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Fast State-Space Harmonic-Distortion Estimation in
Weakly Nonlinear Gm C Filters
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Abstract—A fast, one-pass harmonic-distortion estimation algo-
rithm for filters is introduced. It is derived using state-
space modeling and can be applied directly to filters, of
any order, with MOS transconductors exhibiting any type of weak
nonlinearity. The algorithm is formed out of a small number of
simple and explicit expressions involving the filter’s structural ma-
trices and the transconductors’ nonlinearity. It can be easily im-
plemented in MATLAB. For verification of the theoretical develop-
ment, the algorithm was used to derive the harmonic distortion of
a single-ended filter with weakly nonlinear transconduc-
tors designed on a 0.5- m technology. The results of the algorithm
and CADENCE simulation were found to be in good agreement.

Index Terms—Author, please supply your own keywords or send
a blank e-mail to keywords@ieee.org to receive a list of suggested
keywords.

I. INTRODUCTION

DURING the past two decades, filter techniques
have attracted a great deal of attention in the design of

continuous-time filters. They have been favorable candidates in
many high-frequency applications due to their tunability, low
power, and wide bandwidth [1]–[12].

To achieve high-frequency performance, linearity is often
sacrificed for faster and simpler transconductors that usually
exhibit certain nonlinear behavior. This results in distortion at
the filter’s output.

When a sinusoidal signal of frequency is applied to the
input of the filter, the output signal consists of not only the fun-
damental frequency component , but also those at harmonics
of the input frequency, i.e., 2 , 3 , and 4 . These terms
form the harmonic distortion.

Harmonic distortion is a major issue in anti-aliasing filters
preceding analog-to-digital converters (ADCs). Suppose, for
example, that the input signal to an ADC is a sinusoidal at 400
kHz and the sampling frequency is 1.5 MHz. The third-order
harmonic component at the output of the anti-aliasing filter will
be at 1200 kHz and thus aliased at 300 kHz. This undesirable
component at 300 kHz directly degrades the effective SNR of
the analog-to-digital (A/D) conversion process by corrupting
the useful signal.
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In addition, harmonic distortion partially determines the dy-
namic range of a filter [13]. Over the past two decades, signifi-
cant effort has been made to optimize filters in terms of their dy-
namic range and power dissipation. Companding, scaling, and
other techniques have been employed to improve the dynamic
range and reduce nonlinearity [1], [14]–[18]. Accurate knowl-
edge of the harmonic distortion of the filters is important for
these efforts.

Techniques have been developed to calculate the harmonic
distortion in filters and amplifiers [19]–[24]. The Volterra se-
ries approach is used in almost all of them [19]–[21] where the
nonlinear system is decomposed into an infinite number of sub-
systems with polynomial nonlinearities and the harmonic com-
ponents are evaluated separately for each subsystem.

Another approach was presented in [25], where partial
transfer functions, from the input to internal nodes of the filter,
were used to derive the output harmonic distortion.

This paper introduces a general, fast one-pass harmonic-dis-
tortion estimation algorithm that is based on state-space rep-
resentation of the filter and can be applied directly to
filters of any order and with MOS transconductors exhibiting
any type of weak nonlinearity. Furthermore, the model of the
transconductors used in the algorithm accounts for finite output
impedance and offset. This allows the application of the al-
gorithm to filters with simple transconductors used in
certain cases under stringent speed and voltage supply require-
ments.

The results in this study extend the algorithm presented
in [30] that applies only to fully balanced weakly nonlinear

filters and does not account for finite output impedance
of the transconductors nor their offset.

For verification of the theoretical development, a
single-ended filter with weakly nonlinear MOS
transconductors has been designed on a 0.5- m technology.
The harmonic distortion of the filter has been derived using
CADENCE simulation and by applying the algorithm. The
results were found to be in good agreement.

This paper is organized as follows. Section II introduces the
model of trasconductors with weak, but otherwise arbitrary,
nonlinearity and the state-space model of weakly nonlinear

filters. Section III presents the structural decomposition
of weakly nonlinear filters and their approximate state-space
models. The derivation of the harmonic distortion, in the
case of filters having transconductors with identical
nonlinearity characteristics, performed done in Section IV.
Section V presents simplified versions of the distortion estima-
tion algorithm for filters with second- and third-order
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Fig. 1. Transconductor model.

nonlinearity. In Section VI, the algorithm is extended to
filters with transconductors having more than one nonlinearity
characteristic. CADENCE simulation results are presented
in Section VII and compared with those derived using the
proposed algorithm.

II. TRANSCONDUCTOR MODEL AND NONLINEAR

FILTER STATE-SPACE REPRESENTATION

This section introduces the mathematical models, state-space
formulation, notation, and assumptions used in this paper.

A. Transconductors With Weak Nonlinearity and Offset

Although the analysis and results in this paper are valid for
filters with single-ended or fully differential transcon-

ductors, single-ended notation is used for simplicity.
Fig. 1 shows the transconductor model used in this study. It

includes finite input and output impedances and nonlinear gain.
The output impedance is modeled by in parallel with .

Since the output is connected to a node of the filter,
can be considered as part of the node’s capacitance. The same
can be done for the input parasitic capacitance, . Therefore,
there is no need to include the parasitic capacitances explicitly in
the mathematical expressions. Also, since filters are al-
most always implemented in CMOS technologies no input par-
asitic resistance is considered.

Function in Fig. 1 captures the input–output – charac-
teristic (when the output is grounded) of the transconductor. We
assume that has a Taylor series expansion

(1)

where is the output offset current, is the (linear) gain of
the transconductor, and are the coefficients of the
second-order and higher order nonlinear terms.

It is common in practice that the offset and the nonlinear
terms are proportional to the (linear) gain ,
e.g., connecting two identical transconductors in parallel or dou-
bling the widths of the output MOS transistors results in twice
the gain and in twice the output offset current and the nonlinear
terms (at least in MOS transonductors). Therefore, we can write

(2)

where and function .
Similar reasoning leads to

(3)

for an appropriate dimensionless constant .
The nonlinear term in (2) is by assumption (absolutely)

small compared with the desirable term . From (1) and (2),
we have

which depends strongly on , and it can become absolutely
greater than 1 for sufficiently large . Therefore, the range of
must be taken into account. Let be an estimate of the max-
imum absolute value of that is expected during the operation
of the filter. Define

(4)

Parameter captures the “smallness” of the nonlinear terms
and, in most cases, knowledge of its exact value is not necessary.
It can be set using an empirical estimation or a simulation result.
Parameter has dimensions . Defining

(5)

we can write (1) as

(6)

Note that can take values comparable with and that
is small by assumption. Equation (6) models the transcon-

ductors’ behavior in the rest of the paper. Certain functions
will be considered, e.g., in fully differential transconductors, it
is .

Transconductance , parameters and , as well as function
can be derived by fitting a polynomial to the – character-

istic of the transconductor, as was done in Section VII. Analyt-
ical derivation of and and is also possible.

B. State-Space Models of Nonlinear Filters

A linear th-order filter (with ideal transconductors)
can be treated as a single-input single-output (SISO) linear dy-
namical system with, say, input , output , and state vector

, where is the voltage of the th capac-
itor, . In this case, the state-space equations of
the filter are

(7)
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Fig. 2. Transconductor model.

where is the system matrix and
is the input vector. Here, is the gain of the

transconductor with the input connected to node and the output
connected to node , as shown in Fig. 2. If such a transconductor
does not exist, then we set . Similarly, is the gain of
the transconductor from the input to the th (node) capacitor.

Finally, is the output row vector. If the output is
simply a state variable of the filter, as it is in many fil-
ters, then . If the output is a current,
then , where is the gain of the transconductor
from node to the output.

The transfer function of the filter is

Now, we derive the model of the weakly nonlinear filter based
on the transconductor’s model shown in Fig. 1 and the – re-
lation given by (6). It is assumed that the input and output par-
asitic capacitances of transconductors have been included into
the filter’s nodal capacitances ’s. It is

(8)

where is the output current of the tranconductor (mea-
sured with grounded output) and is the part of this
current consumed by . Similarly, the (total) current pro-
vided to the th node by the th input transconductor is given by
the sum of the last two terms.

Equations (3) and (6) are replaced in (8) to give

(9)

Some definitions are in order: is the
state vector, is the diag-
onal capacitance matrix, is the transconduc-
tance matrix, is the input transconduc-
tance vector, is the all-ones vector, and

is a vector function.
Equation (9) is written in vector form as

(10)

Grouping of the terms in (10) gives

(11)

Additional definitions are

(12)

(13)

(14)

(15)

Replacing (12)–(15) in (10), we obtain the system equation
of the nonlinear filter

The output of the filter can be either: 1) the voltage of a
filter’s node i.e., , where ,
with the 1 being in the th entry, or 2) in current form which
using (6) implies

(16)

where is the output vector and

(17)

In (16), the parasitic output impedance of the output transcon-
ductors have been ignored, (assuming that the input impedance
of the circuit following the filter is much smaller).

Summarizing the above, the mathematical model of the
weakly nonlinear filter used in this paper is given by (the
systems of)

(18)

(19)

Equations (18) and (19) should be compared with the system
(7) of the linear filter (bold matrices are used for the nonlinear
filter).

1) Example: Modeling a Second-Order Filter: The
general second-order - filter1 is shown in Fig. 3. If the

1A transconductor from the input directly to the output can be added to ac-
count for high-pass filters. Following the previous models, this path is static,
and estimating the distortion it introduces is straightforward.
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Fig. 3. General second-order G �C filter.

transconductors are linear, then the filter is modeled by the set
of equations (7), where

If the transconductors are nonlinear, then the filter is modeled
by the set of (18) and (19), where

and . These imply structural matrices

Fig. 4. G �C filter viewed as a cascade of three stages.

Fig. 5. Approximate system.

III. FILTER’S STRUCTURAL DECOMPOSITION

Throughout the paper, we assume that the (ideal) linear
system in (7) is asymptotically stable and the input of the filter
is .

The block diagram of the weakly nonlinear system modeled
by (18) and (19) is shown in Fig. 4. The system can be viewed
as a cascade of three stages, represented by operators
and , respectively, in the signal space2 such that

The response of the whole system is given by the composite
operation .

It is assumed that the transconductors are weakly nonlinear;
therefore, it is expected that the harmonic distortion introduced
is relatively small, i.e., the amplitudes of the harmonics are
much smaller than the amplitude of the fundamental in every
node of the filter. This leads to the approximation of the filter
shown in Fig. 5.

2We consider only the steady-state response of the stages in the case of a
sinusoidal input u.
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Fig. 6. Linearized second stage.

Fig. 7. Linearized third stage.

Notation: We use the decomposition of a signal in the form
, where contains the dc and the fundamental fre-

quency component, and contains the harmonic com-
ponents.3

Rationale: The input drives stage pro-
ducing . The distortion component is expected
to be very small compared with , and therefore it does not im-
pact the harmonic generation in stages and significantly.
It approximately propagates to the output through the linearized
versions of the stages and . The distortion introduced by

propagates similarly.
The linearized stages are shown in Figs. 6 and 7 where is

the dc component of . The offset of the transconductors must
be taken into account in the linearization.

Finally, the output of the system in Fig. 5 is an approxima-
tion of the output signal in Fig. 4. It contains the approximate
components of the fundamental and the harmonics generated by
all three stages; .

Remark: Variables and in Fig. 5 are approximations
of and in Fig. 4. The use of the same symbols should not
cause any confusion since from here on we consider only the
approximate system in Fig. 5.

IV. HARMONIC-DISTORTION ESTIMATION

Since the input is and the (ideal) linear filter
is assumed to be asymptotically stable, all signals in the filter
will be periodic4 of frequency and period [26].
Therefore, Fourier series representation can be used.

Definition 4.1: (Notation) For any vector or scalar signal
in the filter, we write

(20)

(21)

3The low-pass and high-pass filters following stages S and S in Fig. 5 in-
dicate this decomposition graphically.

4Some more technicalities are involved here.

for . Therefore, the Fourier expansion of is

Definition 4.2: (Notation) For function , defined by (5), and
for every real numbers , and , we define

for . Therefore, we can write

Similar notation is used for vector value function .
The derivation of the harmonic distortion is done in steps

using the approximate system in Fig. 5. First, we derive and
, then and , and finally .

A. Derivation of and

The input stage in Fig. 4 implies
, and thus can be approximated by

(22)

where , since and result only from the weak
nonlinearity and are small and proportional to . Note that the
offsets of the input transconductors are taken into account in .
For , we have that

(23)

where and .

B. Derivation of and

The derivation of is more tricky because it involves the
solution of the nonlinear dynamical system

(24)

(see Figs. 4 and 5). To this end, we employ regular perturbation
theory [27]–[29] to derive an approximate solution.

The solution is expressed as a power series of , i.e.,
, it is substituted into (24) and then the

coefficients of the powers of at the left-hand and right-hand
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sides of the equation are balanced. This results in an infinite set
of systems of differential equations

(25)

(26)

(27)

...

In principle, for sufficiently small and well-behaving , this
set of equations can be solved providing the exact solution. In
practice, the solution of the first two equations can provide an
accurate result for small perturbations, , [27]–[31].

From the result in Appendix I, (22), and (25), we have that

(28)

where and
. The solution of (26) is

(29)

where

(30)

(31)

(32)

for
Combining (29) and (30) and using the approximation

, we conclude that

(33)

(34)

C. Derivation of

First, we derive the distortion components of . From Fig. 5,
it is which, along with (33), gives

Operator in Fig. 7 can be approximated by . Since
in Fig. 5, using (34), we get

We also define . Operator is
linear and is derived using the result in Appendix I. Again,
we use the approximation as well as

. These lead to

The harmonic-distortion components of are given by the
sum . Therefore

(35)

where

(36)

and

(37)

The fundamental frequency components of are derived by
approximating the weakly nonlinear filter with the (ideal) linear
one. The dc component is not required here. We have

(38)

where

(39)

(40)

D. Harmonic-Distortion Algorithm

The harmonic-distortion algorithm is summarized below. The
vectors and matrices as well as parameters
and , and functions and , are defined in
Sections II–IV.

Index below ranges from 2 up to the highest order har-
monic that is taken into account. The auxiliary variables

, and are introduced to simplify notation.
DC terms proportional to have been dropped for simplicity;
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this should not impact the accuracy of the results as long as
function is sufficiently smooth:

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

Remark: The three terms of and correspond to distor-
tion components introduced by the input, core, and output stages
of the filter, respectively. If any of these stages is linear, or it is
missing, then the corresponding terms should be removed. The
THD is proportional to the “nonlinearity” parameter .

V. TWO SPECIAL CASES

Transconductors with large output impedance, in most cases
due to cascode output stages, and weak nonlinearity are fre-
quently used in filter designs. These assumptions lead to the fol-
lowing two special cases of harmonic-distortion estimation.

A. Transconductors With Second- and Third-Order
Nonlinearity, Zero Offset, and Infinite Output Impedance

In many filters, the output impedance of the
transconductors is large and does not influence the frequency
behavior significantly. In this case, experience indicates that
the harmonic-distortion behavior is not affected significantly
either. Moreover, in most cases, the even and odd weakly
nonlinear behaviors of the transcondunctors can be captured
by the second and third nonlinear terms, respectively (i.e., the
lowest even/odd nonlinear terms).

The above factors motivate the study of the general algorithm
for the special case where and (1) is of the form

. Following (2), we have
and, from (4), we get

(56)

where is the absolutely maximum value of (see the dis-
cussion in Section II-A). Function is

(57)

where and .
Since it is assumed that the transconductors have no offset, it

must be , and thus, from (41), we have . Therefore,
in the derivation of functions and in Definition
4.2, it is . We have

for all

Moreover, implies that and so

The above imply that

for all

where “ ” is the Hadamard (entry-wise) product, and

for
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Since and are zero for , the algorithm
provides only the second and third harmonics; therefore, all ex-
pressions depending on must be evaluated for only.

Using again, we get

and

Finally, the amplitudes of the harmonic components are

input

core

output

input

core

output

If any of the filter stages, input, core, or output can be con-
sidered linear or is missing, then the corresponding terms in the
above equations must be removed.

B. Transconductors With Third-Order Nonlinearity, Zero
Offset, and Infinite Output Impedance

Fully balanced transconductors exhibit (essentially only) odd
nonlinearity; moreover, the fifth-order and higher order non-
linear terms are typically negligible compared with the third-
order one. Their input offset voltage is usually small, and their
output parasitic impedance can be ignored in many cases, typi-
cally when the cascode output stage is used.

Under these assumptions, the harmonic distortion of the
filter can be derived using the theoretical development

in [30]. This subsection compares the reduced form of the more
general algorithm introduced here with the one discussed in
[30]. The two algorithms have been derived using different
structural decomposition of the filters (see the discussion in
Section III).

Given the above assumptions, (1) becomes ,
and is given by

(58)

Moreover, we set where .
Following the steps in the previous subsection, we get

and

with all other and being zero. Therefore, the
algorithm provides the amplitude of the third harmonic.

Since and using the above results, we get

(59)

(60)

with the remainder of and being zero. Similarly,
for all . Finally, we have

input

core

output

input

core

output

We conclude that, in the case of transconductors with third-
order nonlinearity, zero offset, and infinite output impedance,
the result above is identical to the derivation in [30].

VI. EXTENSION: TRANSCONDUCTORS WITH NONIDENTICAL

DISTORTION BEHAVIORS

In the case of filters with transconductors having non-
identical nonlinearity, the estimation of the harmonic distortion
is more involved; however, it can be done using the steps pre-
sented in Sections II–IV.

A. System Equations and Definitions

Consider the transconductor in the core of the filter with
gain , offset voltage , and nonlinearity function de-
fined as in Section II. To simplify the algebra, we can choose
the same value of parameter for all transconductors (e.g., the
maximum among all ). Parameters for the output imped-
ances are defined as before. Therefore, the currents of the core
transconductors are

(61)

and the currents of the input transconductors are

(62)

where and are defined accordingly, therefore

(63)

Now, let be the filter’s core offset ma-

trix, let be the input offset matrix, and
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and are the transconductance matrices de-
fined as before. Then, (63) becomes

where “ ” is the Hadamard product. Matrices and
are defined as before, and

(64)

(65)

System equations for the input and core become

(66)

The output transconductors (if they exist) give

(67)

(68)

where is defined as before and is the
output transconductors’ nonlinear functions matrix.

B. General Distortion Estimation Algorithm

We use the (scalar) functions , and to derive
the functions , and based
on Definition 4.2. Then, we define the matrix functions

and

, where , and are vectors, as

well as the vector functions

and for the scalars

and . We also set and

.
Based on the above, the algorithm in Section IV-D for

deriving the harmonic-distortion components and THD of
the filter is modified as follows. Vectors , and

are given by (41)–(43), respectively, and matrix is
given by (44); parameters and are replaced by

and , respectively, and parameters and
are introduced as

Fig. 8. Third-order Chebyshev type-I low-pass G �C filter.

input

core

output

input

core

output

Finally, , and THD are given by (50), (51), (54), and
(55), respectively.

VII. SIMULATION

Fig. 8 shows the topology of a third-order filter designed in
CADENCE on a 0.5- SiGe technology to verify the proposed
harmonic-distortion estimation algorithm.

It is a low-pass Chebyshev type-I filter with 2-dB ripple in the
pass-band and cutoff frequency MHz. The filter has no
output stage. The prototype transfer function is

(69)

and the state-space matrices used are given by

(70)

(71)

The values of the capacitors are pF,
pF, and pF. The gains of the transconductors are

A/V, A/V, A/V,
A/V, A/V, and A/V. A

prototype of the transconductor was designed using the basic
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Fig. 9. Transconductor’s topology used in the Chebyshev filter.

Fig. 10. Simulation results of the low-pass Chebyshev filter in Fig. 8. The
dashed–dotted line is the amplitude frequency response shifted by�30 dB. The
dashed line is the second-harmonic distortion derived using the algorithm. The
stars “*” correspond to CADENCE results. The solid line is the third-harmonic
distortion derived using the algorithm. The circles “o” correspond to CADENCE
results. Input amplitude of 0.5 V has been used in all estimations. The values of
the harmonics are normalized with respect to the amplitude of the fundamental.

topology in Fig. 9; then, by uniformly adjusting the widths and
biasing currents, the desirable gains were achieved.

CADENCE simulation (dc sweep) was used to extract the
– characteristics of the transconductors. The data was ex-

ported to MATLAB to perform polynomial curve fitting.
CADENCE simulation has also been used to extract the har-

monic-distortion components at the output of the filter. To this
end, transient simulation was done for every frequency point,
and the resulting waveform was fed to the fast Fourier trans-
form (FFT) function of SPICE.

The amplitudes of the harmonic-distortion components de-
rived using CADENCE simulation and those derived using the
distortion estimation algorithm, implemented in MATLAB, are
shown in Fig. 10.

The simulation and theoretical results are in good agreement.
The error is within a few decibels, and it is insignificant within
the passband.

VIII. CONCLUSION

A fast one-pass harmonic-distortion estimation algorithm for
filters has been introduced. It is based on state-space

representation of the filter and applies directly to filters
of any order with weakly nonlinear MOS transconductors ex-
hibiting any type of nonlinearity. It is formed out of a small set
of simple explicit formulas, involving the filter’s structural ma-
trices, that can be easily implemented in MATLAB.

The results of the algorithm have been compared with CA-
DENCE simulation in the case of the a single-ended
filter with weakly nonlinear transconductors designed on a 0.5-
m technology. The results of the algorithm and CADENCE sim-
ulation were found in good agreement.

APPENDIX I
SOLUTION OF THE LINEAR SYSTEM

The complete solution of the dynamical system

(72)

can be found in [32]

By assumption, the dynamical system is asymptotically stable
(i.e., matrix is Hurwitz) so and the
steady-state part of the system’s solution is

(73)
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