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Diophantine Frequency Synthesis (DFS), a number-theoretic approach to the design of very high resolution frequency synthe-
sizers, was introduced in 2006. Further work concerning the impact of controlling mixing products for high-spectral purity was
addressed and reported at the 2007 European Frequency and Time Forum. The focus of this paper is on the implementation of
nested DFS architectures targeting microphase-type applications for precision timekeeping systems. We have shown that DFS does
not impart any extraordinary design constraints on spectral purity in comparison to commonly used high resolution frequency
synthesis techniques such as DDS or fractional N . Here we describe a design approach for 10 MHz synthesizers with 1E-13 frac-
tional resolution in consecutive steps ranging ±10 Hz. The synthesizers generate their output from a 10 MHz reference standard.
Such synthesizers are essential to accomplishing precision frequency correction in timekeeping systems.
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1. INTRODUCTION

In timekeeping systems, a local frequency and/or phase must
be generated and maintained to a very high degree of accu-
racy. For example, the Time and Frequency Laboratory of
the Johns Hopkins University Applied Physics Laboratory
maintains UTC (APL) within ±10 nanoseconds, based on
monthly reports from the Bureau International des Poids et
Mesures (BIPM). Modern timekeeping systems use phase-
frequency correction (steering) through auxiliary synthesiz-
ers to maintain the accuracy of their master clocks to UTC.
The frequency step resolution of synthesizers for steering
timekeeping systems is typically 1 μHz or better. Designers
of these very fine resolution synthesizers must carefully con-
sider signal purity, resolution (accuracy to the global refer-
ence), and complexity. Our paper describes the Diophantine
Frequency Synthesis (DFS) design approach for very fine fre-
quency resolution synthesizers suitable for the maintenance
of autonomous clock holdover and microphase steering in
laboratory timekeeping systems.

The novel DFS approach was introduced in 2006 [1, 2].
We have found that DFS alleviates the conventional trades
in performance for frequency synthesizer design without sig-

nificantly taxing system complexity or resources. DFS pro-
vides high spectral purity, even in synthesizers with much less
than 0.1 PPM resolution steps. In general, we make this claim
in comparison with other fine resolution frequency synthe-
sizer methods such as Direct Digital Synthesis (DDS) or
fractional-N modulators which are known to present a high
degree of unwanted spurious signals into the output spec-
trum through the fundamental process that they impart on
the input reference signal [3]. The use of DDS and fractional-
N synthesis design techniques has been widely adopted for
timekeeping systems as high-frequency resolution (accuracy)
and fast acquisition (settling time) can be achieved with-
out the complexity of traditional multiple loop synthesiz-
ers. However, DDS and fractional-N synthesizers both cause
phase perturbations in their basic operation schemes lead-
ing to coherent spurious generation [3]. In the case of DDS,
accuracy to a desired frequency necessarily compromises
the spectral purity of the output signal by the incidence of
truncation spurious attributable to the finite size of sin/cos
lookup table and the DAC [4].

DFS uses only exactly periodic signals, without em-
ploying dithering, interpolation, pulse removal, or any other
approximately-periodic waveform that may corrupt the
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Figure 1: A two-PLL DFS scheme.

spectrum close to the carrier. DFS-based synthesizers present
no discontinuity of the reference frequency phase, such as
DDS or fractional-N , and unlike these methods, DFS does
not require any special devices such as high-resolution DACs,
accumulators, or sigma-delta modulators to control the spu-
rious level of the output signal.

However, like traditional multiple loop PLL synthesizer
architectures, DFS does require mixing (or multiplication)
to achieve the output signal. This means that DFS synthe-
sizers can suffer from unwanted spurious if attention to the
circuit design is not adequately respected. In our 2007 EFTF
paper, we described an approach for the design of VHF syn-
thesizers with high-spectral purity of >100 dB spurious free
dynamic range and showed that DFS presents no unique
design-related constraints [5]. Rather, DFS design flexibility
provides an advantage to achieving this level of performance
in fine resolution frequency synthesis.

2. DFS—ELEMENTS OF THE THEORY

DFS is a number-theoretic approach to frequency synthesis.
It is based on mathematical properties of integer numbers
and linear Diophantine equations [2] (by definition, a Dio-
phantine equation is an algebraic equation whose solutions
are required to be integers [6]).

DFS results in high-level architectures using two or more
Integer-N PLLs. It distributes the desirable output-frequency
resolution among these constituent PLLs in such a man-
ner that the resultant output fractional-frequency resolution
is equal to the product of the constituent PLLs’ fractional-
frequency resolutions. Consequently, this property of DFS
allows for the output frequency resolution to be made (ar-
bitrarily) fine, that is, to have a very small frequency step,
without using large prescalers or low phase-comparator fre-
quencies in the PLL.

2.1. The abstract DFS concept

DFS considers a PLL as a multiplier of an input frequency fin
by a rational number mi/Ni, as shown in Figure 1.

In Figure 1, two PLLs (i.e., two multipliers by m1/N1 and
m2/N2) are driven by the same reference frequency fin. Their
output signals are mixed (and the mixer’s output is filtered
- not shown) to produce the synthesizer’s output signal of
frequency fout which typically is fout = f1 + f2, as it is here,
or fout = f1 − f2. Further discussion on mixing follows in
Section 3.

As it is always the case with integer-N PLLs, the fre-
quency resolution (step) of the individual PLLs in Figure 1
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Figure 2: A simple two-PLL DFS scheme.

equals PLL’s phase-comparator frequency, that is, fin/N1 and
fin/N2, respectively. Therefore, to get smaller frequency steps
(higher resolution) from a single PLL, a larger prescaler Ni

and/or lower reference frequency fin are required. This, nec-
essarily results in a lower phase-comparator frequency fin/Ni

implying slowed frequency lock acquisition (agility) and po-
tentially increased spurious signal levels closer to the carrier
signal of fout [3].

DFS overcomes these problems as it allows simultane-
ously for both high phase-comparator frequencies at the con-
stituent PLLs and arbitrarily small frequency step at the out-
put of the synthesizer. In the case of DFS scheme in Figure 1,
the frequency step is

δ fout = fin
N1N2

(1)

which can be orders of magnitude smaller that fin/N1 and
fin/N2. This property of DFS is generalized in the case of k
PLLs.

Throughout this paper, the prescalers (Ni’s) of the PLLs
are considered fixed in size. Moreover, it is assumed that
by design, the greatest common divisor of every pair of
prescalers, (Ni,Nj), is one , that is, the prescalers are pairwise
prime integers; this is a requirement of the DFS methodology
[2].

Finally, it is convenient to replace the value of every feed-
back divider mi by the sum mi + mi (e.g., as in Figure 2),
where mi is a fixed positive integer and the variable part,
mi, is restricted to take integer values within the range −Ni

to Ni. So the range of values of the feedback divider is
mi −Ni, . . . ,mi +Ni.

2.2. Basic numerical example of a two-PLL DFS scheme

Consider the architecture of Figure 2 consisting of two PLLs
driven by the same reference frequency fin, whose output fre-
quencies are summed resulting in

fout =
(

11 +m1

3
+

9 +m2

2

)
fin. (2)

Following DFS methodology [2], the prescalers, N1 = 3
and N2 = 2, are fixed and relatively prime by design (small
integers were selected here for illustration purposes).

The feedback dividers are 11 + m1 and 9 + m2 with
−3 ≤ m1 ≤ 3 and −2 ≤ m2 ≤ 2. So, the range of each PLL
feedback divider is twice the size of the corresponding prescaler.
These imply that frequency f1 can take any of seven values
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f1 ∈ {8/3, 9/3, . . . , 14/3} and frequency f2 can take any of
five values f2 ∈ {7/2, 8/2, . . . , 11/2}.

Table 1 shows (some of) the output frequencies fout that
can be generated by using the DFS algorithm in [2] to pro-
gram the values ofm1 andm2 within their preassumed ranges
−3 ≤ m1 ≤ 3 and −2 ≤ m2 ≤ 2, respectively. Every one of
the thirteen triplets (m1,m2, a) in Table 1 satisfies the linear
Diophantine equation

m1

3
+
m2

2
= a

6
. (3)

This way we can synthesize all frequencies of the form

fout = f out +
a

6
fin (4)

with the variable a taking the values −6,−5, . . . , 6 and the
central frequency f out being

f out =
(

11
3

+
9
2

)
fin = 49

6
fin. (5)

Note: the phase comparator frequencies of the individ-
ual PLLs are fin/3 and fin/2 while the synthesizer’s frequency
resolution (step size) is fin/6.

In general, a two-PLL DFS synthesizer results in output
frequency

fout =
(
m1

N1
+
m2

N2

)
fin +

a

N1N2
fin, (6)

where the variable a can take any of the consecutive values
from −N1N2 to N1N2. This leads, by inspection of (6), to the
fundamental property of DFS that the frequency step can be
made much smaller than the phase-comparator frequencies the
constituent PLLs, that is,

fin
N1N2

� fin
N1

,
fin
N2

. (7)

Expression (6) itself results from our ability to find a con-
venient solution of the linear Diophantine Equation

m1

N1
+
m2

N2
= a

N1N2
. (8)

Note that the relationship between m1, m2, and a, gov-
erned by (8), is nontrivial and in some cases is not unique,
in the sense that there may be more than one pair of integers
(m1,m2) that solve (8) for a particular value of integer a.

Furthermore, it has been proven that if we have a solu-
tion (m1,m2) of (8) for a = 1, then we can easily generate
solutions for every other value of a; therefore in a hardware
implementation, very few numbers have to be stored. A de-
tailed description of how to solve linear Diophantine Equa-
tions efficiently is also available in [2].

2.3. DFS synthesizers with k PLLs

The general abstract high-level architecture of k-PLL DFS
synthesizers is shown in Figure 3.

Table 1: Frequencies of the DFS example in Figure 2.

fout =
(

11
3

+
9
2

)
fin +

(
m1

3
+
m2

2

)
fin

m1 m2 a fout/ fin =
(

11
3

+
9
2

)
+

(
m1

3
+
m2

2

)

−3 0 −6 43/6 = 49/6 + −6/6

−1 −1 −5 44/6 = 49/6 + −5/6

−2 0 −4 45/6 = 49/6 + −4/6

0 −1 −3 46/6 = 49/6 + −3/6

−1 0 −2 47/6 = 49/6 + −2/6

1 −1 −1 48/6 = 49/6 + −1/6

0 0 0 49/6 = 49/6 + 0

−1 1 1 50/6 = 49/6 + 1/6

1 0 2 51/6 = 49/6 + 2/6

0 1 3 52/6 = 49/6 + 3/6

2 0 4 53/6 = 49/6 + 4/6

1 1 5 54/6 = 49/6 + 5/6

3 0 6 55/6 = 49/6 + 6/6
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Figure 3: Abstract high-level k-PLL DFS scheme.

It has been proven, in [2], that when the integer variables
m1,m2, . . . ,mk are allowed to take any values in the intervals
−N1 ≤ m1 ≤ N1,−N2 ≤ m2 ≤ N2, . . . ,−Nk ≤ mk ≤ Nk,
respectively, then the following set of frequencies can be syn-
thesized:

fout = f out +
a

N1N2 · · ·Nk
fin, (9)
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Figure 4: Frequency-offset loop.

where a can take any of the values

a = −N1N2 · · ·Nk , . . . ,N1N2 · · ·Nk (10)

and the central frequency f out is

f out =
(
m1

N1
+
m2

N2
+ · · · +

mk

Nk

)
fin. (11)

Therefore, the frequency resolution (step) achieved by k-PLL
DFS architectures is

δ fout = fin
N1N2 · · ·Nk

. (12)

The central frequency f out can be adjusted with resolu-
tion δ fout as well. The mathematical details, theorems, and
their proofs of the general k-PLL DFS architectures can be
found in [2].

3. FREQUENCY-OFFSET DFS
ARCHITECTURES FOR VERY HIGH
FRACTIONAL-FREQUENCY RESOLUTION

Synthesizers with very high fractional-frequency resolution
like microphase steppers, advanced signal generators, certain
instrumentation equipment, atomic-clock synthesizers, and
so forth, often have performance specifications that challenge
existing technology solutions especially under cost, power,
size, and complexity constraints. DFS offers a new alternative
to DDS and fractional-N PLLs in the design of such systems.

For this kind of applications, most appropriate DFS ar-
chitecture has been proven to be the one based on frequency
offsetting [3]. Since frequency offsetting requires mixing, a
few comments are in order without any intention to cover
the topic of mixing.

3.1. Frequency mixing

Mixing of two periodic signals at frequencies f1 and f2 is de-
noted by⊗, see Figure 4, and the outcome is typically chosen
to be either f1 + f2 or f1 − f2.

Mixing of three or more signals has a similar interpre-
tation, note however that the order of performing the mix-
ing of the signals may be important for getting a spectrally
pure output signal. In general, minimization of mixing spurs
involves the choice of the central frequencies of f1 and f2,
their frequency ranges, the choice of the sum or difference,

the harmonic contents of the mixed signals, and of course
the type of the mixers.

The key to low-output spurs in DFS synthesizers is the
mixing method since the mixers are the dominant spurs gen-
erating circuit elements.

3.2. Frequency offsetting

The synthesizer architecture in Figure 4 is convenient for de-
riving the sum or difference between a large fin and a small
offset frequency f .

When f / fin � 1, the mixing of fin with fin ± f can be
performed without difficulty and the mixing spurs can be
minimal, for example, [5]. Therefore frequency offsetting is
an effective approach to achieving the frequency summations
and/or subtractions needed to realize DFS with central out-
put frequency close to fin.

The following subsections illustrate this approach for the
case of two- and three-PLL DFS schemes. In principle, the
structure of Figure 4 can be cascaded k times to create k-PLL
DFS architectures.

3.3. Two-PLL frequency-offset DFS architecture

Figure 5 shows how two DFS-determined PLLs can be cas-
caded using an offset synthesizer structure to form a DFS
architecture, where the variable fout can be adjusted in very
small-frequency steps from the reference fin.

Based on the DFS theory [2], the two PLL output fre-
quencies f1, f2 (we can consider divider R as part of the
PLLs) are determined by the common dividers Q, R, the
two relatively prime integers N1, N2, and the feedback di-
viders pN1 + m1 and pN2 + m2 which are partitioned into
the fixed, pN1, pN2, and the variable, m1, m2, parts. The val-
ues ofm1,m2 program the value of parameter a in expression
(6). The fixed integers pN1 and pN2 partially define the cen-
tral frequencies f 1, f 2 of the PLLs. In this application, we

also like to have f 1 = f 2 which implies that fout = fin when
m1 = m2 = 0.

Variables m1 and m2 are allowed to take any value
within their ranges −N1, . . . ,N1 and −N2, . . . ,N2, respec-
tively. This results in output-frequency resolution equal to
δ fout = fin/(QRN1N2) and output-frequency range (equal to
or greater than) Δ fout = ± fin/(QR). (Note the product of N1

andN2 in the denominator, in contrast toQ that is accounted
for on its first power.)

The factor Q in the denominators determines the pul-
lability ranges of the VCOs in the PLLs. Specifically, given
the ranges of m1 and m2, the VCO’s fractional pullability is
PLPLL 1,2 = ± (100/Q) %. The role of p in the numerators
is to adjust for the central output frequencies of the PLLs
by counterbalancing Q. The phase-comparator frequencies
of the PLLs are fPC PLL i = fin/(QNi), i = 1, 2.

Finally, R is a large divider necessary to generate the rela-
tively small frequencies f1, f2 from the output frequencies of
the PLLs. Divider R also contributes to the output resolution
of the synthesizer and the spectral purity of signals entering
the frequency-offset blocks.
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Figure 5: Two-PLL frequency-offset DFS scheme.
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Figure 6: Numerical example of the two-PLL frequency-offset DFS scheme in Figure 5.

With a microphase stepper application in mind, Figure 6
shows a choice of values for N1, N2, R, Q, and p, and the
corresponding characteristics and performance of the syn-
thesizer they result in. A resolution of 10 μHz is probably the
best that the two-PLL scheme with 10 MHz input frequency
could give. Note that although the 100 Hz frequency offset is
not uncommon in these types of systems, a higher frequency
would be helpful. The pullability range of±10% is achievable
by tunable LC oscillators, and because of the large divider R,
the phase noise of the oscillators is not a critical issue.

As described in Figure 6, the magnitude of R was made
large compared to Q, N1, and N2 to achieve the desired
frequency-step resolution of ±10 μHz while keeping the PLL
phase-comparator frequencies relatively large and easy to fil-
ter. This choice was not directed through any fundamental
constraint in the DFS method, but was made from our de-
sign emphasis on high-spectral purity over acquisition speed
in a simple, practical circuit implementation. In the follow-
ing subsection, we see how adding one more PLL allows for
more choices of the parameters and, in principle, better over-
all performance.

3.4. Three-PLL frequency-offset DFS architecture

A three-PLL frequency-offset DFS architecture is shown in
Figure 7. Its principles of operation are very similar to those
of the two-PLL one in Figure 5. The major difference is that

because of the odd number of PLLs, centering fout with re-
spect to the input reference fin requires further design con-
sideration.

Specifically, it is desirable thatm1 = m2 = m3 = 0 implies
fout = fin. To achieve this, we add f1 and f2 to fin and subtract
f3. Moreover, we introduce factors of 2 in PLL 3 and in the R-

dividers of PLLs 1 and 2. These result in 2 f 1 = 2 f 2 = f 3 =
p fin/(QR) and equal ranges of f1, f2, and f3. However, the
pullability range of PLL 3 is the half of that of PLLs 1 and 2.
The expression for fout is shown in Figure 7.

Integers N1,N2, and N3 are chosen to be pairwise prime
and the variables m1, m2, and m3 take values within their
ranges −N1, . . . ,N1, −N2, . . . ,N2, and −N3, . . . ,N3, respec-
tively. The resulting output frequency resolution is δ fout =
fin/(2QRN1N2N3) and the output frequency range is (equal
to or greater than) Δ fout = ± fin/(2QR).

Again, with a microphase stepper application in
mind, Figure 8 shows a choice of numerical values for
N1,N2,N3,R,Q, and p, as well as the corresponding charac-
teristics of the resulting synthesizer. Output frequency res-
olution of 1 μHz and output range of about ±16 Hz are
achieved. The frequency offset has been raised to 500 Hz for
PLLs 1, 2 and to 1000 Hz for PLL 3, and the pullability ranges
have dropped to about ±3% and±1.6%, respectively. There-
fore, as expected, the three-PLL case provides much more
flexibility in the design and much better characteristics.
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Figure 7: Three-PLL frequency-offset DFS scheme.
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Figure 8: Numerical example of the three-PLL frequency-offset DFS scheme in Figure 7.

4. SUMMARY

In summary, the general structure of DFS architectures pro-
vides the following desirable properties: the ability to achieve
a predetermined center frequency

f out =
(
m1

N1
+
m2

N2
+ · · · +

mk

Nk

)
fin (13)

with frequency range

f out − fin to f out + fin (14)

and frequency step (resolution) of

δ fout = fin
N1N2 · · ·Nk

, (15)

while the phase-comparator frequencies of the constituent
PLLs are

fin
N1

,
fin
N2

, . . . ,
fin
Nk

. (16)

The application of DFS permits high flexibility on the
relationship of the fixed-frequency reference to output fre-
quency (9) with wide-frequency range (14). Based on (15),
we have shown the design of very fine frequency resolution
using two- and three-PLL nested DFS frequency-offset loops.

In the case of the three-loop system described in Figure 7,
a fractional frequency synthesizer capable of 1E-13 has been
numerically demonstrated. The method of cascading nested
frequency-offset DFS architectures to higher orders would
ultimately result in frequency steering resolution approach-
ing 1E-15, consistent with the needs of most precision time-
keeping laboratories contributing to UTC.
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