation (9) is an immediate
consequence of (8).

The extension of Corollary 3.1 in the case of nonzero initial
condition is straightforward. Similar classification of the reach-
able set of states of has been used to derive the spectrum
of DDS [41], [42], [44].

Example 3.2: Consider the case in Fig. 5 with , ,
and . As shown in Fig. 5(b), the state sequence takes all
values from 0 to 15, and the truncated sequence in Fig. 5(c) takes
all values from 0 to 3, confirming Corollary 3.1.

In contrast, if , , and , then , and the
state reachable set is . The truncated sequence
takes all values in .

B. Fundamental Discrete-Time Period of the Truncated State
Sequence

The state sequence having fundamental discrete-time
period directly implies that the truncated sequence is
also -periodic. However, this does not mean that is also the
fundamental period of , i.e., it may have a shorter one. The
following theorem resolves this question.

Note that, if , then for all , and
thus, the above question has a trivial answer.

Thus, in this section, we assume that .
Theorem 3.3: The fundamental period of the truncated state

sequence is equal to that of the state sequence given
by (6).

We use the following lemma to prove the theorem.
Lemma 3.1: If is a positive integer such that

, then there exists a positive integer for
which .

Proof: Without loss of generality, we assume that .
If , then we can choose . Now, we sup-
pose that , and we show that the positive integer10

10By definition, the ceiling of a real number �, i.e., ���, is the smallest integer
� such that � � �.

has the desirable property. Note that, by the def-
inition of the ceiling function, there exists such that

and . Multiplying the equality by gives
, and thus,

because of and our assump-
tion that . Moreover, since we have assumed that

, we conclude that , which implies
that .

Proof of Theorem 3.3: Suppose that the truncated state
sequence has fundamental period , then since

, , and therefore, for all positive integers
. Suppose now that , then by Lemma

3.1, there exists a positive integer for which
, and thus, it is , which is a con-

tradiction. Therefore, it must be , and thus,
is also a period11 of . Since is the fundamental period

of , Lemma 7.1 in the Appendix implies that for
some positive integer , which leads to a contradiction because
of our assumption that .

The statement of Theorem 3.3 is valid for nonzero initial con-
dition as well. The proof is similar to that of Theorem
3.3.

Example 3.3: The result of Theorem 3.3 is confirmed by the
plots of and in Figs. 3–5. In all of them, it is

(attention should be paid in extracting the periods w.r.t. the
values of discrete-time in parts (f) and not the continuous-time
values of -axis).

Remark: One can observe the similarity between the expres-
sions given in Theorems 3.1–3.3 and those describing the opera-
tion of the DDS [38]. Note, however, that there is a fundamental
qualitative difference between the FA and the DDS. Here, the
discrete-time periods do not correspond to continuous-time ones
in an obvious way as they do in the case of DDS. In the FA, the
continuous-time it takes for index to increase by 1, i.e., the
time between any two consecutive rising edges of , depends
on sequence , which is in contrast to DDS, where the register
is updated at the fixed clock rate.

C. Fundamental Discrete-Time Periods of the Difference
Sequences and

In this section, the period of the difference and modified dif-
ference sequences, i.e., and , respectively, is derived,
and important periodicity properties are extracted.

Since the output signal of the FA, i.e., , results from
counting modulo 2 the rising edges of in the D-FF, the
behavior of the difference sequences, particularly that of ,
is critical in understanding the properties of .

Theorem 3.4 shows that the fundamental period of the dif-
ference sequences is usually much smaller than that of the state
sequences. Note that a smaller fundamental period of the output
signal is in most cases desirable since it results in less dense
spurious frequency components and spurs adjacent to the carrier
that are located further away from it.

Notation: The terms of all the FA’s sequences depend on the
frequency word . The same is true for the fundamental periods
of the sequences. Depending on the context, we may use or drop
this dependence for notational convenience.

11Note that, because of (1), � � � implies that � � � for all non-
negative integers �, and thus, � is a period of �� � by Definition 2.1.
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Fig. 7. Fundamental discrete-time period � of the difference sequences
�� � and �� � for � � �, � � �, and � � �� �� � � � � ��.

Theorem 3.4: The fundamental discrete-time period of the
difference sequence and the modified difference sequence

is

gcd
(10)

Remark: Note that means that the sequences
and are constant (for all ). Note also that,
if , then from Fact 2 in the Appendix ,
for all , i.e., constant, which is in agreement with

derived from (10). Therefore, in the proof of Theorem
3.4, we consider only the case of .

Example 3.4: Fig. 7 shows the period of the difference se-
quences and when , , and the frequency
word ranges from 1 to 15. The graph is symmetric w.r.t. the
center , and the maximum period is attained if and
only if is odd.

To prove Theorem 3.4, we introduce the following technical
lemma.

Lemma 3.2: Let gcd , then we have the fol-
lowing:

A) If , then there exist a positive integer
and an integer such that

(11)

B) For all values of , there exist a positive integer and an
integer such that

(12)

Proof: A) Note first that this case is feasible only when
. Then, implies that integer

gcd divides both and , and thus, it
divides the sum . Therefore, there exist integers

and satisfying the Diophantine equation [46]

(13)

Moreover, (13) is also satisfied if we replace by
and by , for every integer . For sufficiently large , it
is , and thus, and
satisfy (11), as well as .

B) Integer is positive and satisfies (12) for
.

Proof of Theorem 3.4: First note that, by its definition (5),
the modified difference sequence has the same funda-

mental discrete-time period with the difference sequence .
Recall now from (4) that (notation: here we consider as
a function of , as well as )

Using (10) as the definition of , we have that

gcd
(14)

which is an integer number, since gcd divides
, and thus

gcd

as well as

gcd

Subtracting the last equation from the preceding equation and
taking their modulo gives

(15)

which is valid for all . Therefore, sequence is
periodic with period . Now, we prove that is the fundamental
period of .

Note first that, for every integer , it is (notation: here we
consider as a function of , as well as )

and thus

(16)

Equation (16) is valid for all and all integers .
Since , the right-hand side of (16)
is the bijection , and thus, se-
quences and have the same
fundamental period for all values of . Therefore, we only need
to examine the case

(17)

and remember to replace by in the final expres-
sion of the fundamental period.12 For the rest of the proof, we
assume that (17) is true.

From (17), we have that gcd and
; thus, is an integer number.

Suppose that sequence has a fundamental period and
. Then, from Lemma 7.1 in the Appendix, we know that

must divide , and since is a power of 2, it is
for some nonnegative integer . Therefore, is an integer

12Note, however, that gcd����� � � 	 � gcd��� � 	, and thus,
both � and � 
�� � result in the same value of � in (10).
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multiple of , and thus, is also a period of , i.e.,
, for all .

Now, note that because , the fraction
gcd is an odd integer, and thus, using (14),

there is a nonnegative integer such that

gcd
(18)

Note that

which using (18) implies that

(19)
Now, based on (17), we consider the two possible cases.

1) . Then, from Lemma 3.2(A), there exist
a positive integer and an integer for which (11) is true.
Using these values of and and substituting (11) into
(19), we get

(20)

Since , it is
and , and thus, . Similarly,
for the same values of and , and by substituting (11) into

(21)

we get

Again, implies that
and , and thus,

and ,
leading to . Therefore

This contradicts the conclusion that is a period of se-
quence , resulting from the assumption that the fun-
damental period of is .

2) . Then, from Lemma 3.2(B), there
exist a positive integer and an integer for which (12) is
true. Using these values of and , and substituting (12)
into (19), we get

which, along with the assumption on , gives .
In addition, substituting (12) into (21) gives

and since , we get . Therefore, we have
that . Again, this contradicts the
conclusion that is a period of sequence , resulting
from the assumption that the fundamental period of
is .

Theorem 3.4 has the following simple but important corollary,
whose proof is omitted.

Corollary 3.2: If the fundamental discrete-time period is
, then is even.

IV. CONTINUOUS-TIME PERIODS

Here, we use the derivations in Section III to calculate the
fundamental continuous-time periods of FA’s signals. We start
with the difference sequence since it is the critical link
between the discrete-time and the continuous-time behavior of
the FA. Then, we calculate the periods of the state sequences.
As before, we assume that .

A. Fundamental Continuous-Time Periods of the Output
Signal , the Intermediate Signal , and the Difference
Sequences and

Important properties of the difference sequence and the
modified difference sequence have been captured in the
remarks of the three Examples 2.1–2.3 in Section II. We sum-
marize them in the following lemma without proof.

Lemma 4.1:
A) It is if and only if the th rising edge of signal

results in a change of value from to . Such a
change of value corresponds to a change of the selected
phase and results in a rising edge seconds after
the th one.

B) For every such that , the time interval between
the th and rising edges of signal is
seconds long. Such full-cycle time intervals may be
repeated, for consecutive values of , for certain values of
the frequency word .

C) From parts (A) and (B) and the definition of , we have
that the length of the continuous-time interval between the

th and the rising edges (we also refer to it as the th
discrete-time interval) of signal is seconds long, for
every .

The above lemma leads to the following central result for the
operation of FA.

Theorem 4.1: If , then the difference sequences
and and their corresponding continuous-time waveforms
are constant. If , then their fundamental continuous-time
period is

(22)

Also, the fundamental continuous-time period of signal is
given by (22), for all values of .

Proof: The proof results from combining Theorem 3.4 with
Lemma 4.1 and summing the continuous-time lengths of the dis-
crete-time intervals within a fundamental discrete-time period.

Finally, we have the following corollary.
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Fig. 8. Fundamental continuous-time period � in multiples of � for � � �,
� � �, and � � �� �� � � � � ��.

Corollary 4.1: The fundamental continuous-time period
of the output signal is

if
if (23)

Proof: The output signal can be expressed as modulo-2
counting of the rising edges in . If , then Corollary 3.2
guarantees that is an even number. Therefore, if has value

immediately after the th rising edge of , it will also
have the same value immediately after the rising edge of
, and since is the fundamental period of and , it will

also be that of . If , the rising edges of form a periodic
sequence of fundamental continuous-time period . Therefore,
the fundamental period of must be twice that because of the
divide-by-2 action of the D-FF.

Our goal now is to calculate the value of in closed form.
The trick here is to count the number of times (values of )
within a fundamental discrete-time period for which .

Theorem 4.2: The fundamental continuous-time period in
Theorem 4.1 can be expressed as

gcd
if

gcd
if

(24)

Remark: The special case means that difference
sequences and are constant.

Example 4.1: The fundamental continuous-time period is
shown in Fig. 8 as a function of when and .

Proof of Theorem 4.2: A) Consider the case
first. Then, , and thus, from Fact 3 in the

Appendix

which from (4) implies that

(25)

Moreover

(26)

Consider now the discrete-time interval of
length given by (10), corresponding to a fundamental dis-
crete-time period of . Because of (26), the cardinality of the
set

(27)

is equal to . Using (10) and (25), and noting
that gcd is an integer

gcd
(28)

Therefore, the cardinality of the set

(29)

is equal to

gcd
(30)

Using (5), we get for every and
for every . Therefore

gcd

Using Theorem 4.1, we conclude the first part of the proof.
B1) Now, consider the case . Then,

and Fact 4 in the Appendix imply that

and thus, from (4)

(31)

Moreover

(32)

From (32), we get for all , which, along
with (10) and (31), imply that

gcd

Using Theorem 4.1, we conclude this part of the proof.
B2) The last case is , which implies

that , which, along with Fact 4 in the
Appendix, gives
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Fig. 9. Fundamental continuous-time period � in multiples of � for � � �,
� � �, and � � �� �� � � � � ��.

Again, from the definition (4) of , it is

if

if

Therefore, from the definition of , we get

for all , which, as in case (B1), implies that

gcd

and, with the use of Theorem 4.1, concludes the proof.
An immediate consequence of the proof of Theorem 4.2 is

shown in the following corollary.
Corollary 4.2: If , then for all

(33)

The combination of Corollary 4.1 and Theorem 4.2 results in
the following explicit expressions for the fundamental contin-
uous-time period of the output signal .

Corollary 4.3: The fundamental continuous-time period of
the output signal is

gcd
if

if and

gcd
if and

(34)
Proof: Note that implies that and

that if and only if gcd . Then, use
Corollary 4.1 and Theorem 4.2.

Example 4.2: The fundamental continuous-time period is
shown in Fig. 9 as a function of when and . It
should be compared with Fig. 8 with reference to the values of

in Fig. 7.

Fig. 10. Fundamental continuous-time period� in multiples of� for� � �,
� � �, and � � �� �� � � � � ��.

B. Fundamental Continuous-Time Period of the State
Sequences and

The periods of and are important to know be-
cause the two signals can introduce spurs at the output of the FA
through parasitic coupling. As shown below, their period may
be significantly larger than that of the output , and thus, any
leakage of them to the output may result in much denser spu-
rious spectral components than ideally expected. From Theorem
3.3, we know that the two sequences have the same fundamental
continuous-time period.

Lemma 4.2: The fundamental continuous-time period of the
state and truncated state sequences, i.e., and , respec-
tively, is

gcd
if

gcd
if

(35)
Proof: The fundamental discrete-time period of

and is necessarily a period of and as well. Since
is the fundamental discrete-time period of and ,

Lemma 7.1 in the Appendix implies that is an integer.
Therefore, the length of a fundamental continuous-time period
of and is equal to the total length of funda-
mental continuous-time periods of , i.e.,

Combining (6) and (10) gives

gcd
gcd

which leads to (35) using (24).
Example 4.3: The fundamental continuous-time period

is shown in Fig. 10 as a function of when and .
It should be compared with Fig. 9.

V. AVERAGE FREQUENCY OF THE OUTPUT SIGNAL

The average frequency of the output signal is defined as
the number of cycles of within a fundamental continuous-time
period of it divided by [10]. As it is shown in [45], under
certain conditions on the parameters , , and , the output
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Fig. 11. Average frequency (normalized w.r.t. � ) when � � �,� � �, and
� � �� �� � � � � ��.

signal is regular enough to resemble a (ideal) periodic square
wave of period in both the time and frequency domains.

Corollary 5.1: The average frequency of the output signal
is13

if

if

if

(36)

Proof: If , then all the time (see
Fig. 1), and since the D-FF divides the frequency by 2, the fre-
quency of is . Now, assume that , and note first
that signal has rising edges within a period , as given by
(24). A cycle of corresponds to two rising edges of ; thus,
we have the following: 1) If , there is exactly one cycle
every seconds (note that, in this case, from (23), we have

); and 2) if , there are exactly cycles every
seconds (here, it is , and is even from Corollary

3.2). Therefore, in both cases, it is . Using (10)
and (24), and , we derive (36).

Note also that, since the rising-edge-triggered D-FF is a fre-
quency divider-by-2, the average frequency of signal is ex-
actly (counting spikes as pulses).

Example 5.1: The average frequency is shown in Fig. 11 as
a function of when and .

The following corollary is a direct consequence of Corollary
5.1 and is stated without proof.

Corollary 5.2: A) The minimum and maximum values of the
average output frequency are

(37)

and

(38)

which are achieved for and , respectively. B)
For , the output signal is the 50% duty-cycle ideal
square waveform. C) When , the minimum

13We make the exception to consider the case � � � here.

frequency is , the maximum is given by (38),
and the frequency step is

(39)

D) For every frequency word such that ,
the frequency word satisfies

, and both frequency words result in the same value of
.

Note that part (D) of Corollary 5.2, along with the discussion
in Section II about the irregularity of when ,
indicates that, for most applications, we should prefer using fre-
quency words in the range , and that this
choice provides all possible values of that the FA can gen-
erate.14

Based on the discussion in the proof of Corollary 5.1 and
using the result of Corollary 4.1, we can establish Corollary 5.3.
Recall that the fundamental period of is , and therefore,
the fundamental frequency of is

(40)

Corollary 5.3: The average frequency of the output signal
is equal to the harmonic of , i.e.,

(41)

where

if
if

(42)

Equivalently: There are cycles of within every funda-
mental continuous-time period of it.

Typically, one expects to observe spectral components (spurs)
at the output of the FA at the harmonics , ,
of . Since is the harmonic, the spurs closest to
are . In particular, in RF applications, these spurs are
unwanted, and one may want to remove them by filtering. The
smaller the relative difference

is, the more difficult this task is.

VI. CONCLUSION

The FA frequency synthesizer with -bit register, input
clock phases, and frequency word has been mathematically
modeled.

The fundamental continuous-time period of the output
signal has been derived in closed form and shown to be a non-
monotonic function of . The fundamental continuous-time pe-
riod of the register’s value (state) and the truncated reg-
ister’s value driving the MUX has also been derived in closed
form and found to be significantly larger than (up to
times) for most values of .

14The FA with � � � � � may be useful as a pattern generator rather
than a frequency generator.
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The average output frequency has been derived in closed
form. Its minimum value is and its maximum
value is . For frequency word , the
average output frequency is and, there-
fore, monotonically decreasing with . For most values of the
frequency word , the output waveform is very irreg-
ular, and the average output frequency is an increasing function
of .

The simplicity and fully digital architecture of the FA, along
with its good output-period resolution and range, makes it a
good candidate for digital circuits applications that are tolerant
to bounded timing irregularities.

Part II of the paper [45] characterizes the timing structure of
the output waveform and presents analytical bounds of its timing
irregularities and exact analytical expressions of several stan-
dard jitter metrics, as well as spectral properties of the output,
including the dominance of the frequency component at the av-
erage frequency.

APPENDIX

The following five facts can be found in [47] and other books
on discrete mathematics.

• Fact 1: Let , , and be nonnegative integers and ,
then .

• Fact 2: Let , , and be integers and , then we have
that .

• Fact 3: If , then .
• Fact 4: Let and be two nonnegative integers, then

implies that .
• Fact 5: If , then .
Lemma 7.1: The fundamental period of a sequence

divides every other period of it.
Proof: Let the sequence have fundamental period

and another period . Let gcd . From [46], we
know that there exist integers and satisfying the Diophantine
equation . Since , at least one of
and is nonnegative. Let us assume that , then for
every , we have that and

, which imply that (note that all indexes
are nonnegative). The same is true if we assume that .
Therefore, is also a period of , and by its definition, it is

. However, is the smallest period of , and thus,
. By definition of , we also get that divides .
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