
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 3, APRIL 2008 741

Cascaded Diophantine Frequency Synthesis
Paul Peter Sotiriadis, Member, IEEE

Abstract—Cascaded Diophantine Frequency Synthesis1 (CDFS)
is an approach to high-resolution frequency synthesis based on
the mathematical properties of integer numbers and Diophantine
equations. CDFS can be implemented using two or more phase-
locked loops (PLLs) and frequency mixing stages in a cascade
topology. CDFS achieves frequency resolution arbitrarily finer
than that of the constituent PLLs while maintaining their loop
bandwidths and frequency hopping agility. CDFS results in inter-
mediate signals with minimal frequency ranges in all frequency
mixing stages, allowing for improved spectral purity and lower
design complexity compared to the parallel form of its predecessor,
Diophantine Frequency Synthesis (DFS). CDFS architectures are
modularly structured and expandable. The paper introduces
CDFS focusing on the mathematical and algorithmic aspects.

Index Terms—Diophantine equation , Direct Digital Synthesis
(DDS), frequency hopping, frequency synthesis, instrumentation,
navigation systems, number theory, phase-locked loop (PLL),
timing systems, wireless communications.

I. INTRODUCTION

FREQUENCY synthesis is an essential element of modern
electronic systems including wired and wireless communi-

cations, computers, radar, timing and navigation (GPS), scien-
tific instrumentation and many other devices.

Several frequency synthesis architectures have been proposed
and a rich collection can be found in [1]–[5].

In modern frequency synthesizers the output signal is typi-
cally phase-coherent to the input one and so a frequency synthe-
sizer is essentially a frequency multiplier (with phase, frequency
or amplitude modulation capabilities if required). It multiplies
the input reference frequency by a factor . In practice, factor

is the ratio of two positive integers, and .
There are many ways of implementing this frequency multi-

plication which give rise to several different classes of frequency
synthesizers. E.g., Integer- phase-locked loops (PLLs) realize
it by direct division, by , and phase-locked multiplication by

, [6]; Fractional- PLLs generate by rational interpolation
between two positive rational numbers [3]; Direct Digital Syn-
thesis (DDS) realizes the multiplication in the phase domain
also by direct division by and multiplication by , [7].

These primal synthesizers are often used as building blocks to
produce multiloop frequency synthesizers with superior perfor-
mance that compose as an algebraic sum of rational numbers,
e.g., in the popular mix-and-divide approach, [1] it is

Manuscript received October 23, 2007; revised December 10, 2007. This
paper was recommended by Guest Editor H. Schmid.

The author is with SOTEKCO LLC, Baltimore, MD 21201 USA (e-mail:
pps@ieee.org).

Digital Object Identifier 10.1109/TCSI.2008.919755

1Patent pending.

The Diophantine Frequency Synthesis (DFS) methodology,
recently introduced in [8], [9], is one such multi loop approach.
DFS is based on Diophantine equations [10] and can be imple-
mented with two or more Integer- PLLs that are driven by
the same reference. The PLLs’ output frequencies are added (or
subtracted) to give the final output of the frequency synthesizer.

In DFS, a rational multiplication factor

with a typically very large numerator and denominator is de-
composed into an algebraic sum of fractions of small positive
integers

using the theory of Diophantine equations [8], [10].
DFS allows for the realization of PLL-based architectures

with both, very fine output frequency resolution, and, high
PLL phase-comparator frequencies, simultaneously. High
phase-comparator frequencies are easier to filter and allow for
large PLL bandwidths and fast frequency hopping of the DFS
synthesizer.

In a sense, DFS distributes the frequency resolution among
the PLLs since the fractional frequency resolution at the output
of the synthesizer equals to the product of the fractional fre-
quency resolutions of the constituent PLLs.

Cascaded Diophantine Frequency Synthesis (CDFS), in-
troduced in this paper, is a new systematic and mathematical
methodology for developing and programming frequency syn-
thesizer architectures based on Diophantine equations, offering
all the advantages of DFS.

In addition, CDFS results in cascaded architectures in which
the intermediate signals involved in the mixing stages have a
minimal frequency range (within the general class of DFS syn-
thesizers), typically half of that resulting from the DFS algo-
rithm [8].

These characteristics of CFDS translate to more relaxed re-
quirements on the frequency planning and design of mixers and
filters as well as improved spurious-free dynamic range (SFDR)
at the output. Moreover, the CFDS leads to modular and directly
expandable circuit implementations with lower complexity than
conventional multiloop architectures.

Finally, these properties give CDFS significant advantages
over previous multiloop architectures using Diophantine equa-
tions that are based on heuristic algorithms and do not control
the frequency ranges of the intermediate signals neither guar-
anty the existence of numerical solutions within a-priori deter-
mined ranges of pre-scaler and feedback dividers [11].

The paper presents the mathematical and algorithmic aspects
of CDFS and is organized as follows: Section II introduces
the notation used throughout the paper. Section III presents a

1549-8328/$25.00 © 2008 IEEE

742 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 3, APRIL 2008

Fig. 1. Basic PLL.

Fig. 2. (a) Simplified schematic of the basic PLL. (b) Mixer.

graphical example of frequency synthesis using properties of
integer numbers. Comments on this basic example extend the
questions to be answered by the general theory in the theory
section. Section IV presents the general high-level CDFS archi-
tecture. Section V lays out the formal mathematical framework
of CDFS. Section VI formulates the mathematical result into a
practical algorithm for programming the CDFS synthesizers.
Section VII discusses certain important parameters in frequency
mixing in CDFS synthesizers and provides related bounds.

II. NOTATION

CDFS, like its predecessor DFS, uses two or more basic PLLs
like the one in Fig. 1.2 Throughout the paper, the prescaler di-
vider, integer , is assumed fixed. The feedback divider, integer

, is the sum of a fixed integer and an integer vari-
able which can take both negative and positive values within
a predefined range. For all possible values of is positive.
The output frequency of the PLL is

Since the paper focuses on the mathematical principles and
algorithms of CDFS and not on the technical details of the indi-
vidual PLLs, Fig. 2(a) is used instead of Fig. 1 for convenience.

The mixing of two signals at frequencies and is denoted
as in Fig. 2(b) where the outcome can be either or

. The context in the paper indicates whether the sum or the
difference is considered.

Note that the term “mixer” here is used to represent the equiv-
alent of the mixing along with pre- and post-filtering in a phys-
ical implementation where all unwanted intermodulation prod-
ucts (including when the desirable output is ,
and vice versa) are appropriately removed.

Mixing of three or more signals has a similar interpretation. In
practice, the order in which these signals are mixed is important
in achieving a clean output spectrum. CDFS helps in doing so
successfully.

III. CDFS: MOTIVATION

CDFS can be illustrated in an intuitive way when it is applied
to frequency synthesis architectures using two or more PLLs.

2“PC” may also be phase-frequency detector or similar block.

Fig. 3. Simple CDFS (DFS) scheme.

We begin with a single PLL, examine its performance limits
and consider the improvements possible with a two-PLL system
leading to a simple, yet revealing two PLL CDFS scheme. The
CDFS is characterized followed by a generalization to the case
of k-PLLs.

A. Inherent Limitations of PLLs

Frequency synthesis using a single PLL, like that in Fig. 1,
implies frequency steps that are equal to the phase-comparator
frequency . The implication is that small frequency
steps (via a large and/or small) necessitate a low phase-
comparator frequency resulting in a narrower loop band-
width and slower frequency hopping in addition to a potential
increase in spurs and noise [1], [2].

CDFS overcomes these constraints, simultaneously allowing
for high phase-comparator frequencies and a very small output
frequency step.

B. Example of A Basic 2-PLL CDFs Scheme

Now we ask the question: is it possible to achieve better res-
olution and/or higher loop bandwidths using two PLLs instead
of one?

Consider the simple architecture in Fig. 3 involving two PLLs
whose output frequencies are added. The prescalers of the PLLs
are 3 and 2 (fixed). The feedback dividers are and

, respectively. Following the notation and assumptions
of Section II we consider and to be fixed; their contribu-
tion to is the fixed frequency part

(1)

The variable parts of the feedback dividers are and . It is
reasonable to impose some bounds on them since this would be
the case in every hardware implementation of the synthesizer.
Let’s assume that they can vary within the ranges

and (2)

respectively, i.e., the range of each feedback divider,
, is twice the size of the corresponding prescaler 3, 2,

respectively.3 Finally, the output frequency is

(3)

3This partially specifies the required frequency range of the voltage-con-
trolled oscillators (VCOs).

SOTIRIADIS: CDFS 743

Fig. 4. Graphical representation of a simple CDFS / DFS scheme. All frequencies are normalized w.r.t. f .

Now let us focus on the variable part of [second sum-
mand in the RHS of (3)] and to simplify things, let us assume 4

that and .
Given the bounds in (2), we can think of the first synthesizer

as producing a set of 7 possible values of , equally spaced
by , corresponding to the points of the top line in Fig. 4
and the second synthesizer (along with the mixer that adds the
frequencies) as shifting this set by 5 possible offsets that are
multiples of its resolution . The end result is that takes
all values indicated on the bottom line of Fig. 4.

Comments: Following the above discussion and observing
Fig. 4 we can point out the following.

1) The set of output frequencies contains the 13 values
corresponding to frequency range

(4)

where here it is and .
2) Within the above output frequency range, the frequency

step is constant and equal to

(5)

i.e., the choice of prescalers results in the much smaller
frequency step, , compared to those of the constituent
PLLs, i.e., and . In a sense, the resolution of

is “distributed” among the two PLLs.
3) If the mixer provided the frequency difference, i.e., if

, properties 1 and 2 would still hold be-
cause the ranges of and are symmetric with respect
to 0.

4) Combining the above and observing Fig. 4 we conclude
that can be expressed in the form

(6)

4In a practical case, it should be �n � 4 and �n � 3 so that for every n and
n satisfying (2) it is �n + n > 0 and �n + n > 0.

where takes, at least, the values . In con-
trast, the output frequencies of the two constituent PLLs
are

and

5) Given the constraints in (2), achieving a particular value
of in (6), for some , may be
possible in more than one ways, e.g., in Fig. 4 we see that

6) Fig. 4 shows that constraints (2) result in the 13 afore-
mentioned values of as well as others extending to

. Note however that the step is not constant within
this extended range—the values
are missing.

7) If instead of 3 and 2, the prescaler dividers where 3 and
6 respectively, one might intuitively expect a smaller fre-
quency step of , however, since

(7)

(8)

and and are integers, the frequency step is not
but rather as before.

We have pointed out the advantages and certain properties of
the scheme in Fig. 3. In Section IV we will expand these results
to address the general case of synthesizers with PLLs.

The concepts we have discussed up to this point are also
shared by the DFS methodology [8], a predecessor of CDFS.
The need for a new theoretical development which led to CDFS
and the advantages of CDFS over DFS are discussed next.

744 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 3, APRIL 2008

Fig. 5. Cascaded 3-PLL DFS scheme.

C. CDFs versus DFs

As it is shown in the following sections, CDFS methodology
results in the same output frequency range and resolution as its
predecessor DFS [8].

The significant advantage of CDFS over DFS becomes clear
when we consider synthesizers with three or more PLLs. For
instance, one more PLL can be added to the architecture in Fig. 3
resulting in the synthesizer shown in Fig. 5.

For the 3-PLL DFS scheme in Fig. 5, the DFS algorithm in [8]
results in frequency ranges for and equal to

, respectively, but provides no information on the
range of their sum (or difference) i.e., intermediate frequency

, even though the range of is . So,
in general one has to assume the widest range for , i.e.,

(9)

In contrast, the CDFS algorithm introduced in Section VI
along with the theory in Section V guarantee that takes values
within the range for every possible value of

in . Therefore, CDFS results in a
range of the intermediate frequency that has half the length
of (9).

Since in both DFS and CDFS the output frequency range and
step are the same, having intermediate signals, like , with the
minimum possible frequency range is a significant advantage
because it helps to achieve a clean output spectrum, simpler
mixing stages, and easier frequency planning.

IV. GENERAL CDFS SCHEME

Fig. 6 shows the general abstract high-level -PLL DFS ar-
chitecture [8]. The PLL parameters are integers and ,
where and are fixed and such that and is a
variable taking values within the range , for all

.
All PLLs are driven by the same reference signal and their

output frequencies are added or subtracted (in any chosen but
fixed pattern) resulting in the output frequency of the synthesizer

(10)

where .

Fig. 6. Abstract high-level k-PLL DFS scheme.

The DFS methodology is valid for all combinations of signs
of s in (10) [8] and the same is true for CDFS as it is
explained in the following sections. However, for presentation
convenience it is easier to consider the case were all frequencies
are added. Moreover, it is helpful to separate the variable from
the fixed frequency component. With these in mind, we write

(11)

where is fixed and equal to

(12)

Fig. 6 captures the desirable mathematical relationship be-
tween and without involving any information of the
mixing process.

A major factor of the synthesizer’s spectral quality is the
order in which the PLL output signals are mixed, i.e., the order
in which they are added (or some of them are subtracted).

One way to realize these frequency additions (or subtractions)
is to implement them in a cascade as shown in Fig. 7. Here the
output frequency is given by (10), or for simplicity, by (11)
as well.

This abstract and general architecture in Fig. 7 along with its
associated theory and programming algorithm presented in the
following sections, is the CDFS.

To optimize the individual mixing stages in CDFS we need
to derive the values and ranges of the intermediate frequencies

(13)

for where is fixed and equal to

(14)

SOTIRIADIS: CDFS 745

Fig. 7. k-PLL CDFS scheme.

For convenience we have defined as well. Again,
without any loss of generality, it is more convenient to use ex-
pressions (13) and (14) instead of the more general

(15)

It is shown that the mathematical development in the fol-
lowing sections is valid for any combination of additions and
subtractions. Change of the values of s influences the central
values of the intermediate and output frequencies but not their
ranges (and steps).

Finally, mixing is an important part in any physical realization
of CDFS and certain aspects of it are discussed in Section VII.
Moreover, since CDFS is a special class of multiloop type archi-
tectures, proper signal filtering and isolation between the dif-
ferent stages is required to avoid parasitic coupling between
the constituent PLLs and/or mixing stages that may degrade
the quality of the output signal. To further avoid parasitic cou-
pling between the PLLs it is preferable that the ratios

, are sufficiently far from any ratio of
small integers.

V. MATHEMATICAL PRINCIPLES OF CDFS

The discussion in the previous sections indicated that DFS
and CDFS frequency synthesizers inherit their properties from
those of the sum

Also, in CDFS architectures the partial sums

where, are involved in the frequency mixing
stages and so their behavior influences the spectral quality of
the output signal. The mathematical properties of these sums
are studied in the following sections.

A. Main Theorem

The following Theorem is of fundamental importance for the
CDFS methodology.

Theorem 5.1: Let be pairwise relatively
prime positive integers (i.e., no pair of them has common
divider other than), then the statements A) and B) below
are true.

A) For every integer with we can
find integers with , for all

, satisfying Diophantine equation

(16)

and inequalities (17) for

(17)

B) There exist no constant with the property that for
every with we can find a solution of
(16) satisfying for all .

Comments: The following comments indicate the practical
aspects of Theorem 5.1.

1) By appropriately adjusting the values of
, and therefore adjusting the frequencies of

the PLLs in Fig. 7, the output frequency, , given by
expression (11), can take all values within the range

(18)

(including) with uniform frequency step equal to

(19)

Constant is given by (12).
2) The statement of comment 1 above can be realized using

only values of s that satisfy

(20)

This is very important in practice because it specifies the
ranges of the required values of the PLLs’ feedback di-
viders .
Moreover, Part-B of the Theorem implies that the uniform
(with respect to) bounding (20) is optimal, i.e., there is
no general class of solutions satisfying inequalities tighter
than (20) and (17), for all .

3) For every with , the solution of Dio-
phantine equation (16), whose existence is guaranteed by
the Theorem 5.1, is such that the intermediate frequencies

, (see Fig. 7) given by (13), satisfy
the inequalities (inclusion)

(21)

These bounds are important in optimizing frequency
mixing in CDFS scheme.

4) Constrains , in Theorem 5.1
are symmetric with respect to 0. Therefore, Theorem 5.1
would still be valid if we replace by for some of

746 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 3, APRIL 2008

the values of index , i.e., if Diophantine equation (16) and
inequalities (17) were replaced by

and

respectively. Where as before, ,
are arbitrarily chosen but fixed.

Application of this property of Theorem 5.1 to CDFS
scheme in Fig. 7 implies that: If some of the frequen-
cies were subtracted from the general sum
instead of being added, i.e., if we had used expressions
(10) and (15) instead of (11) and (13), respectively, for
a certain combination of ,
then comments 1, 2, and 3 above would still be valid.
Moreover, the expressions of the ranges of

and as well as that of the step of
would be the same as before.

5) Theorem 5.1 guarantees the existence of solution within
the specified bounds (17) and (20) but not the uniqueness
of it. E.g., in Fig. 4 we see that equation

has (at least) two solutions: and
.

6) Theorem 5.1 guarantees the existence of solution within
the bounds (17) and (20) when . How-
ever, one may be able to find a solution satisfying these
bounds for values of such that , e.g.,
in Fig. 4 we have

The problem in general is that although we may be able to
find solutions of (16) satisfying (17) and (20) for a value
of with , for example, we may not be
able to do so for all integers with

. So, even though the total range of , and the range of
, may be larger than that given in Theorem 5.1, the step

size is not guaranteed.
For example, the total range in Fig. 4 is
but the points are missing. Especially for
large , extension of the range beyond

is usually insignificant.

B. Proof of Main Theorem

We define the set of positive integers such
that for

(22)

Note that the main equation, (16), which is repeated here for
convenience

(23)

is equivalent to (24) below, simply by multiplication by the
product

(24)

Therefore, proving the existence of solution of (23) is equiv-
alent to doing so for (24).

Lemma 5.1: Equation (24) has an integer solution
if and only if divides .

Proof: Let be the set of integers. From abstract
Algebra we know that for any pair of integers , it is

. Using induction and noticing that
, we get

Therefore the values of that can be generated by the LHS of
(24) are exactly all integer multiples of .

We also need the following lemma.
Lemma 5.2: The positive integers are pair-

wise relatively prime (i.e., no pair of them has common divider
other than) if and only if

(25)

Proof: Suppose are pairwise rela-
tively prime and . Integer
has at least one prime divider . Since divides it is
also true that divides and because and

is prime, there exists such that divides .
Since are pairwise relatively prime, does not
divide , therefore does not divide which contra-
dicts our assumption.

Suppose are not pairwise rela-
tively prime, i.e., there exist , ,
such that . Then divides all

since has or as a factor. Therefore,
, which is a contradiction.

Corollary 5.1: Diophantine equation (23) has a solution for
every integer if and only if are pairwise rela-
tively prime.

Proof: It follows from Lemmas 5.1 and 5.2, and the equiv-
alence between (23) and (24).

Note that if (23), or equivalently (24), has a solution, then it
has infinitely many solutions. The details of this statement are
given in Theorem 5.2 below (a proof can be found in [10]).

Theorem 5.2: If then there exists
a fixed integer matrix with such that for
every integer the complete set of solutions (row vectors of

’s) of (24) is

(26)

SOTIRIADIS: CDFS 747

Dividing the vectors in the set (26) by , we
get the complete solution set of (23).

The case where is of particular interest. The following
lemma provides the exact form of the solution set (26) when

.
Lemma 5.3: If are pairwise relatively prime

integers, then every solution of (27) is of the form
where s are integers satisfying the equation

(27)

Proof: Multiplying (27) by gives

(28)

By definition of ’s, divides for all . From (28),
also divides the product . Since are pair-
wise relatively prime, and so must divide

. Therefore, for some integers . Re-
placing them into (27) yields .

The above lemma provides the following Corollary that is
central to the programming of cascaded Diophantine synthe-
sizers. Its proof comes directly from the above.

Corollary 5.2: If are pairwise relatively
prime positive integers and is a solution of

(29)

then the general solution of (23) is

(30)

where s are integers satisfying .
Among these infinitely many solutions of (23) we are inter-

ested in the one(s) satisfying inequalities ,
, and (17).

Lemma 5.4: Let be relatively prime positive integers,
then, for every integer , in the range ,
we can find a solution of

(31)

such that for

(32)

Proof: If then , re-
spectively, is an appropriate solution. Now consider the case

. From Corollary 5.1 we know that a
solution of (31) exists, i.e.,

(33)

For set and , then,
.Substituting the last expressions into (33)we get

(34)

By the assumption on and the definitions of s it is

and

which along with (34) and the fact that and are integers,
imply that . Now we set

if
if
if

(35)

and we note that in all cases, is a solution of (31), and
since by the definition of ’s it is , , we
also have that .

Definition 5.1: Let be a pair of relatively prime pos-
itive integers and let be the set

We define the following function:

(36)

based on the procedure in the proof of Lemma 5.4, that con-
verts an arbitrary solution of (33) to a solution ,
given by (35), that satisfies inequalities (32), i.e.,

Note that is a family of functions parameterized
on the pair of relatively prime integers .

Now we use the results above to prove Theorem 5.1 in
Section V-A.

Proof of Theorem 5.1: Let be pairwise rela-
tively prime positive integers. We prove Part-A first, i.e., that for
every integer satisfying we can find inte-
gers with , satisfying
(37) and (38) below for all

(37)

(38)

Lemma 5.4 proves this for . We use induction and
assume the statement above is true for to prove it is
also true for .

Consider equation (39) where is an integer such that

(39)

748 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 3, APRIL 2008

Since and are pairwise relatively prime,
from Lemma 5.4 we know that there exists a solution
such that and . By induc-
tion’s hypothesis we also have that there exist
with , for all , for which

(40)

(41)

for all . Combining (39), (40), and (41) with
the bounds on , and we prove the induction step and
conclude the proof of Part-A of Theorem 5.1.

The proof of Part-B of Theorem 5.1 comes from Corollary
5.2. Specifically, every solution of (37) for

is of the form

where integers satisfy
. Therefore, it must be for at least one value of

index .

VI. ALGORITHMS

Theorem 5.1 in Section V-A shows that there exists a solution
of (16) satisfying inequalities (17) and (20). Such solutions are
important in practice because they result in a priori known and
tight ranges of values of the feedback dividers in CDFS schemes
in Fig. 7.

If only a single and fixed output frequency is desirable, then
Diophantine equation (16) must be solved once for a particular
value of . If many output frequencies may be needed, then (16)
must be solved for all corresponding values of . Solving the
equation requires some computational effort and in most cases,
long-integer algebraic manipulation.

To avoid this computational complexity, one could consider
storing the solutions, corresponding to all possible values ,
to a memory device, and use them to program the dividers of
the PLLs when needed. Although this could be done for certain
cases, in general it may require a large amount of storage space.

Alternatively, one can use the solutions of a set of partic-
ular equations to generate, in a simple way, a solution of (16),
as specified in Theorem 5.1, for every value of . The CDFS
algorithm achieving this is presented below. It can be used in
real-time or off-line to derive the parameters of the synthesizer.

CDFS Algorithm

• STEP 1: For derive and store a solution
of the Diophantine equation

(42)

For numerical stability it is preferable that the derived
solutions involve absolutely small numbers.

• STEP 2: Set and derive sequentially the
vectors , , using

(43)

• STEP 3: Set .

Vector is a solution of Diophantine equation
(16), having the properties specified in Theorem 5.1. The proof
of this statement comes directly from the properties of the class
of functions and use of induction.

It is instructive to discuss the case step-by-step in
detail—this is done in Section VI-A.

Comments: Some properties of the algorithm are summa-
rized below.

1) In Step 1, it is required that we solve versions of
the linear Diophantine equation (42) of two variables. Note
that are pairwise prime, by assumption,
and so . Therefore, the
existence of the solutions is guaranteed by Theorem 5.1.
A solution can be found using the Euclidean algorithm
[10]. For most practical purposes this can be done using the
Euclidean algorithm executed by the “ ” command in
MATLAB. Specifically, if are two relatively prime
integers, then executing “ ” in
MATLAB returns a vector where is a
solution and .
Note however that the product in (42) may
have a large value. To avoid numerical errors due to over-
flows in MATLAB it is advisable to use the Variable Pre-
cision Arithmetic (VPA) command and specify the size of
the largest integers that can be handled.

2) Step 1 is executed only once and the derived pairs ,
are stored to be used in Step(s) 2

in real-time or off-line operation. The storage requirements
are minimal.

3) To derive an appropriate solution (according to Theorem
5.1) for a certain value of , and program the frequency
synthesizer in real time, we use the pairs
derived and stored in Step 1 and execute Step 2 and Step 3.
Note that a different “version” of function “ ” is used in
each of the iterations of Step 2.

4) The arithmetic operations required in Step 2 are: integer
addition, subtraction, multiplication and modulo. The
size of the integers involved depends on the stored pairs

and implicitly on , and it
can be determined in advance off-line.

5) For discrete-component CDFS synthesizer designs the
CDFS algorithm can be programmed into a Field-Pro-
grammable Gate Array (FPGA) or a micro-controller.
If the algorithm is used in real-time, the memory re-
quirements are negligible; if it is used off-line and the
programming parameters are stored, a total of

bits are required.

SOTIRIADIS: CDFS 749

A. Example: Application of CDFs Algorithm for

To illustrate the application of the CDFS algorithm, the case
is considered. The three steps of the algorithm follow in

explicit form.
Let be an integer such that .
• STEP 1: Derive the solutions and

of the following Diophantine equations using the
Euclidean algorithm:

(44)

(45)

(46)

• STEP 2: Set and derive sequentially vectors
and using “three versions” of

function :

(47)

(48)

(49)

• STEP 3: Set .
Comments: Certain points of interest are discussed.

1) In Step 1 equations (44)–(46) correspond to and
3, respectively, in the CDFS algorithm. Similarly for equa-
tions (47)–(49) in Step 2.

2) Equation (44) along with (47) and the definition of function
imply that

(50)

similarly from (45), (48), (46) and (49), we get that

(51)

(52)

From Step 3 and (52), we also get

(53)

By adding (51) and (53), we get

(54)

Finally, adding (50) to (54) gives

(55)

3) Now note that integers and form a solution
of (55) and satisfy (53) and (54) as well. Moreover, since it

is and given the properties of functions
, we also get that

and

Therefore solution satisfies all the desir-
able properties stated in Theorem 5.1.

VII. CDFS FREQUENCY MIXING ASPECTS

Mixing is an important part of frequency synthesis and one
should examine carefully all aspects of it in order to achieve
clean output signal and desirable spurious-free dynamic range
(SFDR) over the whole range of synthesized frequencies.

For extensive discussion on frequency mixing technics and
issues there are many excellent references including [3] and
[12]–[14].

The intention of this section is to link the mathematical de-
velopment presented in Section V to some critical parameters
of the mixing processes in CDFS schemes.

A major parameter of the mixing process of two signals at
frequencies and , that partially defines the spurs’ level, is
the ratio and its range of values. The importance of this
ratio is much more profound in wide-band frequency synthe-
sizers and RF systems.

A. CDFs: Frequency Ratios At the Mixers

Consider the abstract CDFS scheme in Fig. 7 with interme-
diate frequencies . For convenience we
also set and .

From Theorem 5.1 we have bounds (18) and (21), as well as
for . Summarizing we have that

for all

(56)

(57)

(58)

where

and

and are defined according to
the desirable summation/subtraction pattern in the mixers as in
Section IV. In the th mixing stage in Fig. 7 we mix with

, for .

750 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 3, APRIL 2008

Fig. 8. Generic Mixing Notation: f � f ; f = f � f .

Fig. 9. Graphical representation of the inequality constraints (59)–(61) and the
feasible pairs (f ; f) when f = f + f .

Since in all cases the ranges of the frequencies are similar, it
is convenient to use symbols and to represent any mixing
pair, and, to represent the outcome of the mixing as in Fig. 8.
So it is either or and inequalities
(56)–(58) translate to

(59)

(60)

(61)

Moreover, without any loss of generality we can also assume
that5

(62)

1) Case 1: Frequency Addition: Suppose that .
The three constraints (59)–(61) are shown graphically in Fig. 9
and all feasible pairs lie within the gray polygon.

We are interested in the range of values of the ratio
. The geometry of the boundary, see Fig. 10, implies that

is maximized at the top-left vertex and minimized at the bottom-
right one. So we have

and

2) Case 2: Frequency Subtraction: Now consider the case
. It is assumed that for all possible

values of the two frequencies. The three constraints (59)–(61)
are shown graphically in Fig. 11 and all feasible pairs

5This assumption is important for the graphical representation in Fig. 12 but
not for Figs. 9–11 where it is ignored for convenience.

Fig. 10. Maximum and minimum ratios f =f when f = f + f .

Fig. 11. Graphical representation of the inequality constraints (59)–(61) and
the feasible pairs (f ; f) when f = f � f .

Fig. 12. Maximum and minimum ratios f =f when f = f � f .

lie within the gray polygon which is rotated by 90 with respect
to that in Fig. 9.

Since for all feasible pairs , the polygon is
entirely below the first diagonal, line . The maximum
and minimum values of the ratio are also reached at
the top-left and the bottom-right vertices respectively, as shown
in Fig. 12. Therefore

and

SOTIRIADIS: CDFS 751

VIII. CONCLUSION

The CDFS methodology has been introduced. It is based
on Diophantine equations and employs two or more PLLs to
achieve frequency resolution arbitrarily finer than that of the
constituent PLLs without compromising neither hopping speed
nor loop bandwidth.

CDFS results in controlled, narrow frequency ranges of all
intermediate signals in the frequency mixing steps allowing
for improved spectral purity and design convenience. CDFS
provides new algorithms for programming the constituent PLLs
accordingly. CDFS leads to fine frequency step, fast frequency
hopping architectures with potentially very low spurs, espe-
cially in the vicinity of the carrier.

The mathematical principles and algorithmic aspects of
CDFS as well as the impact of CDFS to the frequency mixing
stages have been discussed.

REFERENCES

[1] V. Manassewitsch, Frequency Synthesizers, 3rd ed. New York :
Wiley, 1987.

[2] W. F. Egan, Frequency Synthesis by Phase Lock, 2nd ed. New York:
Wiley, 1999.

[3] U. L. Rohde, Microwave and Wireless Synthesizers: Theory and De-
sign, 1st ed. Singapore: Wiley-Interscience, 1997.

[4] J. A. Crawford, Frequency Synthesizer Design Handbook. Natick,
MA: Artech House, Jul. 1994.

[5] C. S. Vaucher, Architectures for RF Frequency Synthesizers. New
York: Springer, 2002.

[6] R. E. Best, Phase-Locked Loops: Design, Simulation, and Applica-
tions, 5th ed. New York: McGraw-Hill Professional, 2003.

[7] V. F. Kroupa, Direct Digital Frequency Synthesizers. New York:
Wiley-IEEE Press, 1998.

[8] P. P. Sotiriadis, “Diophantine frequency synthesis,” IEEE Trans. Ul-
trason., Ferroelectr., Freq. Contr., vol. 53, no. 11, pp. 1988–1998, Nov.
2006.

[9] P. P. Sotiriadis, “Diophantine frequency synthesis: The mathematical
principles,” in Proc. IEEE Int. Symp. Circuits Syst., 2007.

[10] D. E. Flath, Introduction to Number Theory. New York: Wiley, 1989.
[11] W. G. Wilke, “Diophantine Synthesizer,” U.S. Patent 5267182, 1993.
[12] S. A. Maas, Microwave Mixers, 2nd ed. Natick, MA: Artech House,

1993.
[13] W. F. Egan, Practical RF System Design. New York: Wiley-IEEE

Press, 2003.
[14] G. D. Vendelin, A. M. Pavio, and L. Ulrich, Rohde Microwave Circuit

Design Using Linear and Nonlinear Techniques, 2nd ed. Singapore:
Wiley-Interscience, 2005.

Paul Peter Sotiriadis (S’99–M’02) received the
diploma in electrical and computer engineering from
the National Technical University of Athens, Athens,
Greece, in 1994, the M.S. degree in electrical engi-
neering from Stanford University, Stanford, CA, in
1996, and the Ph.D. degree in electrical engineering
and computer science from the Massachusetts
Institute of Technology, Cambridge, in 2002.

He joined Johns Hopkins University in 2002
as Assistant Professor of Electrical and Computer
Engineering. His research interests include design,

optimization, and mathematical modeling of analog and mixed-signal circuits,
RF and microwave circuits, advanced frequency synthesis, timekeeping sys-
tems, biomedical instrumentation, interconnect networks in deep-sub-micron
and nano-technologies.

Dr. Sotiriadis serves as an Associate Editor of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS. He has been a member of the
technical committees of several conferences. He regularly reviews for many
IEEE Transactions and conferences. He also regularly serves on proposal re-
view panels at the National Science Foundation.

