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A Quadrature Sinusoidal Oscillator With
Phase-Preserving Wide-Range Linear Frequency
Tunability and Frequency-Independent Amplitude

Dimitrios N. Loizos, Student Member, IEEE, and Paul P. Sotiriadis, Member, IEEE

Abstract—A architecture for a quadrature sinusoidal
oscillator with phase-preserving wide-range linear frequency
tunability is discussed. The topology is characterized by low
harmonic distortion, as well as controlled and stable amplitude
of oscillation that is independent of the oscillation’s frequency
and instantaneous frequency changes. The architecture has been
implemented for acoustic sonar applications using general-pur-
pose discrete bipolar transistors. The phase-preserving frequency
control makes the architecture appropriate for continuous-phase
frequency-shift keying modulators as well. Measurements and
simulation results are presented and found in good agreement
with theory.

Index Terms—Amplitude control, continuous-phase frequency-
shift keying, frequency control, phase preservation, quadrature os-
cillator.

I. INTRODUCTION

VARIOUS designs have been proposed for sinusoidal oscil-
lators with tunable oscillation frequency. Most topologies

are based on current-controlled current conveyors (CCCII) (e.g.,
[1]–[4]), operational transconductance amplifiers and capacitors
(OTA-Cs) (e.g., [5] and [6]), active resistance–capacitance
networks (e.g., [7]), four-terminal floating nullors (e.g., [8]), and,
recently, the translinear principle (e.g., [9] and [10]).

In sinusoidal oscillators, continuous-time wide-range fre-
quency tunability, stable frequency-independent amplitude, and
low harmonic distortion are typically antagonistic properties.

In most designs, the amplitude of oscillation is determined by
the nonlinearities of the devices and the respective gain satura-
tion, which results in high harmonic distortion [11]. To reduce
harmonic distortion, an amplitude feedback control subcircuit
can be added (e.g., [7] and [12]) to keep the oscillation ampli-
tude to appropriate levels, so that the nonlinearities of the de-
vices are not excited. However, designing the feedback loop is
not trivial. As shown in [12] and [13], dynamic amplitude feed-
back control can easily result in instabilities. Instabilities are in-
terpreted as continuous fluctuation of the oscillation’s ampli-
tude, and the amount of fluctuation may depend on the initial
condition of the feedback loop.

Several schemes for amplitude control have been proposed.
In [14], the original and an improved version of Van der Pol’s
model, which effectively decouples frequency and amplitude
control, are discussed. An extended analysis of the tradeoff be-
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tween settling time and distortion in Van der Pol’s model is
given in [15]. In [16], a quadrature oscillator is proposed where
the square of the oscillation’s amplitude is fed back to a variable
resistance. A similar approach but with signals of 135 phase
difference has been suggested in [7]. The dynamic feedback
loop used in [7], however, is subject to stability issues during
transitions from one frequency or amplitude level to another.
In [12], a more careful design of the control system has been
presented where the feedback system controls both the quality
factor and the amplitude of the oscillator, achieving a stable
amplitude of oscillation; yet, the oscillation is narrow frequency
band. In [17], a static amplitude control configuration has been
proposed using operational amplifiers and multipliers.

The wide-tuning-range quadrature oscillator architecture pro-
posed in this brief resolves the amplitude problem using a static
(nondynamic) amplitude feedback loop and translinear circuits.
The architecture achieves independence between frequency and
amplitude control, instantaneous frequency control, low har-
monic distortion, and stable oscillation amplitude. Moreover,
the frequency control is phase preserving, making this archi-
tecture ideal for use in continuous-phase frequency-shift keying
(FSK) modulators. The validity of the proposed architecture was
demonstrated by detailed simulation, as well as by building the
oscillator with discrete general-purpose components. Measure-
ments and simulation results are presented and found to be in
good agreement with theory.

II. THEORETICAL ANALYSIS

A state-space representation of an ideal (i.e., lossless) second-
order quadrature oscillator (Fig. 1) is of the form

(1)

where and are the voltages on the capacitors and
state variables of the system. System (1) is lossless. The oscil-
lation has a constant amplitude, which depends on the initial
conditions, and (instantaneous) frequency,1 given by

(2)

The advantage of system (1) is that frequency is instanta-
neously controlled by the value of the transconductance

1The solution of (1) is V (t) = A sin(�(t)) and V (t) = A cos(�(t)),
where �(t) = !(�)d� + � and !(t) = G (t)=C . A depends on the
initial conditions and is equal to A = V (0) + V (0).
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Fig. 1. Ideal second-order G �C oscillator.

as indicated by expression (2). This property of the oscillator is
desirable in several applications.

However, the amplitude of the oscillation is not controlled
by any voltage or current; it depends only on the initial con-
ditions and . Furthermore, any circuit implementa-
tion of system (1) will exhibit some additional parasitic dynamic
that will either damp or overamplify the oscillation, saturate the
transconductors, and introduce high harmonic distortion.

To control the oscillation amplitude while maintaining the in-
stantaneous frequency control and phase continuity, we modify
system (1) as

(3)

Again, the state vector is . The scalar
function is appropriately chosen to force the oscillation
amplitude to a desirable value while allowing the phase and
amplitude to evolve and be controlled independently. Note that
since is a scalar function, no dynamics are added to system
(1), and therefore, the amplitude control is static.

Consider the transformation of the state variables into polar
coordinates and ,
where is the instanta-
neous amplitude and is the instanta-
neous phase. System (3) in polar coordinates and matrix nota-
tion is written as

(4)

Since both sides of (4) are left multiplications by a unitary,
and thus invertible, matrix, we conclude that

(5)

(6)

Although (5) shows that the frequency is instantaneously
controlled by and is independent of the amplitude, the
amplitude may depend on the phase through the
voltage vector . However, if function is of the special form

, then differential equation (6) becomes

(7)

implying that the amplitude is independent of the phase and
the frequency. The choice of function is important since it
dictates whether the amplitude reaches a desirable steady-state
value and, if so, how fast it converges. For example, if
is such that when and when

Fig. 2. Block diagram of the architecture.

, then given that , it is for
every nonzero initial vector .

Equation (7) can be solved analytically for several convenient
choices of . To simplify the circuit implementation of the ar-
chitecture, function was chosen as ,
where is a gain factor as well. Solving (7), for nonzero initial
conditions, we have

(8)

From (8), and approaches ex-
ponentially fast in a neighborhood of since

In the general case, function can be chosen as
, where is a strictly increasing function.

would then be an asymptotically stable equilibrium point of (7)
and steady state would be reached when .

III. ARCHITECTURE AND CIRCUIT OF THE OSCILLATOR

The architecture shown in Fig. 2 has been implemented ac-
cording to the theoretical analysis of Section II. Current
controls transconductance and, through (2), the fre-
quency of oscillation. The amplitude is controlled by the re-
maining blocks that form a static (nondynamic) feedback loop.
More specifically, the “sum of squares” (SoS) block generates
current that
controls the transconductance of the FB1 transconduc-
tors and whose form is very close to the control function we want
to implement. However, since is a constant, an extra term is
required to achieve controllability of the amplitude of oscilla-
tion. This term is provided by the FB2 transconductors, whose
transconductance is controlled by the current .

A. Transconductor Design

The transconductor is shown in Fig. 3(a). To achieve high
linearity, the Caprio quad [18] was used [transistors
and resistor in Fig. 3(a)].

The gain of the transconductor is linearly controlled by the
tail current of the differential pair and . Transistors

, , , and , in Fig. 3(a) form a gain controllable
differential current mirror, known as the Gilbert gain cell [19].
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Fig. 3. Circuits of (a) the complete and (b) the reduced transconductors.

Transistor is used for biasing correctly transistors to
. The total gain of the transconductor is (output current over

the differential input voltage )

(9)

The emitter followers and are used to increase the
input impedance of the transconductor. High output impedance
is achieved using the cascode configuration at the output stage.

B. “Reduced” Transconductors

Although the architecture of Fig. 2 requires six transconduc-
tors, all of them share only two inputs, i.e., and . Thus, there
is no need to replicate the entire circuit of Fig. 3(a) six times.

Instead, we use it to implement only the two frequency
(FREQ) transconductors (Fig. 2). The output currents of the
other transconductors are generated by the reduced circuit(s)
of Fig. 3(b), whose inputs, i.e., to , are connected to the
bases of transistors to of the FREQ transconductors
[Fig. 3(a)]. This way, the total number of transistors decreases
dramatically without significantly degrading the performance
of the oscillator.

The control (tail) current in Fig. 3(b) is equal to for
transconductors FB1 and for transconductors FB2. Using
the translinear principle [18], it can be directly verified from
Fig. 3 that

and (10)

C. Generation of

The circuit block of Fig. 4 generates the amplitude control
current . It operates in current mode
and uses Gilbert’s gain cell [19]. Again, to reduce the overall
circuit complexity, the input parts of the FREQ transconductors
are reused to drive the translinear circuit of Fig. 4; its inputs
and , , 2, are connected to the bases of and .

To derive the exact function implemented by the SoS block,
we start by applying the translinear principle to the loop formed
by transistors to ( to , respectively), which
gives , , 2. Since

, we get

(11)

The gain cells formed by transistors and in Fig. 3(a)
and and in Fig. 4 relate currents to currents
through , , 2.

Using the relations , , 2, resulting from the
Caprio quads [18] in the FREQ transconductors, we conclude
that , , 2. Finally, replacing the last
equations into (11), we get

(12)

Current is mirrored as the control current of the feed-
back transconductors FB1 (Fig. 2).

D. Operation and Limitations

The oscillation frequency is defined by the capacitors’ value
and the gain of the FREQ transconductors. From (5)
and (9), we conclude that

(13)

This demonstrates a linear relationship between the frequency
of oscillation and the frequency control current .

The amplitude of oscillation is determined by the amplitude
feedback loop in Fig. 2. Specifically, the terms ,

, 2, in (3) are realized by in Fig. 2. Since
, using (10), we get that

(14)

Replacing (12) in (14), we conclude that the total currents
provided to the capacitors by the amplitude feedback loop are

(15)
Since , we have that

(16)

The oscillation amplitude is derived setting ,
i.e.,

(17)

From (17), we see that must be less than half of . More-
over, the current flowing through each resistor in the
Caprio quads [Fig. 3(a)] cannot be larger than the biasing cur-
rent of the transconductors (note also that ). Com-
bining these two constraints, we get the bounding conditions for

, i.e., .
The finite input and output impedances of the transconduc-

tors can be jointly modeled as a parasitic resistance in par-
allel with the capacitors (Fig. 2). The effect of this parasitic
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Fig. 4. Translinear circuit implementation of the SoS function.

resistance can be incorporated into (15) as an additional term
. Accounting for this term, (17) takes the form

(18)

Considering the parasitic resistance in the model of the
proposed architecture does not affect the attribute of indepen-
dence between the instantaneous frequency and amplitude con-
trol demonstrated by (5) since the effect of can be incor-
porated in function .

However, affects the attribute of independence between
the amplitude and frequency controls. The output resistance
of the transconductors depends on current and,
therefore, so does . As can be seen from (18), if all biasing
control currents are kept constant except for , will
change. The variation in due to depends on biasing
currents , , and and resistance .

IV. MEASUREMENTS AND SIMULATION RESULTS

The circuit blocks described in Section III were used to im-
plement the oscillator’s architecture of Fig. 2. The circuit was
built using the general-purpose n-p-n and p-n-p discrete bipolar
transistors 2N3390 and 2N3702, respectively MHz ,

nF capacitors and k resistors.
The biasing current of the FREQ transconductors [Fig.

3(a)] was set to 360 A, whereas current in the SoS block
was set to 1 mA. For the biasing current of the emitter fol-
lowers and of the FREQ transconductors [Fig. 3(a)],
a value of 10 A was chosen. The power supply was set to

V and V. The power dissipation is a
function of both frequency and amplitude of oscillation. For a
frequency of 10 kHz and amplitude of 250 mV, the power con-
sumption was found approximately equal to 80 mW. Also, for
the same case, the time constant in equation (8),
which describes how fast the amplitude converges to the steady
state, was approximately 2 s.

The linear relation between the oscillation frequency and cur-
rent is shown in Fig. 5. Both measurements and simulation
are in very close agreement with theory.

In Fig. 6, current is generated by an external waveform
generator (channel 2). As shown in the graph, the frequency
of oscillation changes instantaneously, whereas the amplitude
remains constant. In addition, the instantaneous phase does not

Fig. 5. Oscillation frequency versus I .

Fig. 6. Snapshot showing the instantaneous control of frequency and the inde-
pendence of the amplitude.

change when the frequency changes at the rise or fall of the
frequency control current pulse.

Fig. 7 shows how voltages and evolve in time. Using
fast Fourier transformation (FFT) in both simulation and experi-
mental results, itwaspossibletofindthephasedifferencebetween
the two state variables and . This phase difference was mea-
sured to be for all frequencies in the range from 7 to
80 kHz, demonstrating the quadrature behavior of the oscillator.

Measurements shown in Fig. 8 demonstrate low total har-
monic distortion for frequencies ranging from 7 to 80 kHz.
The data were recorded keeping constant at 306 A and
sweeping . On the same figure, simulation results showing
how the amplitude of oscillation varies with frequency while
keeping constant are also demonstrated. In the range of
7–80 kHz, the variation in amplitude is less than approximately
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Fig. 7. Snapshot showing V (t), V (t), and their 90 phase difference.

Fig. 8. Measured and simulated total harmonic distortion for I = 306 �A.
Variation of the amplitude is also shown as frequency increases.

Fig. 9. Relation between the amplitude of oscillation and I . I has been
kept constant at 184 �A.

10%. This variation can be further reduced if devices with
higher output resistance are used.

It should be noted that oscillations with distortion less than
2% can be observed for frequencies up to 130 kHz. However, for
frequencies higher than 80 kHz, needs to be tweaked appro-
priately so as to keep the amplitude of oscillation constant. For
the maximum attained frequency (130 kHz) and for a total am-
plitude of the and signals set to 243 mV, the fundamental
harmonic had an amplitude of 240 mV, the second of 300 V,
and the third of 386 V.

Simulation and measurements were also conducted for the
case where current controlling the frequency of oscillation
was kept constant, whereas current was swept between the
limits specified in Section III. The results are shown in Fig. 9 and
demonstrate good agreement between theory (17), simulation,
and experiment.

Finally, the topology was also simulated using RF bipolar
junction transistors (BJTs) of high , namely the Philips
BFG540 n-p-n and the Philips BFT92 p-n-p. The only al-
teration to the circuit was changing the capacitors to 50 pF.
Simulation showed that oscillations up to 6.5 MHz were gener-
ated with very low harmonic distortion.

V. CONCLUSION

A architecture for quadrature sinusoidal oscillators
using a static amplitude control feedback loop has been ana-
lyzed and implemented. It is characterized by linear frequency
control, phase preservation during frequency hoping, and con-
stant amplitude that is frequency and phase independent. The
implemented oscillator has wide-range frequency tunability and
low harmonic distortion. The theoretical results were verified by
measurements and simulation.

REFERENCES

[1] W. Kiranon, J. Kesorn, and P. Wardkein, “Current controlled oscillator
based on translinear conveyors,” Electron. Lett., vol. 32, no. 15, pp.
1330–1331, Jul. 1996.

[2] H. Barthelemy, S. Meillere, and E. Kussener, “CMOS sinusoidal os-
cillator based on current-controlled current conveyors,” Electron. Lett.,
vol. 38, no. 21, pp. 1254–1256, Oct. 2002.

[3] A. Fabre, O. Saaid, F. West, and C. Boucheron, “High frequency ap-
plications based on a new current controlled conveyor,” IEEE Trans.
Circuits Syst., vol. 43, no. 2, pp. 82–91, Feb. 1996.

[4] M. T. Abuelma’atti and M. A. Al-Qahtani, “A new current-controlled
multiphase sinusoidal oscillator using translinear current conveyors,”
IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 45,
no. 7, pp. 881–885, Jul. 1998.

[5] J. Galan, R. G. Carvajal, A. Torralba, F. Munoz, and J. Ramirez-An-
gulo, “A low-power low-voltage OTA-C sinusoidal oscillator with a
large tuning range,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52,
no. 2, pp. 283–291, Feb. 2005.

[6] J. A. De Lima, “A linearly-tunable OTA-C sinusoidal oscillator for low-
voltage applications,” in Proc. ISCAS, May 26–29, 2002, vol. 2, pp.
408–411.

[7] J. I. Osa and A. Carlosena, “MOSFET-C sinusoidal oscillator with vari-
able frequency and amplitude,” in Proc. ISCAS, May 28–31, 2000, vol.
2, pp. 725–728.

[8] M. T. Abuelma’atti and H. A. Al-Zaher, “Current-mode sinusoidal os-
cillators using single FTFN,” IEEE Trans. Circuits Syst. II, Analog
Digit. Signal Process., vol. 46, no. 1, pp. 69–74, Jan. 1999.

[9] W. A. Serdijn, J. Mulder, A. C. van der Woerd, and A. H. M. van Roer-
mund, “A wide-tunable translinear second-order oscillator,” IEEE J.
Solid-State Circuits, vol. 33, no. 2, pp. 195–201, Feb. 1998.

[10] N. Fragoulis and I. Haritantis, “A low-voltage quadrature log-domain
oscillator,” in Proc. 9th Int. Conf. Electron., Circuits Syst., 2002, vol.
1, pp. 101–104.

[11] D. Pederson and K. Mayaram, Analog Integrated Circuits for Commu-
nication : Principles, Simulation and Design. New York: Springer-
Verlag, 1990.

[12] D. Li and Y. Tsividis, “A loss-control feedback loop for VCO indirect
tuning of RF integrated filters,” IEEE Trans. Circuits Syst., vol. 47, no.
3, pp. 169–175, Mar. 2000.

[13] T. H. O’Dell, “Instability of an oscillator amplitude control system,”
Proc. Inst. Electr. Eng.—Control Theory and Applications, vol. 151,
no. 2, pp. 194–197, Mar. 2004.

[14] B. Z. Kaplan and I. Yaffe, “An improved van der Pol equation and
some of its possible applications,” Int. J. Electron., vol. 41, no. 2, pp.
189–198, 1976.

[15] W. B. Mikhael and S. Tu, “Continuous and switched-capacitor multi-
phase oscillators,” IEEE Trans. Circuits Syst., vol. CAS-31, no. 3, pp.
280–293, Mar. 1984.

[16] I. M. Filanovsky and L. F. Taylor, “A comparison of two models for
an oscillator with an amplitude control system,” IEEE Trans. Circuits
Syst., vol. CAS-34, no. 9, pp. 1110–1112, Sep. 1987.

[17] I. M. Filanovsky, “Sinusoidal VCO with control of frequency and am-
plitude,” in Proc. 32nd Midwest Symp. Circuits and Syst., Champaign,
IL, Aug. 14–16, 1989, vol. 1, pp. 446–449.

[18] C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analogue IC Design: The
Current-Mode Approach. London, U.K.: Peter Peregrinus, 1990.

[19] B. Gilbert, “A new wideband amplifier technique,” IEEE J. Solid-State
Circuits, vol. SC-3, no. 4, pp. 353–365, Dec. 1968.


