
1988 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 11, november 2006

Diophantine Frequency Synthesis
Paul Peter Sotiriadis, Member, IEEE

Abstract—A methodology for fine-step, fast-hopping,
low-spurs phase-locked loop based frequency synthesis is
presented. It uses mathematical properties of integer num-
bers and linear Diophantine equations to overcome the
constraining relation between frequency step and phase-
comparator frequency that is inherent in conventional
phase-locked loop based frequency synthesis. The method-
ology leads to fine-step, fast-hopping, modular-structured
frequency synthesizers with potentially very low spurs, es-
pecially in the vicinity of the carrier. The paper focuses on
the mathematical principles of the new methodology and
the related number theoretic algorithms.

I. Introduction

Fine-frequency synthesis1 is fundamentally impor-
tant to positioning and navigation (GPS), time keep-

ing (atomic clocks), scientific instrumentation, certain
radar and communication systems, and many other ap-
plications.

Several fine-step frequency synthesis architectures have
been proposed; a rich collection can be found in [1] and
[2]. The different schemes can be roughly organized into
three classes: multi-loop, fractional, and direct digital syn-
thesizers. Many hybrids also exist.

Multi-loop architectures [1] can provide clean output
signal at the cost of complexity, physical size, and, in cer-
tain cases, of frequency hopping speed. Complex hardware
implementations are typical and large dividers are not un-
common.

Fractional synthesizers [2] provide fine frequency resolu-
tion and fast hopping with low complexity hardware, but
they suffer from spurious signals very close to the carrier
due to their inherent weak FM modulation.

Direct digital synthesis (DDS) [3] (or numerical oscil-
lators) is a convenient approach to fine step, large range,
and fast hopping frequency synthesis using standardized
building blocks. In almost all cases, the output signal is
not purely periodic because of truncation errors generated
in the phase accumulator and the digital-to-analog con-
verter. This results in spurious signals very close to the
carrier [4]–[7]. The general spectral purity is also limited
by the digital-to-analog converter [3], [8]. Also, DDS usu-

Manuscript received January 25, 2006; accepted April 16, 2006.
This work was supported in part by the Defense Technical Informa-
tion Center 06MISP7 - Johns Hopkins University Applied Physics
Laboratory, Laurel, MD.

The author is with the Department of Electrical and Computer
Engineering, The Johns Hopkins University, Baltimore, MD 21218
(e-mail: pps@jhu.edu).

Digital Object Identifier 10.1109/TUFFC.2006.139
1The terms “fine (frequency) step,” “high resolution,” and “fine-

frequency synthesis” are used interchangeably in this paper.

ally results in higher power consumption than other ap-
proaches (e.g., fractional-N synthesizers).

This paper introduces the Diophantine Frequency Syn-
thesis2 (DFS), a new approach to fine-step frequency syn-
thesis (e.g., 10−10 fractional resolution) that is based on
mathematical properties of integer numbers and linear
Diophantine equations. By definition, Diophantine equa-
tions are algebraic equations whose solutions are required
to be integers [9].

DFS uses two or more basic phase-locked loops (PLLs).
The output frequencies of the PLLs are added or sub-
tracted to give the output frequency of the synthesizer.
DFS provides the mathematical algorithm for choosing the
fixed sizes of the prescalers and for adjusting the sizes of
the feedback dividers.

DFS offers a significant advantage: it leads to PLL-
based architectures for which the output frequency step
can be made arbitrarily small (e.g., 10−10 fractional reso-
lution) without using large prescalers or small reference
frequencies. This allows for simultaneously having very
small output frequency step and high phase-comparator
frequencies resulting in large loop bandwidths and there-
fore fast frequency hopping. DFS distributes the frequency
resolution among the PLLs.

This paper focuses on the mathematical foundations of
DFS. A complete mathematical framework is introduced
along with the algorithms needed to calculate all the re-
quired parameters of the synthesizers.

The paper is organized as follows: Section II introduces
the notation and assumptions used throughout the paper.
Section III introduces DFS through two simple examples
by emphasizing intuition and avoiding mathematical de-
tails. Section IV discusses the general high-level architec-
ture for DFS. Section V lays out the formal mathematical
framework of DFS. Sections VI and VII present examples
of fixed and variable frequency DFS schemes. Appendices
A and B provide an additional lemma and a MATLAB
implementation of the algorithm in Section V.

II. Notation and Assumptions

In this work we consider frequency synthesis architec-
tures involving two or more basic PPLs3 like the one in

2Patent pending, Johns Hopkins University Applied Physics Lab.
3The steady state behavior of the basic PLL is the following: A

periodic signal of frequency fin, enters the prescaler (divider N) pro-
ducing another periodic signal of frequency fin/N at the one input
of the phase comparator (PC). Similarly, the frequency fout of the
output periodic signal is divided by the feedback divider (n̂) result-
ing in a signal of frequency fout/n̂ entering the other input of the

0885–3010/$20.00 c© 2006 IEEE

sotiriadis: diophantine frequency synthesis 1989

Fig. 1. Basic PLL.

Fig. 2. Simplified schematic of the basic PLL.

Fig. 1. Note that the phase comparator (PC) may be a
phase-frequency comparator as well.

Throughout this paper, the prescaler (divider N) is as-
sumed to have a fixed size, N . The size of the feedback
divider, n̂, is the sum n̂ = n̄ + n, of a fixed value n̄ and
a variable n which can take both negative and positive
values within a predefined range. For all values of n, n̂ is
positive. The output frequency of the PLL is

fout =
n̂

N
fin.

Since the focus of this work is on high-level architecture
of frequency synthesizers using basic PLLs and not in the
technical details of the individual PLLs, Fig. 2 is used for
convenience instead of Fig. 1. It is agreed, however, that
simplification of the fraction n̂/N is not allowed, i.e., n̂/N
and kn̂/(kN) correspond to two different PLLs.

Note that frequency synthesis using a single PLL, as
that in Fig. 1, implies frequency steps that are equal to
the phase-comparator frequency, i.e., equal to fin/N . This
means that small frequency step (using large N or/and
small fin) requires low phase-comparator frequency fin/N
and therefore small loop bandwidth [1], [2]. The last one
implies slow frequency hopping and possibly increased spu-
rious signals close to fout. DFS overcomes these problems
and allows for both high phase-comparator frequency and
very small frequency step at the same time.

Mixing of two signals at frequencies f1 and f2 is denoted
as in Fig. 3 where the outcome can be either f1 + f2 or
f1−f2. The context in the paper always indicates whether
the sum or the difference is considered. Note however that,
as shown in the following sections, the choice of the sum
or the difference dictates only the central frequency of the
output signal but neither the resolution nor the range of
the DFS synthesizer.

Similar notation is used for the mixing of three or more
signals. In a circuit implementation this can be done by

phase comparator. The phase comparator derives the phase differ-
ence of the two signals and feeds it to the voltage controlled oscillator
(VCO) through the loop filter. At the steady state, fout/n̂ = fin/N ,
any fluctuation of the phase difference ∆φ between these two signals
results in a correction of the VCO phase so that ∆φ remains close
to a predefined value. More information on PLLs can be found, for
example, in [1], [2], and [10].

Fig. 3. Mixer.

Fig. 4. A simple DFS scheme.

sequentially mixing pairs of signals and the choice of the
pairing usually influences the quality of the output.

Minimization of the mixing spurs also involves the
choice of the central frequencies and frequency ranges of
the mixed signals, the choice of the sum or difference of
their frequencies, and, of course, the type of the mixer. The
examples in the paper provide some indications regarding
these decisions; however, the goal of this paper is only to
lay out the mathematical foundations of DFS.

III. Two Motivating Examples

Two examples of DFS synthesizers are discussed first to
illustrate the intuition of the approach. The mathematical
details are postponed to Section V.

A. Example 1

DFS uses mathematical properties of integer num-
bers to achieve a very fine frequency step without using
large frequency dividers. Specifically, it combines the out-
puts of two or more PLLs with (small) prescalers, say,
N1, N2, . . . , Nk (and small feedback dividers), to achieve
output frequency resolution equal to fin/(N1 N2 · · · Nk)
and output frequency range 2fin. Small prescalers imply
high phase-comparator frequencies, fin/Ni, and fast fre-
quency hopping.

Consider the simple architecture of Fig. 4 consisting of
two PLLs whose output frequencies are summed giving

fout =
(

n1

3
+

n2

5
+

12
3

+
16
5

)
fin. (1)

The prescalers are 3 and 5 (fixed). Let the feedback
dividers, 12 + n1 and 16 + n2, be variable with

−3 ≤ n1 ≤ 3 and −5 ≤ n2 ≤ 5,

1990 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 11, november 2006

TABLE I
Frequencies Synthesized by the DFS Architecture of Fig. 4.

fout =
(

n1

3
+

n2

5
+

12
3

+
16
5

)
fin

n1 n2
fout

fin
=

(
n1

3
+

n2

5

)
+

(
12
3

+
16
5

)
−3 0 93/15 = −15/15 + 108/15
−1 −3 94/15 = −14/15 + 108/15
−2 −1 95/15 = −13/15 + 108/15
−3 1 96/15 = −12/15 + 108/15
−1 −2 97/15 = −11/15 + 108/15
−2 0 98/15 = −10/15 + 108/15
−3 2 99/15 = −9/15 + 108/15
−1 −1 100/15 = −8/15 + 108/15
−2 1 101/15 = −7/15 + 108/15
−3 3 102/15 = −6/15 + 108/15
−1 0 103/15 = −5/15 + 108/15
−2 2 104/15 = −4/15 + 108/15
−3 4 105/15 = −3/15 + 108/15
−1 1 106/15 = −2/15 + 108/15
−2 3 107/15 = −1/15 + 108/15

0 0 108/15 = 0/15 + 108/15
−1 2 109/15 = 1/15 + 108/15
−2 4 110/15 = 2/15 + 108/15

0 1 111/15 = 3/15 + 108/15
−1 3 112/15 = 4/15 + 108/15

1 0 113/15 = 5/15 + 108/15
0 2 114/15 = 6/15 + 108/15

−1 4 115/15 = 7/15 + 108/15
1 1 116/15 = 8/15 + 108/15
0 3 117/15 = 9/15 + 108/15
2 0 118/15 = 10/15 + 108/15
1 2 119/15 = 11/15 + 108/15
0 4 120/15 = 12/15 + 108/15
2 1 121/15 = 13/15 + 108/15
1 3 122/15 = 14/15 + 108/15
3 0 123/15 = 15/15 + 108/15

i.e., the range of each feedback divider is twice the size
of the corresponding prescaler (this specifies the required
frequency range of the VCOs). Then, f1 can take any of
the 7 values:

f1 ∈
{

9
3
fin,

10
3

fin,
11
3

fin, . . . ,
15
3

fin

}
, (2)

and f2 can take any of the 11 values:

f2 ∈
{

11
5

fin,
12
5

fin,
13
5

fin, . . . ,
21
5

fin

}
. (3)

Table I shows a set of output frequencies fout that can
be synthesized by appropriately choosing n1 and n2 within
their specified ranges.

The mathematical principles behind Table I are dis-
cussed in detail for the general case in Section V. From a
qualitative perspective, Table I demonstrates three prop-
erties of the simple DFS architecture in Fig. 4.

Property 1: The frequency step of the DFS scheme is
constant and equals

frequency step =
fin

15
=

fin

3 · 5 . (4)

In other words, the particular choice of prescalers results in
much smaller frequency step than those of the individual
PLLs, i.e., fin/3 and fin/5, respectively.

Property 2: The output frequency range is 2fin. More
accurately, by defining fout = fout|n1=n2=0, we have

fout = fout − fin . . . fout + fin. (5)

Property 3: If the mixer provided the difference fre-
quency between f1 and f2, instead of their sum, i.e., if
fout = f1 − f2, properties 1 and 2 would still hold. This
is true because we assumed that n1 and n2 take values
within the ranges −N1, . . . , N1 and −N2, . . . , N2, respec-
tively, which are symmetric with respect to 0.

Note that properties 1, 2, and 3 result solely from the
sum n1

3 + n2
5 (or difference n1

3 − n2
5) and are independent

of the specific values of the constants n̄1 and n̄2.
Table I indicates that fout can be expressed in the form

fout = fout +
a

15
fin,

where a takes the values −15, −14, −13, . . . , 14, 15, and
the central frequency is fout = 108

15 fin. In contrast, the
output frequencies of the individual PLLs are

f1 =
12
3

fin +
n1

3
fin

and

f2 =
16
5

fin +
n2

5
fin.

Table I shows how to pick a pair of values (n1, n2) re-
sulting in a specific value of a, i.e., how to solve the Dio-
phantine equation

n1

3
+

n2

5
=

a

15

The relation between n1, n2, and a is nontrivial, and
in some cases it is not unique even with the constraints
−3 ≤ n1 ≤ 3 and −5 ≤ n2 ≤ 5; i.e., certain values of
a result from more that one pair (n1, n2). For example,
a = −1 results from both (n1, n2) = (−2, 3) and (n1, n2) =
(1,−2).

Fig. 5 shows graphically the particular relation between
the pair (n1, n2) and parameter a that was used to con-
struct Table I.

Now let’s consider the simple architecture in Fig. 4 but
with prescalers 6 and 15 instead of 3 and 5, respectively.
Now, n1 ranges from −6 to 6 and n2 ranges from −15 to
15. In the line of the previous example, one might expect
that fout would range from fout − fin to fout + fin and the
frequency step would be fin/(6 · 15) = fin/90.

By calculating the output frequencies corresponding to
all allowed pairs (n1, n2) we see that the expected output
range is indeed achievable; however, the frequency step
(resolution) is only fin/30 and therefore three times larger
that the “expected” fin/(6 · 15). Note that lcm(6, 15) =
30 = 3·5, where lcm is the least common multiple function.

sotiriadis: diophantine frequency synthesis 1991

Fig. 5. Graphical representation of the relation between n1, n2, and
a that was used to generate Table I.

Question: What are the special qualities of the pair of
numbers “3” and “5” leading to properties 1, 2, and 3?

Answer: They are pairwise relatively prime integers, i.e.,
gcd(3, 5) = 1 (where gcd is the greatest common divisor).
This is not true for the pair (6, 15).

The formal answer to the above question is given in Sec-
tion V. Note also that for both prescalers pairs (N1, N2),
the frequency step is fin/lcm(N1, N2).

The choice of the constants n̄1 and n̄2 (n̄1 = 12 and
n̄2 = 16 in Fig. 4) as well as the choice of + or − in the
mixer define the central frequency fout and the frequency
ratio f1/f2 in the mixer. Therefore, these choices can be
used to minimize the spurious signals generated by the
mixer. Moreover, n̄1 and n̄2, along with N1 and N2, specify
the required frequency ranges of the VCOs.

Remark: Henceforth, we concentrate only on the variable
part, n1

N1
+ n2

N2
, of the output frequency expression (1),

which realizes the principle of DFS. In the general case of
k PLLs, the corresponding expression is

n1

N1
+

n2

N2
+ · · · + nk

Nk
, (6)

where we always assume that −Ni ≤ ni ≤ Ni for all indices
i.

Again, replacement of ni

Ni
by − ni

Ni
for any index i, i.e.,

substraction instead of addition in the mixing of the ith

signal, does not influence the output frequency range or
the frequency step.

B. Example 2

A set of pairwise relatively prime4 prescalers can be
used to achieve extremely small frequency steps. Since the
prescalers can be small in size, both tiny frequency steps

4The integers N1, N2, . . . , Nk are called pairwise relatively prime
if gcd(Ni, Nj) = 1 for all i �= j.

Fig. 6. Four PLLs DFS scheme. Constants n̄1 to n̄4 are omitted for
simplicity.

TABLE II
Frequencies Synthesized by the DFS Architecture of Fig. 6.

n1

251
+

n2

253
+

n3

255
+

n4

256
=

a

4, 145, 475, 840

n1 n2 n3 n4 a

−251 0 0 0 −4,145,475,840
−69 −232 32 17 −4,145,475,839

−138 −211 64 34 −4,145,475,838
...

...
...

...
...

−226 −84 127 188 −4
−44 −63 −96 205 −3

−113 −42 −64 222 −2
−182 −21 −32 239 −1

0 0 0 0 0
−69 21 32 17 1

−138 42 64 34 2
−207 63 96 51 3
−25 −169 128 68 4

...
...

...
...

...
−113 −42 191 222 4,145,475,838
−182 −21 223 239 4,145,475,839

251 0 0 0 4,145,475,840

and high phase-comparator frequencies at the PLLs can
be achieved at the same time.

Consider the synthesizer in Fig. 6 using four PLLs, each
having a prescaler less than or equal to 256. Therefore, the
frequency resolution of any of the individual PLLs is not
better than fin/256 � 4 · 10−3 fin.

In contrast, as shown in Table II, the frequency resolu-
tion (step) of the whole architecture is

fin

251 · 253 · 255 · 256
=

fin

4, 145, 475, 840
� 2.4 · 10−10 · fin.

More specifically, combinations of values of n1, n2, n3,
and n4 within their ranges −251 ≤ n1 ≤ 251, −253 ≤
n2 ≤ 253, −255 ≤ n3 ≤ 255, and −256 ≤ n4 ≤ 256 can
generate all frequencies of the form

1992 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 11, november 2006

Fig. 7. Solution (n1, n2, n3, n4) of the Diophantine equation n1/251+
n2/253 + n3/255 + n4/256 = a/(251 · 253 · 255 · 256) as parameter a
varies from −100 to 100.

fout =
a

4, 145, 475, 840
fin, (7)

where −4, 145, 475, 840 ≤ a ≤ 4, 145, 475, 840.
To emphasize this further, let’s assume fin = 1 MHz.

Then, the output frequency range would be: −1 MHz to
+1 MHz around fout (which is zero here for simplicity).
The frequency resolution would be 240 µHz. Recall that
all prescalers are smaller than or equal to 256 and the fre-
quency resolutions of the individual PLLs are about 4 kHz,
i.e, more than 16 million times larger than that of the syn-
thesizer.

To get the output frequency (7) corresponding to a par-
ticular value of a, one has to solve the linear Diophantine
equation (8) and derive the values of n1, n2, n3, and n4.

n1

251
+

n2

253
+

n3

255
+

n4

256
=

a

4, 145, 475, 840
(8)

As is proven in Section V, this can always be done
within the assumed ranges of n1, n2, n3, and n4. The so-
lution is not unique for certain values of a.

Fig. 7 shows a solution (quadruple) of (8) for a in the
interval −100,−99,−98, . . . , 100.

IV. The General Case

As briefly discussed in the previous sections, the ability
to achieve very small frequency steps while using small
size prescalers, N1, N2, . . . , Nk, at the same time is based
on the following fact:

Fig. 8. k-PLLs DFS scheme. Parameters n̄1 to n̄k are omitted.

If N1, N2, . . . , Nk are pairwise relatively prime then for ev-
ery integer a, we can find integers n1, n2, . . . , nk such that
n1
N1

+ n2
N2

+ · · · + nk

Nk
= a

N1N2···Nk
.

Therefore, the architecture in Fig. 8 provides frequency
step equal to fin/(N1 N2 N3 · · ·Nk). In some sense we can
say that by using two or more PLLs we “distribute” the
frequency resolution among them.

Note that the aforementioned frequency steps would
not be achievable if the prescalers N1, N2, . . . , Nk were not
pairwise relatively prime.

The following section provides the formal proof of the
above discussion along with numerical algorithms for solv-
ing the Diophantine equation.

V. The Mathematical Framework of

Diophantine Frequency Synthesis

This section provides the mathematical support for the
general DFS scheme of Fig. 8.

Proposition 5.1: If N1, N2, . . . , Nk are pairwise rela-
tively prime positive integers, then

gcd

⎛
⎜⎝

k∏
i=1
i�=1

Ni,
k∏

i=1
i�=2

Ni, . . . ,
k∏

i=1
i�=k

Ni

⎞
⎟⎠ = 1. (9)

Proof: Suppose, in the contrary, that there exists a pos-
itive integer, not equal to one, that divides all products
in (9). Then there must exist a prime number p with the
same property. For j = 1, 2, . . . , k, p divides the prod-
uct

∏
i�=j Ni, and so from Euclid’s lemma [9], p must

also divide at least one of the multiplicands, let Nij be
one of them. If Ni1 , Ni2 , . . . , Nik

are not all equal, then
N1, N2, . . . , Nk cannot be pairwise relatively prime, i.e., a
contradiction. If they are all equal, i.e., Ni1 = Ni2 = · · · =
Nik

, they must also equal Nm for some m ∈ {1, 2, . . . , k}.
However, this is not possible since Nm is not in the mth

product and Nm does not have a nontrivial common di-
vider with any other multiplicand in the mth product. �

sotiriadis: diophantine frequency synthesis 1993

Lemma 5.1: Let N1, N2, . . . , Nk be pairwise relatively
prime positive integers. Then, for every integer a, there
exists a k-tuple of integers (x1, x2, . . . , xk), solving the lin-
ear Diophantine equation

x1

N1
+

x2

N2
+ · · · +

xk

Nk
=

a

N1N2 · · ·Nk
. (10)

Proof: For j = 1, 2, . . . , k, we set Ej =
∏

i�=j Ni. Multi-
plying (10) by N1N2 · · ·Nk gives the equivalent (11).

E1x1 + E2x2 + · · · + Ekxk = a. (11)

From the assumptions of Lemma 5.1 and Proposition 5.1
we get that gcd(E1, E2, . . . , Ek) = 1. This is a sufficient
and necessary condition for the Diophantine equation (11)
to have a solution for every integer a [9]. �

So far we have proven that Diophantine equation (10)
has a solution (x1, x2, . . . , xk) but we know nothing about
the ranges of xi’s. The following theorem provides an an-
swer.

Theorem 5.1: If N1, N2, . . . , Nk are pairwise relatively
prime positive integers, then for every integer a such
that −N1N2 · · ·Nk ≤ a ≤ N1N2 · · ·Nk, the Diophan-
tine equation (10) has a solution (x1, x2, . . . , xk), where
−Ni ≤ xi ≤ Ni for all i = 1, 2, . . . , k.

Proof: If a = ±N1N2 · · ·Nk, such a solution of (10) is
given by x1 = ±N1 and xi = 0 for i = 2, 3, . . . , k, re-
spectively. Now suppose that a is absolutely smaller than
N1N2 · · ·Nk and let (z1, z2, . . . , zk) be a (any) solution of
(10), i.e.,

z1

N1
+

z2

N2
+ · · · +

zk

Nk
=

a

N1N2 · · ·Nk
. (12)

Set yi = zi mod Ni for i = 1, 2, . . . , k. Then, by the defi-
nition of the yi’s, there exists an integer q such that

y1

N1
+

y2

N2
+ · · · + yk

Nk
=

a

N1N2 · · ·Nk
+ q.

(13)

Since 0 ≤ yi < Ni for i = 1, 2, . . . , k, it is

0 ≤ y1

N1
+

y2

N2
+ · · · + yk

Nk
< k. (14)

By combining (14) with (13) we get

− a

N1N2 · · ·Nk
≤ q < k − a

N1N2 · · ·Nk
. (15)

Since we have assumed that |a| < N1N2 · · ·Nk, from (15)
we conclude that −1 < q < k + 1, which implies

q ∈ {0, 1, . . . , k} .

If q = 0, then set xi = yi, i = 1, 2, . . . , k. If q > 0, then
set xi = yi − Ni for i = 1, 2, . . . , q and xi = yi for i =
q + 1, . . . , k. In both cases it is −Ni ≤ xi ≤ Ni for all
i = 1, 2, . . . , k. �

Fig. 9. Although a can achieve values beyond ±N1N2 . . . Nk, when
|ni| ≤ Ni, i = 1, 2, . . . , k, the step 1/(N1N2 · · · Nk) is not guaranteed.

Note that Theorem 5.1 guarantees only the existence of
at least one solution within the specified bounds, |xi| ≤ Ni

for all indices i, but not the uniqueness of it. In Table I, for
example, we see that equation n1/3 + n2/5 = −1/15 has
(at least) two solutions: −2/3+3/5 = 1/3− 2/5 = −1/15.

Also, Theorem 5.1 guarantees the existence of solution
within the specified bounds when |a| ≤ N1N2 . . . Nk, but
it does not say that a solution within those bounds cannot
be found for values of a that are absolutely larger than
N1N2 . . . Nk. Following the previous examples, we see that
3/3+2/5 = 21/15 > 1 and 200/251+180/253+210/255+
190/256 = 3 + 306732510/4145475840.

The problem in general is that for |a| > N1N2 . . . Nk,
the step size 1/(N1N2 · · ·Nk) is not guaranteed when the
constraints |ni| ≤ Ni, i = 1, 2, . . . , k are satisfied.

Consider, for example, the Diophantine equation n1/3+
n2/16 = a/48 but now think of a as a function of n1 and
n2. All values that a takes, when n1 and n2 range within
|n1| ≤ 3 and |n2| ≤ 16, respectively, are shown in Fig. 9.
The white (vertical) gaps correspond to values of a that
cannot be synthesized.

Especially for larger values of N1, N2, . . . , Nk, expan-
sion of the range of a beyond ±N1N2 . . . Nk is practically
insignificant.

Interpretation of Theorem 5.1: Rephrasing Theo-
rem 5.1, we can say that given a set N1, N2, . . . , Nk of
pairwise relatively prime positive integers, all rational
numbers from −1 to 1 with uniform step (resolution)
1/(N1N2 · · ·Nk) are generated by the sum x1/N1+x2/N2+
· · ·+xk/Nk when the numerators x1, x2, . . . , xk vary within
the intervals −Ni ≤ xi ≤ Ni, i = 1, 2, . . . , k. The practical
value of this statement is summarized in the sentence:

A very high resolution of a parameter can be achieved by
controlling the values of a set of parameters with very low
resolution.

Example 5.1: Consider the pairwise relatively prime
numbers 11, 16, 17, 19, and 23. According to Theorem
5.1, the sum of the fractions

x1

11
+

x2

16
+

x3

17
+

x4

19
+

x5

23
(16)

takes (at least) all values from −1 to +1 with resolution
equal to 1/(11 ·16 ·17 ·19 ·23) < 10−6 when the numerators
vary within the ranges −11 ≤ x1 ≤ 11, −16 ≤ x2 ≤ 16,
−17 ≤ x3 ≤ 17, −19 ≤ x4 ≤ 19, and −23 ≤ x5 ≤ 23. �

Example 5.2: Expanding the sum in expression (16) by
four additional fractions with denominators 29, 31, 37, and
41 (note that the set of all denominators is formed by
pairwise relatively prime integers) we get

x1

11
+

x2

16
+

x3

17
+

x4

19
+

x5

23
+

x6

29
+

x7

31
+

x8

37
+

x9

41
.
(17)

1994 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 11, november 2006

Eq. (17) takes (at least) all values from −1 to +1 with
resolution better (smaller) than 10−12. �

A. Particular Solutions of the Diophantine Equations

The design of a Diophantine frequency synthesizer in-
volves the solution of the linear Diophantine equation (10).
If only one output frequency is desirable, then (10) must
be solved once for a particular value of a only. If variable
output frequency is desirable, then (10) must be solved for
all values of a that may be used. Solving the equation re-
quires some computational effort and, in most cases, large
integer number algebraic manipulation.

To avoid this computational complexity, one could con-
sider storing the solutions corresponding to all possible
values a to a memory device, and use them to program the
dividers of the PLLs when needed. Although this could be
done for certain cases, in general it may require a large
amount of storage space; consider, for example, the DFS
scheme in Fig. 6 where about 8 billion quadruples must be
stored.

Alternatively, one can use the solution of the particular
eq. (18), i.e., when a = 1, to generate, in a very simple way,
the solution of (10) for every value of a. The procedure is
given by the following lemma.

Lemma 5.2: Let (z1, z2, . . . , zk) be a solution of the Dio-
phantine equation

z1

N1
+

z2

N2
+ · · · +

zk

Nk
=

1
N1N2 · · ·Nk

. (18)

Then, a solution (x1, x2, . . . , xk) of the general Diophan-
tine equation (10) with −Ni ≤ xi ≤ Ni, i = 1, 2 . . . , k, can
be found in the following way:

• If a = N1N2 · · ·Nk, then set x1 = N1 and xi = 0 for
i = 2, 3, . . . , k.

• If a = −N1N2 · · ·Nk, then set x1 = −N1 and xi = 0
for i = 2, 3, . . . , k.

• If −N1N2 · · ·Nk < a < N1N2 · · ·Nk, then set yi = azi

mod Ni, i = 1, 2 . . . , k and calculate

q =
y1

N1
+

y2

N2
+ · · · + yk

Nk
− a

N1N2 · · ·Nk

Finally, set xi = yi −Ni for i = 1, 2, . . . , q, and xi = yi

for i = q + 1, . . . , k.

The proof of Lemma 5.2 is very similar to that of The-
orem 5.1 and is omitted. Moreover, from the same proof,
we have that q is a nonnegative integer, less than or equal
to k, and so the steps above are valid.

Example 5.3: The methodology of Lemma 5.2 is used
to solve Diophantine equation (19) for a ranging within
the interval −6 ≤ a ≤ 6, using the particular solution
1/2 + (−1)/3 = 1/6. i.e., (z1, z2) = (1,−1).

x1

2
+

x2

3
=

a

6
. (19)

TABLE III
Application of Lemma 5.2 for k = 2, N1 = 2, and N2 = 3,

Using the Particular Solution (z1, z2) = (1, −1).

y1 = y2 =
a az1 mod 2 az2 mod 3 q x1 x2

−6 — — — −2 0
−5 1 2 2 −1 −1
−4 0 1 1 −2 1
−3 1 0 1 −1 0
−2 0 2 1 −2 2
−1 1 1 1 −1 1

0 0 0 0 0 0
1 1 2 1 −1 2
2 0 1 0 0 1
3 1 0 0 1 0
4 0 2 0 0 2
5 1 1 0 1 1
6 — — — 2 0

Table III shows the values of a, x1, and x2, as well
as those of the intermediate variables y1, y2, and q (see
Lemma 5.2). �

Tables I and II were generated using the procedure
of Lemma 5.2 and the particular solutions (−1)/3 +
2/5 = 1/15 and (−69)/251+ 21/253+ 32/255+ 17/256 =
1/4, 145, 475, 840, respectively.

B. Derivation of a Particular Solution

The foundation of DFS lies in the (existence and deriva-
tion of the) solutions of (10) and (18). In this section it is
shown that their solutions can be derived by solving k − 1
linear Diophantine equations of two variables (only). The
last one can be done easily, e.g., using MATLAB.

The following well-known theorem is stated without
proof; it can be found in textbooks on number theory,
e.g., [9].

Theorem 5.2: For nonzero integers m1,m2 and d, the
Diophantine equation m1x1 + m2x2 = d has a solution if
and only if gcd(m1,m2) divides d. If a solution exists, it
can be derived using the Euclidean algorithm [9].

For most practical purposes, if gcd(m1,m2) divides d,
equation m1x1+m2x2 = d can be solved using MATLAB’s
command “gcd.” Specifically, executing “[g, y1, y2] =
gcd(m1,m2)” in MATLAB returns g, y1, and y2 such
that g = gcd(m1,m2) and m1y1 + m2y2 = g and so,
x1 = (d/g) y1 and x2 = (d/g) y2. Therefore, the case of
(18) with k = 2 can be addressed easily.

Now consider (18) with k = 3. By multiplying both
sides with N1N2N3 we can write

N3 (N2z1 + N1z2) + N1N2x3 = 1. (20)

Also note that N1, N2, N3 are pairwise relatively prime,
so gcd(N2, N1) = 1 and gcd(N3, N1N2) = 1. Therefore,
according to Theorem 5.2, we can find a solution, (w1, w2),

sotiriadis: diophantine frequency synthesis 1995

of N2w1 + N1w2 = 1, and a solution, (w, z3), of N3w +
N1N2z3 = 1. Then we have

1 = N3w + N1N2z3

= N3(N2w1 + N1w2)w + N1N2z3

= N3N2(ww1) + N3N1(ww2) + N1N2z3,

and so (z1, z2, z3) = (ww1, ww2, z3) is a solution of (20).
The procedure extends naturally for k > 3, and it is

stated in the following lemma without proof.

Lemma 5.3: A solution of (18) is derived by solving
the following k − 1 linear Diophantine equations of two
variables:

N2z2 + N1w2 = 1
N3z3 + N1N2w3 = 1

N4z4 + N1N2N3w4 = 1
...

...
...

Nkzk + N1N2N3 · · ·Nk−1wk = 1,

(21)

and then setting

x1 = z2z3z4 · · · zk

xr = zr+1zr+2 · · · zkwr

r = 2, 3, . . . , k − 1
xk = wk.

(22)

Finally, a solution of (10) is derived using the algorithm
in Lemma 5.2. The algorithm, implemented in MATLAB,
is given in Appendix B.

VI. Fixed Frequency DFS:

An Example

In many situations it is desirable to generate a peri-
odic signal of a specific and fixed frequency fout using a
reference signal at a given frequency fin. This is typical
in atomic clocks and related time reference systems. Let’s
consider the following example:

The input frequency is fin = 10 MHz and the desirable
output frequency is fout = 9.285, 739, 4 MHz which must
be synthesized with accuracy of 0.1 Hz.

To achieve 0.1 Hz resolution with only one PLL, a
prescaler equal to or greater than fin/0.1 Hz = 108 is
required. This is definitely impractical for most realis-
tic situations. Although other techniques can be used to
achieve this resolution [1], [2], the Diophantine approach
is straightforward. Two scenarios are presented using com-
binations of two and three basic PLLs, respectively.

A. Two PLLs DFS Scheme

Let the prescalers of the two PLLs be N1 and N2. More-
over, let’s assume for simplicity that N1 � N2.

Fig. 10. Two PLLs DFS scheme.

From Section V we know that the output frequency res-
olution of the synthesizer is fin/(N1N2). Since accuracy of
0.1 Hz, or better, is required while the input frequency is
10 MHz, it must be that N1N2 ≥ fin/0.1 Hz = 108. There-
fore we can choose N1, N2 �

√
108 = 104, assuming that

we want to keep the prescalers as small as possible.
We can pick, for example, the pair of relatively prime

integers N1 = 10, 000 and N2 = 10, 003 with N1N2 =
100, 030, 000. Then the phase-comparator frequencies of
the PLLs are about 1 kHz. A DFS scheme based on these
prescalers is shown in Fig. 10.

For now, we ignore n̄1 and n̄2 (n̄1 = n̄2 = 0) and focus
our attention on tuning fout using n1 and n2. From Sec-
tion V we know that by choosing appropriate values for n1
and n2 (and ignoring n̄1 and n̄2), fout can take any value

fout =
n

100, 030, 000
fin, (23)

where n ranges from −100,030,000 to 100,030,000.
Choosing n = 92, 885, 251 we get output frequency

fout = 9.285, 739, 378 This is the best possi-
ble approximation by (23) to the desirable frequency
9.285,739,4 MHz, and the frequency error is smaller than
0.1 Hz.

Now we derive the values of n1 and n2 resulting in
n = 92, 885, 251. To do so we must solve the Diophantine
equation

n1

10000
+

−n2

10003
=

n

100, 030, 000
. (24)

Note that the minus sign (due to frequency mixing in
the scheme of Fig. 10) does not cause any complication
since the ranges of n1 and n2 are symmetric with respect
to zero. We simply solve (24) for n1 and (−n2).

To proceed, we use the “gcd” function of MATLAB5. It
gives “gcd(10003, 10000) = [1,−3333, 3334]” and so

−3333
10000

+
3334
10003

=
1

100, 030, 000
.

Following Lemma 5.2, we set (where n = 92, 885, 251)

y1 = (−3333 · n) mod 10000
= 8417,

y2 = (3334 · n) mod 10003
= 869.

5Note the reversed order of the arguments in gcd.

1996 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 11, november 2006

Fig. 11. Three PLLs DFS scheme.

Since

y1

10000
+

y2

10003
=

92, 885, 251
100, 030, 000

,

is smaller than 1, it is q = 0 in Lemma 5.2, and so the pair
(y1, y2) is the desirable solution. Therefore, n1 = 8417,
(−n2) = 869, and

(
8417
10000

+
−869
10003

)
· 10 MHz = 9.285, 739, 378 . . .MHz.

Now we concentrate on n̄1 and n̄2. Note that

fout =
(

n̄1

N1
− n̄2

N2

)
fin +

(
n1

N1
− n2

N2

)
fin,

and since the second summand equals the desirable fre-
quency, the first summand must be zero. For this to hap-
pen, it must be n̄i = c Ni, i = 1, 2, where c is an integer.
The proof is given for the general case in Lemma 9.1 in
Appendix A. Moreover, c must be positive because the fre-
quency multiplication ratio of the ith PLL, which equals
(n̄i + ni)/Ni = c + ni/Ni, is always positive.

The value of c can be chosen to minimize the mix-
ing spurs [1], minimize the phase noise introduced by the
VCOs, or optimize the circuit otherwise. One choice could
be c = 5, which implies

f1 =
n̄1 + n1

N1
fin � 58.417, 000, 0 MHz

f2 =
n̄2 + n2

N2
fin � 49.131, 260, 6 MHz

and therefore a ratio f2/f1 close to 0.85, resulting in low
mixing spurs [1].

B. Three PLLs DFS Scheme

Use of three PLLs allows for more flexibility. Let’s as-
sume again that N1 � N2 � N3 which implies the minimal
values Ni �

3
√

108 � 464. An appropriate triplet of pair-
wise relatively prime integers is N1 = 512, N2 = 495, and
N3 = 397, giving N1N2N3 = 100, 615, 680.

A DFS scheme using these numbers is shown in Fig. 11.
Let’s ignore the constants n̄1, n̄2, and n̄3 for the moment
(consider n̄1 = n̄2 = n̄3 = 0 for now). Then, by adjusting

n1, n2, and n3, the output frequency can take any of the
values

fout =
n

100, 615, 680
fin, (25)

where n ranges from −100,615,680 to 100,615,680.
The best approximation of the desirable frequency,
9,285,739,4 MHz, with fin = 10 MHz, is achieved using
n = 93, 429, 098. Now we have to solve (26) for n1, n2, and
n3. The minus sign in n3 is due to frequency mixing in the
scheme of Fig. 11.

n1

512
+

n2

495
+

−n3

397
=

93, 429, 098
100, 615, 680

. (26)

Using the algorithm in Lemma 5.3, we get

−501
512

+
134
495

+
281
397

=
1

100, 615, 680
,

and following the procedure of Lemma 5.2, we get

−114
512

+
217
495

+
283
397

=
93, 429, 098
100, 615, 680

. (27)

So n1 = −114, n2 = 217, and n3 = −283. Now taking n̄1,
n̄2, and n̄3 into account we have

fout =
(

n̄1

N1
+

n̄2

N2
− n̄3

N3

)
fin +

93, 429, 098
100, 615, 680

fin.

As in the previous example, we can choose the values of
n̄1, n̄2, and n̄3 to minimize mixing spurs or noise, or bring
f1, f2, and f3 within the operating range of existing PLLs,
or optimize some other criterion. However, (here) we would
like to do so without changing fout since it already has the
desirable value, therefore it must be

n̄1

N1
+

n̄2

N2
− n̄3

N3
= 0. (28)

Since N1, N2, and N3 are pairwise relatively prime, (28),
along with Lemma 9.1 in Appendix A, imply that n̄1 =
c1N1, n̄2 = c2N2, and n̄3 = c3N3 with c1 + c2 − c3 = 0.

An eligible choice, for example, is c1 = 1, c2 = 1,
and c3 = 2. This gives f1 = 7.773, 437, 50 MHz, f2 =
14.383, 838, 38 MHz, and f3 = 12.871, 536, 52 MHz.

VII. Variable Frequency DFS:

An Example

Suppose we want to design a DFS synthesizer that can
generate frequencies from 2 MHz to 4 MHz with resolution
of about 1 Hz. From the theory Section V we know that
the general architecture of Fig. 8, with input frequency fin,
can generate all frequencies from fout−fin to fout+fin with
resolution fin/(N1N2 · · ·Nk). Since the frequency range is
2fin, we can choose

fin = 1 MHz. (29)

sotiriadis: diophantine frequency synthesis 1997

Fig. 12. 3-PLLs variable frequency DFS scheme.

Then, the resolution requirement is satisfied if

N1N2 · · ·Nk ≥ fin

1 Hz
= 106. (30)

Suppose we add the requirement that the phase-
comparator frequencies in all PLLs are about 10 kHz. This
means that

fin

Ni
� 10 kHz, i = 1, 2, . . . , k, (31)

which implies Ni � 100 and N1N2 . . . Nk � 100k. There-
fore, from (30), the minimum number of PLLs, k, we
should use is k = 3. Three pairwise relatively prime num-
bers are N1 = 100, N2 = 101, and N3 = 103.

The next step is to decide what the central frequencies
of the three PLLs should be and how they will be mixed,
i.e., added or subtracted. Since the purpose of this paper is
solely to present the mathematical principles of DFS, many
technical issues (e.g., the pullability range of the PLLs,
the spurs generated by the mixing, the possible filtering of
the PLLs’ signals before mixing, the minimization of the
output phase noise, etc.) involved in these decisions are
not discussed here.

A simple choice6 is f1 = 55 MHz, f2 = 40 MHz, and
f3 = 18 MHz and the output frequency is chosen to be
fout = −(f1 − f2) + f3, resulting in fout = 3 MHz. Since
fi = (n̄i/Ni)fin, i = 1, 2, 3, we have n̄1 = 5500, n̄2 = 4040,
and n̄3 = 1854. The corresponding DFS architecture is
shown in Fig. 12.

The frequency ranges of the PLLs and of the output
signal, along with their resolutions, are shown in Table IV.
The output frequency can take all values

fout =
(

3 +
n

1, 040, 300

)
MHz,

where n ranges from −1,040,300 to 1,040,300.
Given the desirable value of n, parameters n1, n2, and

n3 are derived using Lemmas 5.2 and 5.3. Specifically, the
algorithm in Lemma 5.3 gives

−33
100

+
−51
101

+
86
103

=
1

1, 040, 300
. (32)

6No effort has been made to optimize this choice. Using more elab-
orate mixing schemes, one can possibly reduce f1, f2, and f3 while
maintaining a clean output spectrum.

TABLE IV
Frequency Ranges and Frequency Steps (Resolutions) of

the Signals in the DFS Scheme of Fig. 12.
∗

Frequency step
Min Central Max (resolution)

fin — 1 — —
f1 54 55 56 1/100
f2 39 40 41 1/101
f3 17 18 19 1/103
fout 2 3 4 1/1,040,300

∗All frequencies are in MHz.

Following Lemma 5.2, we set

y1 = (−33 · n) mod 100
y2 = (−51 · n) mod 101
y3 = (86 · n) mod 103

and calculate the value of q using

q =
y1

100
+

y2

101
+

y3

103
− n

1, 040, 300
.

Recall from Lemma 5.2 that since k = 3, q can take only
one of the values 0, 1, 2, or 3. Depending on q, we set:

n1 = −y1
Either n2 = y2 if q = 0

n3 = y3

n1 = −(y1 − N1)
or n2 = y2 if q = 1

n3 = y3

n1 = −(y1 − N1)
or n2 = y2 − N2 if q = 2

n3 = y3

n1 = −(y1 − N1)
or n2 = y2 − N2 if q = 3

n3 = y3 − N3

The minus sign of n1 is due to the frequency mixing in
the scheme of Fig. 12, i.e., fout = −f1 + f2 + f3.

VIII. Conclusions

The Diophantine Frequency Synthesis (DFS) approach
for fine frequency synthesis was introduced. It is based
on number theory, it uses two or more basic PLLs, and
allows for independent choices of the output frequency step
(resolution) and the phase-comparator frequencies in the
PLLs.

DFS leads to fine frequency step, fast frequency hopping
architectures with potentially very low spurs, especially in
the vicinity of the carrier.

The paper focused on the mathematical principles of
DFS and the related algorithms.

1998 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 11, november 2006

Appendix A

Lemma 9.1: If N1, N2, . . . , Nk are pairwise relatively
prime integers, then every solution of (33) is of the form
xi = ciNi, i = 1, 2, . . . , k, where c1, c2, . . . , ck are integers
such that c1 + c2 + · · · + ck = 0.

x1

N1
+

x2

N2
+ · · · + xk

Nk
= 0 (33)

Proof: Multiplying (33) by N1N2 · · ·Nk gives

E1x1 + E2x2 + · · · + Ekxk = 0, (34)

where we have set Ej =
∏

i�=j Ni for j = 1, 2, . . . , k. Since
Ni divides Ej for all j �= i, from (34) there exists an integer
mi such that

miNi + Eixi = 0. (35)

We also have that gcd(Ni, Ei) = 1 since N1, N2, . . . , Nk

are pairwise relatively prime. Therefore, Ni must divide
xi. This is true for all i’s, and so there exist integers
c1, c2, . . . , ck such that xi = ciNi for i = 1, 2, . . . , k. Re-
placing them in (34) we get c1 + c2 + · · · + ck = 0. �

Appendix B

The MATLAB algorithm below solves the particular
Diophantine equation (18). When applying it, one should
pay attention to the size of the integers involved. For large
integers N1, N2, . . . , Nk and/or for large k, the calculations
should be done using Variable Precision Arithmetic (VPA)
or the algorithm should be restructured appropriately.

% ————— Initialize —————
N = [N1, N2, . . . , Nk];
k = length (N);
x = zeros (1, k);
z = zeros (1, k);
w = zeros (1, k);
% ——————————————
% For i = 2, 3, . . . , k solve
% Nizi + N1N2 · · ·Ni−1wi = 1
% ——————————————
for i = 2 : k

[g, z(i), w(i)] = gcd (N(i),prod (N(1 : i − 1)));
end
% ——————————————
% Derive x1, x2, . . . , xk

% ——————————————
x(1) = prod (z(2 : k));
for r = 2 : k − 1

x(r) = prod (z(r + 1 : k)) ∗ w(r);
end
x(k) = w(k);
% ——————————————

Acknowledgments

The author would like to thank Dr. Tom Krimigis, Dr.
Marion L. Edwards, Gregory Weaver, Sheng Cheng, Wes-
ley Millard, and Christopher Haskins as well as Dr. Paul
Ostdiek and Bob Bokulic from the Johns Hopkins Uni-
versity Applied Physics Laboratory for their support and
many technical discussions during this project.

Appreciation is also extended to Michael M. Driscoll
from the Northrop Grumman Corporation for his encour-
agement and feedback on this work.

References

[1] V. Manassewitsch, Frequency Synthesizers. 3rd ed. New York:
Wiley, 1987.

[2] W. F. Egan, Frequency Synthesis by Phase Lock. 2nd ed. New
York: Wiley, 1999.

[3] B.-G. Goldberg, Digital Techniques in Frequency Synthesis. New
York: McGraw-Hill, 1995.

[4] V. F. Kroupa, “Close to the carrier noise in DDS,” presented at
IEEE Int. Freq. Symp., 1996.

[5] S. Cheng, “Analysis and simulation of the DDS (direct digital
synthesis) architecture,” Applied Physics Laboratory, The Johns
Hopkins University, Tech. Rep. SER-04-029, 2004.

[6] H. T. Nicholas and H. Samueli, “An analysis of the output spec-
trum of direct digital frequency synthesizers in the presence of
phase accumulator truncation,” in Proc. 41st Annu. Freq. Contr.
Symp., 1987, pp. 495–502.

[7] A. Torosyan and A. N. Willson, Jr., “Exact analysis of DDS
spurs and SNR due to phase truncation and arbitrary phase-to-
amplitude errors,” in Proc. IEEE Int. Freq. Contr. Symp., 2005,
pp. 50–58.

[8] S. Cheng, J. R. Jensen, R. E. Wallis, and G. L. Weaver, “Fur-
ther enhancements to the analysis of spectral purity in the ap-
plication of practical direct digital synthesis,” in Proc. Int. Freq.
Contr. Symp. Expo., 2004, pp. 462–470.

[9] D. E. Flath, Introduction to Number Theory. New York: Wiley,
1989.

[10] R. E. Best, Phase-Locked Loops: Design, Simulation, and Ap-
plications. 5th ed. New York: McGraw-Hill, 2003.

Paul P. Sotiriadis received the diploma in electrical engineering
and computer science from the National Technical University of
Athens (NTUA), Greece; the M.S. degree in electrical engineering
from Stanford University, Stanford, CA; and the Ph.D. degree in
electrical engineering and computer science from the Massachusetts
Institute of Technology, Cambridge, MA, in May 2002.

Since June 2002 he has been an assistant professor with the De-
partment of Electrical and Computer Engineering at The Johns Hop-
kins University, Baltimore, MD.

His research interests include design, optimization, and mathe-
matical modeling of analog and mixed-signal circuits, RF and mi-
crowave circuits, frequency synthesis, and interconnect networks in
deep-sub-micron technologies. He serves as an associate editor of the
IEEE Transactions on Circuits and Systems-II.

