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Abstract—A state-space approach to estimating intermodulation
distortion in bandpass – filters with fully balanced, weakly
nonlinear transconductors is introduced. It results in compact ana-
lytic expressions applicable to – filters of any order. For veri-
fying the theory, two – filters with fully balanced weakly non-
linear transconductors have been designed using Cadence. They
have been simulated in SpectreS as well as modeled and simu-
lated in Simulink. Theory and simulation results are found in good
agreement.

Index Terms—Bandpass, circuit analysis, continuous-time filter,
distortion model, fast algorithm, fully balanced, fully differential,

– filter, intermodulation distortion (IMD), perturbation,
state-space model, weak nonlinearity.

I. INTRODUCTION

OVER the past few decades, continuous-time active filters
[1] have emerged in a vast variety of applications and sig-

nificant effort has been devoted to optimizing them.
– filters is one of the most popular classes of contin-

uous-time filters. The basic building block of – filters is
the integrator, typically realized by a linear transconductor and
a capacitor as shown in Fig. 1. Early implementations were done
in bipolar technology [2], [3] but the advances in CMOS tech-
nologies provided the ideal ground for them [33].

– filters, like all active filters, exhibit some nonlinear
behavior that is primarily due to the nonlinearity of their ac-
tive elements, i.e., the transconductors, and introduces distortion
to the signal. This work focuses on intermodulation distortion
that is particularly important in characterizing nonlinearity in
bandpass filters. Bandpass – filters are used in many ap-
plications like wireless communication where their nonlinearity
(and noise) determines the performance of the whole system. By
their nature, (narrow) bandpass filters suffer mainly from inter-
modulation distortion (IMD) and in most practical cases by the
third-order IMD .

IMD is the set of cross-product signals that are generated
when two or more sinusoidal signals (beats) are present at the
input of a non (perfectly) linear circuit. These spurious prod-
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Fig. 1. Transconductor model.

ucts are mathematically related to the original input signals. The
standard test input signal for IMD estimation is composed of
two beats at frequencies and ; and, it results in intermod-
ulation products (IMPs) at frequencies1 , where

. The sum is called the order of the
IMP, e.g., the second-order IMPs occur at frequencies
and ; the third-order IMPs appear at

and , and so on. Typically in a band-
pass filter (or system in general) the IMPs that are dominant and
usually important for the performance of the filter are the ones
occurring at frequencies within its passband. In standard IMD
two-beat tests, and are very close to each other and the
IMPs that pass through the filter are at and

for small values of . More-
over, typically in weakly nonlinear filters the magnitude of the
IMPs drops rapidly with their order. Because of that, in almost
all practical cases, IMD analysis and measurements in bandpass
filters focus on the third-order IMP at [16], [17]. Note
that the IMP at behaves similarly since .

The most popular metric of third-order IMD is the ratio
of third-order IMP at frequency over the amplitude of
the (desirable) signal at , i.e., is defined relatively to the
beat at , [9], [16]. Related measures of , mainly in RF am-
plifiers, are the third-order intercept point , the 1-dB com-
pression point , and the spurious-free dynamic range
(SFDR), e.g., [6]–[8] and [16].

Some circuits realize static (memoryless) input-output func-
tions and IMD estimation can be done at the transistor level
using algebraic techniques [26], [27], [17], [9]. This approach is
complemented by circuit techniques that enhance the linearity
of amplifying stages e.g., [5], [11], [12], [25].

Filters on the other hand are dynamical systems (they have
memory) which makes their IMD estimation a more compli-
cated problem. Volterra series is the most popular tool to ad-
dress it e.g., [13]–[15]. However, deriving analytical results is

1Throughout the paper, we do not distinguish between positive and negative
frequencies.
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practically possible only in low-order or specially structured fil-
ters (systems). A variant of the Volterra series approach for fre-
quency-domain analysis of weakly nonlinear circuits has been
presented in [28]. In most cases the Volterra series methods
lead to complicated algebraic expressions. However, in feed-
back amplifiers, exhibiting weak nonlinearity, the (harmonic)
distortion2 has been derived analytically without involving com-
plicated Voltera series analysis [29]. This, is done assuming
static tranconductance nonlinearity, and, provides useful guide-
lines in optimizing the designs of the amplifier and feedback
network [30]–[32].

An alternative frequency-domain approach for general
– filters was introduced in [18] where the total IMD

product of the filter is approximated by the sum of the IMD
products of the individual transconductors, linearly propagated
to the output of the filter through the corresponding partial
transfer functions.

The work presented in this paper was motivated by the need
for a low-complexity IMD estimation method that results in an-
alytical expressions valid for – filters of any order and
topology. In contrast to existing techniques, this paper intro-
duces a state-space approach to IMD estimation which is ap-
plied to – filters. This new approach leads to analytic ex-
pressions that explicitly depend on the structural matrices of the
filter and its component values providing a simple and very gen-
eral tool for the estimation of IMD. The resulting formulas are
independent of the order and the topology of the filter. Valida-
tion of the developed theory has been done by the design of two

– filters in a 0.5- m standard CMOS process using Ca-
dence, simulation in SpectreS, and in addition by modeling and
simulation of the filters in Simulink. The simulation and theo-
retical results were found in good agreement.

The paper is organized as follows: Section II introduces the
definitions, assumptions, notation and state-space modeling of
the weakly nonlinear – filters. Section III presents a de-
composition of the filter and the derivation of . Section IV
presents the simulation’s setup and results, and the comparison
between the theory and simulation results. Appendix D sum-
marizes the IMD derivation as an algorithm that is very easily
implemented in MATLAB.

II. TRANSCONDUCTOR AND – FILTER MODELS

The mathematical models, state-space formulation, notation,
and assumptions used throughout the paper are introduced in
this section.

A. Fully Balanced Weakly Nonlinear Transconductors

In this work, we study – filters based on fully balanced
transconductors with weak nonlinearity. The motivation for
doing so results from the fact that fully balanced (differential)
transonductors are almost always preferred in low-distortion
linear circuits, such as filters, due to their significantly higher
linearity [1], [3], [8], [33], [12]. For convenience, however, we
use the single-ended notation in Fig. 1. The subscripts of the
gain, , and current, , indicate that the input is connected
to node and the output is connected to node .

2Tools for deriving harmonic distortion sometimes apply to the derivation of
IMD and vice versa.

Because of its balanced structure a fully differential (bal-
anced) transconductor exhibits mainly odd-order nonlinearity
and so can be expressed as:

. Also, in most practical cases, the fifth and higher order terms
are negligible compared to the third-order term and can be safely
ignored, i.e.,

(1)

These assumptions are typical in estimating the distortion of
filters with fully balanced transconductors [14], [18] and are
adopted here as well. Moreover, in many practical cases the
coefficient of the third power, , is proportional to , i.e.,

. This condition is used in the paper to reduce alge-
braic complexity although the theory is applicable to the more
general case (see footnote in Section II-C and Appendix A). It
gives

(2)

The transconductance and the (small) constant , which
has units of , can be derived analytically (Appendix A)
or numerically by fitting a third-order polynomial to the
characteristic of the transconductor.

B. Example: State-Space Model of Second-Order Fully
Balanced – Filter With Weak Third-Order Nonlinearity

The theoretical development in the paper is based on state-
space representation of – filters in the form of a linear
(finite dimensional) dynamical systems

The state vector is in and its entries are the voltages
of the capacitors in the – filter. Matrices and
are and 1 1 respectively. Since only
replicates the input at the output, it is omitted without loss of
generality.

Consider the bandpass – filter in Fig. 2 for example. The
state-space formulation of the filter is given by the following
system of differential equations

(3)

and the output algebraic equations:

t

(4)

Also, in this work, the input is the standard two-beat signal
used in IMD estimation

(5)
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Fig. 2. Second-order bandpass G –C filter.

The weak third-order nonlinearity of the transconductors
is taken into account by incorporating expression (2), of the
transconductors’ output currents, into (3) and (4). So

(6)

(7)

Hadamard’s product is used in the formulation above: for
any two -dimensional vectors and

their Hadamard product is defined as
and the Hadamard’s th

power is .
Note that in many – filters the output is a capacitor’s

voltage. In Fig. 2 for example, if we take as the output signal,
then (there is no output transconductor and) expression (7) be-
comes , which is linear.

C. State-Space Model of General th-Order Fully Balanced
– Filter With Weak Third-Order Nonlinearity

The state-space model of a general th-order – filter is
given by the system (8) and (9) below. The state variables are
the capacitors’ voltages to

...
...

...
. . .

...
...

...

(8)

and

...
...

(9)

The state-space model for the general fully balanced
th-order – filter with weak third-order nonlinearity is

derived by combining (8) and (9) with (2). It is3

(10)

(11)

where and . Again,
“ ” stands for Hadamard product.

Finally, in certain high-Q bandpass – , filters we may
have to take into account the parasitic output impedance of the
transconductors in order to accurately estimate the frequency
response of the filter. The parasitic output impedance is typi-
cally modelled as a parallel . The capacitor can be incor-
porated into the filter’s node capacitor. The resistor, , can be
modeled as another transconductor whose input and output are
connected to this node. The weakly nonlinear transconductor
model, (2), introduced above can be used; assuming that is
relatively large, the weak nonlinearity should not cause any sig-
nificant error. This way, the system (10) and (11) remain valid.

III. – FILTER’S STRUCTURAL DECOMPOSITION

Our state-space IMD estimation approach is based on: i)
structural decomposition of the filter into a cascade of three
(weakly nonlinear) stages; and, ii) derivation of the distor-
tion introduced by each stage and linear propagation of it to
the output. The principle resembles that in [18] but here we
consider the stages instead of the transconductors as the basic
elements introducing distortion.

The block diagram of the weakly nonlinear – filter,
modeled by (10) and (11), is shown in Fig. 3. The filter (con-
sidered as a dynamical system) is viewed as a cascade of three
stages: the input stage that corresponds to signal operator ,
the filter core stage, operator and the output stage, operator

. It is

and

The total response of the system is given by their composition
.

Regarding and it is important to mention the fol-
lowing two facts.

1) Since this work focuses on the derivation of IMD with
two-beats input signal ,

3If there is no constant � such that e = �g , in (1), then system (10) and
(11) must be replaced by the more general ones _x = Ax+Ex +bu+hu
and y = c x+q x , whereE;h; and q are the corresponding matrices for
the third-order nonlinear terms. Although the algebra is more involved in this
case, the steps presented in this work can be followed exactly to derive the total
distortion of the filter.
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Fig. 3. Block diagram of the weakly nonlinear G –C filter.

only the steady-state behavior of the filter is taken into con-
sideration. To this end, the (linear) filter is assumed asymp-
totically stable by design (i.e., all eigenvalues of matrix
have negative real parts) and operator maps signal to
the steady state, , of the system.

2) Although the input and output stages and are static
functions, and distortion due to static nonlinearities has
been studied extensively, the filter core has dynamics
making the IMD estimation problem more challenging.

To deal with operator regular perturbation theory is em-
ployed in Section III-D.

Each of the three stages4 is naturally decomposed into two
parts, the linear one (ideal) and the nonlinear one (representing
the nonlinearity of the stage). We write

(12)

The decomposition of and is implied directly from Fig. 3,
that is

(13)

The linear part of is the steady-state response of the
(asymptotically stable) linear system , i.e.,

(steady state). Operator is defined as
i.e., is the difference between the steady-

state responses of the nonlinear and the linear systems shown in
Fig. 4.

The decomposition of the stages (12) is shown in the block
diagram of Fig. 5. The cascade in Fig. 5 from the input to the
output of the filter, can be decomposed into
eight signal paths,5 namely

and the output signal is written as

(14)

4From now on, each of the three stages is identified with its operator and the
terms stage and operator are used indistinguishably.

5More discussion on the decomposition into these eight signal paths can be
found in [34].

Fig. 4. Definition of operator S .

Fig. 5. Filter as a cascade of decomposed stages.

Each summand in (14), i.e., each signal path, is composed out
of three operators. Since we consider only weakly nonlinear fil-
ters, it is expected that operators and have a minor
contribution to the output signal. All the more, compositions of
two or three of the nonlinear operators or in a signal
path should result in a negligible signal component. Therefore,
keeping only the signal paths with at most one nonlinear op-
erator should result in a good approximation of the filter’s be-
havior. In other words, from (14), we have

(15)

Finally, the input signal is the two-beat
, used for IMD estimation, and following the discus-

sion in the introduction, we are interested in the IMD compo-
nents at frequencies and . Moreover, because
of the symmetric form of , only one of them is really needed.
To this end, we focus only on the frequency components of at

and . The following notation is used:

Sum of signal components of at frequencies

and (16)

E.g., if
,
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Fig. 6. Linear (ideal) system.

Fig. 7. Block diagram of input stage’s nonlinearity.

then . To
simplify notation we set

In the following sections, the contributions of the three stages
to the total IMD are derived using (15) and (16). Specifically, the
four dominant signal paths, i.e.,

and are studied. Finally note that the
nonlinearity of the input and output stages is static and can be
easily addressed. On the contrary, the nonlinearity of the filter
core is dynamic and much more involved to analyze.

A. Ideal (Linear) System: Operator

The first term, , in expression (15) corresponds
to the ideal (linear) filter shown in Fig. 6 with state-space rep-
resentation

(17)

For input , the steady-state
output signal is given by (18), where is the identity
matrix. The details of the derivation are available in Appendix B
[(56) and (57)]

(18)

B. Input Stage Nonlinearity: Operator

The second term, , in (15) models the distortion
of the input transconductors and its propagation to the output of
the filter, based on the approximations discussed in Section III.
These are modeled by the block diagram in Fig. 7 and (19)

(19)

Fig. 8. Block diagram of output stage’s nonlinearity.

By replacing into
(19), solving the dynamical system and keeping only the
steady-state output signal components at frequencies
and we get given by (20). The details can be
found in Appendix B

(20)

C. Output Stage Nonlinearity: Operator

The fourth term in expression (15) captures the
distortion introduced by the output stage. The corresponding
block diagram is shown in Fig. 8 and the dynamical system
model is

(21)

The steady-state solution of system (21), for
, is (Appendix B)

(22)

where

(23)
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Fig. 9. Block diagram of filter core’s nonlinearity.

Constants and depend linearly on ampli-
tudes and . It is convenient to define the corresponding
constants without the amplitudes, (24), as well. Note that

and are all real column vectors
of size

(24)

The output is proportional to the third Hadamard power
of . The complete expression of is given in Appendix C.
By keeping only the components of at frequencies
and and multiplying from the left with , we get

(25)

where

(26)

Column vectors and are independent of the ampli-
tudes and . Column vectors and are
third-order homogeneous functions of .

D. Nonlinear Filter Core: Operator

The nonlinearity of the core is captured by the third term,
, in expression (15) corresponding to the block

diagram of Fig. 9. Derivation of the IMD is more involved here
(versus input, output stages) since we have a dynamical system
with nonlinear feedback path.

By definition, , is the deviation of the filter core’s
behavior from that of the ideal (linear) one. This deviation is a

“small” perturbation of the linear system and is treated in the fol-
lowing subsection using regular perturbation theory [20]–[22].

1) Modelling Weakly Nonlinear Behavior Using Regular Per-
turbation Theory: The dynamics of the weakly nonlinear core
is modeled by the system of differential equations

(27)

where is the small nonlinearity parameter of the
transconductors.6 Following [21], the solution of (27) can be
written as an infinite power series on , i.e.,

(28)

Replacing (28) into (27), we get

Expanding and grouping terms according to the power of
gives

Combining the last two equations and grouping the terms
based on the power of results in

(29)

The solution of (29) can be derived by solving the following
(infinite) set of differential equations resulting from (29) by
equating left and right terms based on the power of , i.e.,

(30)

(31)

(32)
...

In principle, this infinite set of differential equations can be
solved sequentially providing the exact . However, since is
assumed small and all distortion components are also expected
to be small relatively to the desirable signals at frequencies
and can be approximated by only the first two term in
series (28), i.e., .

Note that (30) models the linear filter (the top equation (21))
and so is given by (33) with and given by
(23).

(33)

The third Hadamard power of needed to solve (31)
is given by (62) in Appendix C. Moreover, (31) is linear in

and so only the components of at frequencies
and are required since they generate the

6See also Appendix A.
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corresponding ones of . By taking advantage of the cal-
culations done in Section III-C, we get (34) where constants

and are given by (26)

(34)

Using the derivation in Appendix B it is concluded that

From Fig. 9, we get
which reduces to fol-

lowing the approximation . Therefore, it is

(35)

E. Total IMD

The total response of the weakly nonlinear filter is approxi-
mated7 by the superposition of the four signal paths analyzed in
Sections III-A–III-D. Therefore,

7
. . . for IMD estimation. See the discussion leading to expression (15).

which implies whose
summands are given by (18), (20), (35) and (25). Specifically,
the total component at the output at frequency

is given by (36) [using (20), (35), and (25)]

(36)

where

(37)

(38)

and .
It is worth mentioning that and are indepen-

dent of and . Also, expressions (37) and (38) are the sums
of the frequency components at introduced
by the input, the filter core and the output stages divided by the
factor . If a stage is linear, or, it does not exist (e.g.,
the output may be a state variable ), the corresponding terms
in (37), (38) must be removed. Finally, the amplitude of is

(39)

The total component at the output at frequency (similarly
for ) is shown in (40), at the bottom of the page.

The component at is dominated by the response of the
linear (ideal) filter . This approximation is used in the cal-
culation of . The rest of the terms in (40) are used to estimate

(40)
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the relative error in calculation using the proposed method.
Therefore

(41)

with amplitude shown in (42), at the bottom of the page.8

The part of (40) resulting from the filter’s weak nonlin-
earities is

where

(43)

and .
The amplitude of , given by (44), is typically negli-

gible with respect to . The ratio is used later in
this section as an indicator of the percentile error of the es-
timate

(44)

Signal component and the corresponding amplitude
are derived from (40)–(44) simply by interchanging with
and with .

Finally, the standard definition of the third-order IMD re-
ferred to input component at , [16], [17], ,
and expressions (39), (42) we give

(45)

where is given by (46), shown at the bottom of the page.
Note that depends only on ideal filter’s parame-

ters, i.e., matrices , and , and frequencies and ; it is
independent of the amplitudes and .

It is worth comparing (45) to the introduced by a static
weakly nonlinear function of the form

8Note that w (c (w I+A ) b) + (c (w I+A ) Ab) =
jc (jw I�A) bj, because ŷ (t) is the response of the linear filter with
transfer function c (jwI�A) b at frequency w = w .

Fig. 10. Magnitude of the transfer function in linear scale.

where .
In the static case, the referred to input component at ,
is , (e.g., [16], [17]). Note first
that in the I-V characteristic of the transconductors, expression
(2), equals . Moreover, it can be verified from (46) that

when . Therefore, in the low-fre-
quency regime, derived in this work equals .

To illustrate the role of function lets consider the
weakly nonlinear filter in Fig. 2 (and Fig. 14, shown later) with
parameters given by (47). It is a Tow–Thomas bandpass bi-
quad, centered at 10.7 MHz, [4] and it is discussed in detail in
Section IV

(47)

The amplitude of the transfer function of the filter is shown
in Fig. 10 and function is shown in Fig. 11. Com-
paring the figures and using (45) it is concluded that distortion
is approximately maximized when the input frequencies
coincide with the peak frequency of the bandpass filter.

A rough estimate of the error in the evaluation of is
given by the ratio . The rationale is that is the
zeroth-order approximation of the amplitude at with respect

(42)

(46)
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Fig. 11. J(2�f ; 2�f ) in linear scale.

Fig. 12. A =A as a function of f ; f with k = k = 0:01 V.

to nonlinearity parameter , while represents the size of the
components at linearly depending on . The ratio is shown
in Figs. 12 and 13 as a function of , when
V and V, respectively.

IV. SPICE AND MATLAB SIMULATION

Two filters were designed in a standard CMOS 0.5- m
process using Cadence. SpectreS (SPICE) and Simulink
(MATLAB) simulation was performed to verify the pro-
posed methodology. The experimental setup is introduced in

Sections IV-A and IV-B and the results are discussed in detail
in Section IV-C.

A. Test Circuit 1: Tow–Thomas Bandpass Filter

The first test filter is the fully differential, second-order
Tow–Thomas bandpass in Fig. 14. The filter’s input is

and the state variables are the
differential voltages and .
The output is and so there is no output stage as in
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Fig. 13. A =A as a function of f ; f with k = k = 0:1 V.

Fig. 14. Designed Tow–Thomas biquad filter.

Fig. 2. The state-space equations of the ideal (linear) filter and
the corresponding structural matrices , and are

(48)

and

(49)

The transfer function of the filter is

(50)

where

and (51)

The fully differential transconductor used in the filter is
shown in Fig. 15. Its balanced structure suppresses even-order

nonlinearities. The differential pair - is primarily respon-
sible for the (odd-order) nonlinearity of the transconductor.
Common mode feedback is realized by and .

The central frequency of the second-order bandpass filter is
MHz and the quality factor is . The values of

the transconductances and capacitors are given in Table I.
Since there is no output stage, the calculation of and

is done by ignoring the last terms in expressions (37) and
(38).

Parameter was estimated by curve-fitting: the I–V charac-
teristic of the transconductor was derived from Cadence (Spec-
treS) simulation; a third-order polynomial was fit to it. The esti-
mated value of is in Table I. Analytical estimation of is also
possible (Appendix A).

B. Test Circuit 2: Fourth-Order Cascade Filter

The fourth-order bandpass filter in Fig. 16 is a cascade of two
Tow–Thomas biquads identical to that in Section IV-A. Being a
cascade, this filter is used to verify and demonstrate the pro-
posed methodology, and also, to illustrate the validity of the
main assumption in Section III, i.e., superposition of IMD com-
ponents generated by different parts of the circuit can be used
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Fig. 15. Transconductor’s circuit.

TABLE I
SECOND-ORDER FILTER’S PARAMETERS

as long as the circuit components are weakly nonlinear; in this
case we want to verify that the estimated total IM at the output
is approximately equal to the sum of that of the first biquad, (lin-
early) propagated through the second one, plus the IM of the
second biquad.

The input signal is and the
state variables are the differential voltages

. The state-space equations of the ideal (linear)
filter are

(52)

and

(53)

The fully differential transconductors are identical to those
used in Section IV-A and are shown in Fig. 15. The of the
filter is 32. Again, there is no output stage and so the calcula-
tion of and is done by ignoring the last terms in ex-
pressions (37) and (38), respectively. The value of the nonlinear
scale factor is the same as before and is shown in Table II
along with the values of the transconductances and capacitors.

TABLE II
FOURTH-ORDER FILTER’S PARAMETERS

C. Simulation Results

Two sets of experiments were performed on both filters: Spec-
treS (SPICE) simulation, using bsim3v3 transistor models [24],
and Simulink6 © simulation of the weakly nonlinear state-space
models of the filters. Comparison between SpectreS and theory
provides an estimate of the error in IMD calculation that is
due to: simplifications and assumptions needed to extract the
(weakly nonlinear) state-space model of the filter as well as all
mathematical approximations. Comparison between Simulink
and theory provides an estimate of the IMD calculation error
due to: the approximate solution of the nonlinear system of dif-
ferential equations using the perturbation technique (here the
third-order IMD components generated by higher perturbation
terms are omitted).

1) Tow–Thomas Bandpass Filter: Two tests were performed
on the second-order filter: 1) The filter was driven by

with mV, 10 mV
and 100 mV, using three pairs of frequencies around the
central frequency of 10.7 MHz. The amplitudes of the output
signal components at frequencies and , esti-
mated using SpectreS simulation, Simulink and the proposed
theory are shown in Table III. The error values are the dif-
ferences between SpectreS and theory. All amplitudes are ex-
pressed as (Amplitude in Volts). 2) The filter was driven
by with MHz,

MHz using three different pairs of amplitudes .
The results are shown in Table IV.

2) Fourth-Order Cascade Filter: The fourth-order cascade
filter was simulated with input signal

with mV, 10 mV, 100 mV and
MHz, MHz. The amplitudes of the output

signal components at frequencies and , estimated
using SpectreS simulation, Simulink and the proposed theory
and are shown in Table V. As before, the error values are the
differences between SpectreS and theory.

3) Comments: In all cases the theoretical results are very
close to those from SpectreS and Simulink simulation. The
largest errors appeared using the smallest input amplitudes in
which cases the intermodulation signal at is about 110
dB below the referenced input at and therefore negligible
for most applications. Finally, the IM of the cascade is indeed
very close to two times (6 dB) that of the second-order filter as
expected since all three frequencies and are
very close to the central frequency of the filters corresponding
to unity gain.

V. CONCLUSION

The IMD of – filters with fully balanced weakly non-
linear transconductors was derived using state-space modeling
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Fig. 16. Designed fourth-order bandpass filter.

TABLE III
SIMULATION RESULTS OF THE SECOND-ORDER FILTER WITH k = k = 1, 10, AND 100 MV, AND THREE PAIRS OF FREQUENCIES f ; f . THE ERRORS ARE THE

DIFFERENCES BETWEEN THEORETICAL AND SPECTRES SIMULATION’S RESULTS. AMPLITUDES ARE EXPRESSED AS 20 log (AMPLITUDE IN VOLTS)

and mathematical techniques based on systems and perturbation
theory. The presented method results in low complexity analytic
algebraic expressions that are valid for filters of any order and
depend explicitly on the structural matrices of them. These prop-
erties make the proposed method a candidate for IMD estima-
tion in optimization tools for – filters where iterations of
the design are evaluated for IMD, noise, power, area and other
specifications.

To verify the theory, a second- and a fourth-order – fil-
ters with fully balanced weakly nonlinear transconductors were
designed, in a 0.5- m standard CMOS process, using Cadence
and were simulated in SpectreS. They were also modeled and
simulated in Simulink. The IMD derived using the proposed
theory was found in good agreement to that extracted from Spec-
treS and Simulink simulation results.

APPENDIX A

To derive the nonlinearity parameter “ ” of a transcon-
ductor’s I–V characteristic, modeled by (2), we can either: ex-
tract the I–V characteristic using simulation and fit a third-order
polynomial to it; or, derive the analytic I–V expression and use
Taylor expansion. The second approach is demonstrated here
for the case of the transconductor in Fig. 17.

By setting and
, and using MOSFET’s aproximate equa-

tion it can be shown that

(54)
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TABLE IV
SIMULATION RESULTS OF THE SECOND-ORDER FILTER WITH f = 10:7

MHZ, f = 10:8 MHZ AND THREE PAIRS OF DIFFERENT AMPLITUDES

k ; k . THE ERRORS ARE THE DIFFERENCES BETWEEN THEORETICAL AND

SPECTRES SIMULATION’S RESULTS. AMPLITUDES ARE EXPRESSED AS 20 log
(AMPLITUDE IN VOLTS)

TABLE V
SIMULATION RESULTS OF FOURTH-ORDER FILTER. THE ERRORS ARE THE

DIFFERENCES BETWEEN THEORETICAL AND SPECTRES SIMULATION’S

RESULTS. AMPLITUDES ARE EXPRESSED AS 20 log (AMPLITUDE IN VOLTS)

Fig. 17. Basic transconductor amplifier.

Using the Taylor expansion , expression
(54) gives

(55)

By comparing (55) to the model (2) we conclude that
and .

APPENDIX B

The complete solution of the dynamical system

(56)

is [23]

By assumption, the dynamical system is asymptotically stable
(i.e., matrix is Hurwitz) so and the
steady-state part of the system’s solution is

(57)

Moreover, if , then

(58)

where . Substituting (58) in (19) and superim-
posing the solutions of (19) for each of the frequencies in (58),
implies that (59), shown at the bottom of the next page, is true.

Definition (16) and expression (59) provide that

(60)
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APPENDIX C

The third Hadamard power of the vector9

(61)

is given by expression (62), shown at the bottom of the page.

APPENDIX D
STEPS TO DERIVE

1) Derive the state-space description of the -C filter.
Derive matrices and of the ideal (linear) filter. De-
rive nonlinearity parameter of the transconductors, ana-
lytically (Appendix A), or by fitting a third-order polyno-
mial to the – characteristic of the transconductors.

2) Form the input signal .
Choose the amplitudes and the frequencies
of the input signal .

9h ; p ; h and p are column vectors of size n.

3) Calculate and using (24)

4) Calculate and using (26)

5) Calculate as well as and
using (37) and (38), which are replicated at the top of
the next page for convenience. Remark: Terms corre-
sponding to linear or nonexisting stages of the filter
must be ignored.

(59)

(62)
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6) Calculate using (46), we obtain the second
equation shown at the top of the page.

7) Calculate relatively to frequency component at
using (45)
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