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Abstract—The application of the Diophantine Frequency Syn-
thesis (DFS) methodology is presented and certain practical
aspects of it are illustrated through the design and frequency plan-
ning of two Forward DFS synthesizers each using two Integer-N
phase-locked loops (PLLs). Both synthesizers achieve frequency
resolution about ��� times better that their constituent PLLs
without compromising hopping speed performance or spectral
purity.

Index Terms—Diophantine equation, frequency hopping,
frequency synthesis, frequency synthesizer, number theory,
phase-locked loop (PLL), timing systems, wireless.

I. INTRODUCTION

FREQUENCY synthesis is an important part of modern
wireless and wired communication systems. The require-

ments for multiple-band and multiple-standard operation, with
minimal power consumption, makes the design of the frequency
synthesis blocks challenging.

Frequency synthesizers have a long list of technical specifi-
cations; some of them are more essential and usually, mutually
conflicting. Frequency resolution and hopping speed are two
such ones in general and especially in Integer-N phase-locked
loops (PLLs) designs where the two quantities are strongly cou-
pled since the hopping time is inversely proportional to the loop
bandwidth which is, in a sense, proportional to the frequency
step [1].

Fractional-N PLLs on the other hand alleviate the hopping-
speed versus frequency resolution trade-off, but this is done at
the cost of spectral purity, especially near-in.

Direct digital synthesis (DDS) technology offers very high
resolution, hopping speed and very wide frequency range. How-
ever, typical DDS spectra are much more populated with spu-
rious signals, even near-in, and have higher noise floor com-
pared to Integer-N PLLs. Moreover, the frequency range of DDS
is limited by the performance of digital-to-analog converters.

Classical multiloop architectures using Integer-N PLLs [2]
can provide clean output signal and wide frequency range at the
cost of complexity, and in some cases, of the frequency hopping
speed. Complex, discrete-component implementations of mul-
tiloop architectures are typical.

Diophantine Frequency Synthesis (DFS) [3], [4] is a new
methodology for designing frequency synthesizers with high
resolution, fast frequency hopping, and low spurs, especially
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Fig. 1. Basic PLL.

near-in. It can be used for any frequency range and it is partic-
ularly convenient for higher frequencies where the alternative
choices are limited.

DFS is based on mathematical properties of Diophantine
equations [5] and the DFS schemes can be implemented by
employing two or more Integer-N PLLs that are driven by the
same reference and whose output frequencies are added (or
subtracted) to give the output frequency of the synthesizer. DFS
distributes the output frequency resolution among the PLLs.

This paper presents two forward two-PLL DFS architectures,
their circuit implementations and spectral measurements of the
output signals, in an effort to demonstrate how one can use DFS
as a design method.

The focus of this paper is on frequency planning and high-
level architectures. To maintain focus and avoid repeating
well-known facts about the design of PLLs and mixers, two
commercial components were used for the implementations:
the triple-PLL CDCE706 by Texas Instruments and analog
multiplier AD835 by Analog Devices.

The two architectures have output-frequency ranges 0–10
and 195–205 MHz, respectively, and frequency steps equal to
542 Hz. In both cases the phase-comparator frequencies of the
constituent PLLs are 133 and 130 kHz, and, their output-fre-
quency steps are 67 and 43 kHz, respectively,1 i.e., about
larger than the steps of the synthesizers.

Some elements of the DFS theory, used in this work, are sum-
marized in Section II, details of the theory can be found in [3].

II. ELEMENTS OF DFS

DFS uses two or more PLLs like that in Fig. 12 having a fixed
prescaler divider . The size of the feedback divider is ,
where integer is fixed and greater than integer , and, is an
integer variable ranging from to . An output divider
may be present. The output frequency is

(1)

1Output frequency dividers, � � � and � � �, available in CDCE706,
are used (Fig. 3). They are not necessary for implementing DFS in general.

2Instead of a phase comparator (PC) the PLL may have a phase-frequency
comparator or phase detector etc. An output divider ��� may be present.
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Fig. 2. Abstract, high-level, �-PLL DFS scheme.

The general, abstract -PLL DFS architecture is shown in
Fig. 2. The PLLs, with parameters , for
and , are driven by the same signal and their output frequencies
are added (or subtracted) to provide the output frequency of the
synthesizer

(2)

where the fixed-frequency term is given by

(3)

Now we focus on the first term in the RHS of (2), which is
variable. DFS’ main Theorem follows [3].

Theorem 2.1: [3]: If are pairwise relatively
prime positive integers (i.e., no pair of them has common
divider other than ) then, for every integer , such that

we can find integers
with , for all ,

for which

(4)

Rephrasing Theorem 2.1 and using (2) we conclude that by
appropriately programming the (sizes of the) feedback dividers

, the output frequency takes all values
within the range

(5)

with uniform frequency step equal to

(6)

Now suppose that some of the PLL frequencies,
were subtracted, instead of being added to the

general sum, i.e., for some values of index , and
were replaced by and , respectively, in (2),
(3), and (4). Then, the above statements would still be valid
and the expressions of the range and the step would remain the
same—this is because the sets of values of are
symmetric with respect to 0.

Fig. 3. The high-level architectures of the forward two-PLL DFS synthesizers.
Case 1: � � � � � . Case 2: � � � � � .

TABLE I
RANGES OF FREQUENCY DIVIDERS

Therefore, Theorem 2.1 is also valid for all combinations of
additions/subtractions of the frequencies , i.e., all combina-
tions of in

with the understanding that: i) when the signs are chosen
they remain fixed, and ii) all related expressions are modified
accordingly.

A significant advantage of DFS, implied by (5) and (6), is that
with small values of and , the frequency
step, , can be made very small, while at the same time,
the phase-comparator frequencies of the PLLS,

, and the output range can be very large.

III. TWO FORWARD TWO-PLL DFS SYNTHESIZERS

The goal of the paper is to demonstrate DFS through exam-
ples without repeating well-known facts about PLL design. To
this end, Texas Instruments’ programmable triple-PLL device
CDCE706 was used which automatically adjusts its loop-fil-
ters’ parameters and voltage-controlled oscillator (VCO)’s
tuning ranges. It is noted however that the convenience it
offers is paid by its low spurious-free dynamic range (SFDR),

55 dB (worst-case specification), at the output of the PLLs.
Two of the three PLLs in CDCE706 were employed in both of
the DFS schemes. The high-level architectures are shown in
Fig. 3 corresponding to the “ ” and “ ” choices in the mixer,
respectively.

The operating ranges of the prescaler, feedback and output
dividers are shown in Table I. The frequency range of the VCOs
is 80–300 MHz implying (see Fig. 3)

MHz MHz (7)
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A. DFS Case 1 :

The architecture in Fig. 3 with frequency substraction, “ ”,
in the mixer is considered first. The goal is to achieve output
frequency range 0–10 MHz with fine frequency resolution and
high phase-comparator frequencies in the constituent PLLs. The
input reference frequency is 64 MHz. From Fig. 3 we have

(8)

where

(9)

for PLLs . Moreover, the VCO’s frequencies are

(10)

and the phase-comparator frequencies are

(11)

It is convenient to set where

(12)

and express the denominators of in (9) as

(13)

. Note that , i.e., are relatively
prime as it is required by Theorem 2.1.

We decompose the numerators in (9) as , like
we did in (1), and impose the constraints

(14)

used in Theorem 2.1. Then, (9) becomes

(15)

From equations (4), (8), and (15), and Theorem 2.1 (as well
as the comments on the addition/subtraction of the frequencies

following Theorem 2.1) we have that

(16)

where can take every integer value from to
by appropriately programming and within their pre-set
ranges (14) using the DFS algorithm [3]. Moreover, it is

, where

(17)

and the range of is given in (5).
The desirable output range is 0–10 MHz implying

and MHz which give
MHz and MHz. We relax the last one as

MHz (18)

Input (reference) frequency MHz was used. From
(18) this implies MHz and so the maximum
value of resulting in full coverage of the desirable output
range 0–10 MHz is

(19)

The minimization of mixing spurs involves the mixer’s inter-
modulation behavior, the set of all frequency pairs , the
harmonic contents and amplitudes of the mixed signals and the
filters before and after the mixer.

Based on the characteristics of the multiplier AD835 that is
used here as a mixer, the 10-MHz range of and cen-
tered at and , respectively, (this results from (15) and the
range of , (14)), and the 0–10-MHz output range, we make the
conservative choice to set close to 100 MHz. Given the
frequency limits of the VCOs (7), this choice implies

.
To simplify the selection process for , and

we make the assumption that and are factors of
and respectively, and set and
which combined with (13) and (19) imply and

. From (16), the frequency step of the synthesizer is
where

(20)

Moreover, from Table I we have that and so

(21)

Equations (12) and (19) along with and
impose the requirement

(22)

Note that would lead to unnecessary re-
duction of the output frequency resolution anyway.

The larger is, the smaller the frequency step of is.
Since it must be and do not
satisfy (22), we choose

(23)

Setting and to their maximum values, i.e., and
, or, and leads to

and , respectively, which also contradict
(22). Instead we choose and , i.e., slightly
smaller values, giving

, and .
The following set of equations summarizes our choices and

derivations up to now:

Following the discussion on and we choose

and (24)

which along with (17) give MHz and
MHz. Therefore, MHz and, ac-
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TABLE II
FREQUENCY RANGES AND RESOLUTIONS OF SIGNALS (HZ)-DFS 1

cording to (5), the output frequency range covers the desirable
0–10-MHz band.

Finally, following Theorem 2.1 and the definitions of ’s,
the required ranges of dividers and are

(25)

The above choices of prescalers and output dividers, and, the
ranges of the feedback dividers result in a DFS scheme with
frequencies given in Table II.

The output frequency step is about two orders of magnitude
smaller than those of the constituent PLLs.

B. Mixer

The high-level schematic of the mixer is shown in Fig. 4. The
mixer is based on the four-quadrant multiplier AD835 chosen
for its linearity and appropriate bandwidth.3 Two buffers,
LMH6559, are used to isolate the PLLs from the multiplier and
reduce coupling between the PLLs.

The two low-pass filters LPF1 and LPF2 are seventh-order
Chebyshev Type-I with 1-dB ripple in the passband and pas-
sive ladder implementations. They remove the harmonics of the
square-wave signals coming from the PLLs and feed clean sinu-
soidals to the multiplier. The passbands of LPF1 and LPF2 are
0–112 and 0–123 MHz, respectively.

The third filter, LPF3 following the multiplier removes
the high frequency product of the multiplication, at around
200 MHz. It is a fifth-order low-pass Chebyshev Type-I
with1-dB ripple in the passband 0–10 MHz and passive ladder
implementation.

C. Results of DFS Case 1

Programming the two PLLs with the DFS parameters derived
in Section III.A and using the DFS algorithm in [3], based on
(16) we can generate all predicted frequencies

Hz Hz

(26)

Given a desirable value of , parameters and are de-
rived using the DFS algorithm in [3]. The frequency ranges of
the PLLs and that of the output signal, along with their resolu-
tions (steps), are shown in Table II.

This two-PLL DFS scheme achieves frequency resolution of
542 Hz with phase-comparator frequencies of the constituent
PLLs equal to 133 333 Hz and 130 081 Hz.

The high phase-comparator frequencies, compared to the fre-
quency resolution, allow for easy suppression of the phase-com-

3Better noise level performance can be achieved by other types of mixers.

Fig. 4. Mixer, low-pass filters, and buffers.

Fig. 5. Five consecutive synthesized frequencies, D -D corresponding to
values of � � � � and � shown in Table III. Measurement: ��� � ��

Hz, ��� � �� Hz and “max” function. The frequency step is 542 Hz
while the frequency steps of the two PLLs are about 67 and 43 kHz. PLLs’
phase-comparator frequencies are 133 and 130 kHz, respectively.

parator spurs and for fast frequency hopping. The end result de-
pends of course on the particular design and implementation of
the circuit.

Using the CDCE707 and AD835 devices, SFDR of 77 dB
(recall the SFDR specs of CDCE706) and settling time of
approximately 1.1 ms, to reach 0.1% frequency error, was
achieved. The settling time is essentially that of the PLLs in
CDCE706 plus some delay due to the digital interface. The
delay contributed by the filters (and so the mixer) is negligible
since their time responses are orders of magnitude smaller than
1 ms.

To avoid parasitic coupling between the PLLs, which may in-
troduce additional spurious signals, one has to use proper signal
isolation and buffering. It is also preferable that the ratio of the
two phase-comparator frequencies is sufficiently far from any
ratio of small integers.

Fig. 5 shows the spectrum of the (output) synthesized signal
for five consecutive frequencies. The achieved frequency step is
542 Hz.

The parameters of the synthesizer, resulted in the spectra of
Fig. 5, are listed in Table III.
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TABLE III
PROGRAMMING PARAMETERS AND FREQUENCIES CORRESPONDING TO THE GRAPH IN FIG. 5

D. DFS Case 2 :

The low-pass filter in the mixer, Fig. 4, is replaced by an
eighth-order 3-dB ripple Elliptic bandpass one that removes the
off-band spurs from the mixing and the harmonics of the PLLs
leaking through the mixer. The rest of the hardware, including
the low-pass filters LPF1 and LPF2, remains the same.

From Section II, we know that the ranges of s are sym-
metric with respect to zero. Also, the widths of the frequency
ranges of DFS schemes 1 and 2 are the same. So, we can use
the same parameters as before to
program the pre-scalers and output dividers for DFS scheme 2
where . We only need to select s to set the
central output frequency .

The choice of and implies central
output frequency Hz, Hz,
and Hz (note from (3) that for every

, the choice and
leads to the same ).

Equation (16) gives the values of synthesized using the
above choices

Hz Hz

The frequency ranges of the PLLs and that of the output
signal, along with their resolutions (steps), are summarized in
Table IV. The steps are the same as in DFS scheme 1 and the
ranges are shifted but not scaled. The SFDR is dB (recall

TABLE IV
FREQUENCY RANGES & RESOLUTIONS OF SIGNALS (HZ)-DFS 2

the SFDR specs of CDCE706). Settling time is the same as be-
fore. Again, the settling delay due to the filters is negligible.

IV. CONCLUSION

The application of DFS methodology has been presented
through the high-level design and frequency planning of two
forward two-PLL DFS synthesizers. The two synthesizers
achieved frequency resolution about 100 times better that
their constituent PLLs without compromising hopping speed
performance or spectral purity.
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