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Information Capacity of Nanowire Crossbar
Switching Networks

Paul P. Sotiriadis, Member, IEEE

Abstract—Crossbar switching networks formed by nanowires
are promising future data storage devices. This work addresses the
fundamental question: What is the information storage capacity of
a crossbar switching network? The two major classes of nanowire
crossbar switching networks are considered, those with ohmic
and those with semiconductive switches. The focus is on the first
class which is in the center of current nanotechnology research.
Exact, simple approximate, and asymptotic expressions of the
information storage capacity are provided as functions of the net-
work size. The derivations indicate technological and geometrical
considerations in the design of efficient nanowire devices.

Index Terms—Array, capacity, crossbar, device, information,
memory, nanotechnology, nanotube, nanowire, network, storage,
switching.

I. INTRODUCTION

RECENT advances in nanotechnology have enabled the de-
velopment of crossbar switching networks (CSNs) using

nanowires [1]–[7]. The small size and high density of these
structures makes them favorable candidates for future high den-
sity interconnect, computation and information storage devices
[1]–[26]. In this work we consider rectangular cross-
bar switching networks with ohmic (resistive) contact switches
between every horizontal and every vertical wire as shown in
Fig. 1. Every switch has two possible states, one of high and
one of low resistance (open and closed respectively). We refer
to this class of crossbar switching networks as R-CSNs to dis-
tinguish them from crossbar switching networks with semicon-
ductive (diode) switches, D-CSNs, shown in Fig. 2.

The exact information storage capacity of rectangular
R-CSNs is derived along with simple approximate and asymp-
totic1 expressions. In particular, it is shown that the capacity of

R-CSNs is asymptotic1 to bits for .
This is in contrast to the capacity of D-CSNs which
is bits. Although D-CSNs are much superior than R-CSNs
in terms of capacity, R-CSNs are more prevalent nanostructures
currently and they are expected to find significant applications
in the future [1], [2].
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Fig. 1. An N �M crossbar switching network with ohmic switches.

Fig. 2. A crossbar switching network with semiconductive switches.

Fig. 3. An R-CSN and a D-CSN having the same configuration.

II. PRELIMINARIES

Throughout the paper we consider rectangular CSNs
with horizontal and vertical wires. The numbering of the
wires is as shown in Fig. 1, i.e., similar to that of an ma-
trix. The pair , with and ,
is used to denote either the pair of the th horizontal and th
vertical wires or the corresponding switch between them. For
pictorial simplification in R-CSNs only, a black dot at the inter-
section is used to indicate that switch is closed. This
convention is shown in Fig. 3. The configuration of the switches
in an CSN is formally defined as follows.

Definition 1: A configuration, , of the switches of
CSNs is an , – matrix whose entry, , is if the

switch is open and if the switch is closed.
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Example 1: A R-CSN and D-CSN having the same
configuration are shown in Fig. 3.

Remark 1: A configuration of a CSN can be viewed as a
bipartite graph whose vertices are the sets of the horizontal and
the vertical wires and whose edges are the ones in matrix .

Definition 2: Two wires (of any type) are connected if there
is a path of closed switches between them, otherwise, they are
disconnected.

Remark 2: A path between two horizontal wires is of
the form

and its length, number of switches, is ,
, i.e., even. Similarly, a path between two vertical wires
is of the form

and its length is
i.e., even. Finally, a path between a horizontal wire and a
vertical wire is of the form

and
its length is , i.e odd.

A. Assumptions

To estimate the information capacity of R-CSNs, we make the
following assumptions that are important for every practically
useful implementation: 1) The switches have high2 open/closed
resistance ratio . 2) The resistance of the wires is
much smaller than the of the switches.2 3) The states of
the switches, closed or open, can be set independently. These as-
sumptions imply that by measuring the resistance between any
two wires we can accurately conclude whether there is a path of
closed switches between them or not, i.e., whether the wires are
connected or not. In other words, the resistance measurement
provides the correct binary answer. In the analysis that follows,
assumptions 1)–3) allow us to think of CSNs as being composed
out of ideal switches and ideal wires. In the case of D-CSNs we
can consider the diodes as being ideal as well.

B. R-CSN Versus D-CSN

Consider a D-CSN, like that in Fig. 2, with (ideal) diodes
whose anodes and cathodes are connected to vertical and hori-
zontal wires, respectively. Let the switches have a given,
yet unrevealed to us, closed–open configuration. To extract the
particular configuration we can perform a series of mea-
surements, i.e., for and for we
measure the current as in Fig. 4; if is nonnegligible, we
conclude that the switch is closed, otherwise, we conclude
that the switch is open.

The main issue here is that the connections are in-
dependent in the sense that for every pair the measured
current depends only on the state of switch , i.e., it is

2Assumptions 1 and 2 can be stated more formally as follows. There is some
“threshold” resistance value R such that for every given configuration of the
switches: a) the (total) resistance between any “point” on a wire a and any
“point” on another wire b is less than R if and only if the two wires are con-
nected (Definition 2).

Fig. 4. Extracting the configuration of a D-CSN; the current measurement.

Fig. 5. Two distinguishable configurations of a 2 � 2 R-CSN.

Fig. 6. Two different but indistinguishable configurations of a 2 � 2 R-CSN.

independent of the state of every other switch. This is in contrast
to the case of R-CSNs. In Fig. 5, for example, the resistance be-
tween the first horizontal and the second vertical wires is low in
both configurations. Concluding that the switch is closed
in both cases is incorrect. Therefore, in R-CSNs, the results of
the measurements do not necessarily represent the states of the
corresponding switches.

Although we cannot tell which of the switches are closed or
open in the left configuration of Fig. 5, we can still distinguish
it from the right one (in Fig. 5) by examining the whole set
of resistance measurements (every pair of the four
wires). By doing so, we infer that the pairs of connected wires in
the left configuration are and , while
the pairs of connected wires in the right configuration are
and . However, we cannot distinguish between the two
configurations of the switches in Fig. 6. They imply the same
electrical behavior of the network, i.e., all wires are connected
together. The above examples and discussion are extended di-
rectly to R-CSNs of any sizes .

It is reasonable to assume that the device is connected to the
rest of the circuitry through CSN’s terminals and that the states
of the switches cannot be observed from the outside in any other
manner, i.e., the switches are hidden inside the CSN, as illus-
trated in Fig. 7.

An R-CSN with a given configuration of its switches
is an -terminal device with a certain electrical behavior.
We use the term device for the whole set of information we can
extract from an R-CSN, with a given configuration, by mea-
suring the resistance between every pair of its terminals (wires),3

i.e., measurements. A formal definition is in order.

3Following the assumptions stated before, we consider the results of resis-
tance measurements being binary and correct in the sense that we measure low
resistance between two wires if and only if there is a path of closed switches
between them.
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Fig. 7. The R-CSN as an N +M terminal device.

Fig. 8. The 2 � 4 R-CSN of Example 2.

Definition 3: A device, , realized by an R-CSN
along with a given configuration of its switches, is an ,

– matrix whose entry is if the th horizontal wire
is connected to the th vertical wire, through any connection
path, and otherwise. The set of devices realized by an
R-CSN is denoted by and is a subset of .

Remark 3: According to the previous discussion one might
expect that a device is not defined as an , – matrix
but rather as an matrix representing
the conductivity between every wire pair (including the degen-
erate same-wire pair). However, following Remark 2, two dis-
tinct horizontal wires are connected if and only if there is a ver-
tical one that is connected to both of them. Similarly, for a pair
of vertical wires. Therefore,

where for a real matrix , is a – matrix, of
the same dimension ,with in the entry if and zero
otherwise. So and carry the same amount of information.

Example 2: The R-CSN of Fig. 8 has configuration

and realizes the device

Fig. 9. The 16 configurations of a 2 � 2R-CSN realize only 12 devices.

Example 3: R-CSNs have 16 configurations that realize
12 devices. All are shown in Fig. 9. A device may be realized by
more than one configuration, for example, all five configurations

and

realize the device

The following lemma provides a relation between configura-
tions of the switches and their corresponding devices.

Lemma 1: If is a configuration of R-CSNs, is
the corresponding device and , then

(1)

where operator is defined in Remark 3.
Proof: Consider an R-CSN with a config-

uration . Entry is the number of length- paths
(length number of switches) between the th horizontal
wire and the th vertical one (i.e., if switch is
closed and the two wires are connected, if the wires
are not connected by a length- path). Recall from Remark
2 that all paths between a horizontal and a vertical wire have
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Fig. 10. A 3 � 5 R-CSN with a given configuration.

Fig. 11. Example: 1–1 connection of the wires.

odd length. Moreover, the number of length- paths
between the th horizontal wire and the th vertical one is

[30]. Every such path involves horizontal
and vertical wires. Therefore, the entry of the matrix

equals the number of paths between the th horizontal wire and
the th vertical one of length less than or equal to ,
and, since there exist only horizontal and vertical wires, it
suffices to take in order to include all simple
paths.

Example 4: Consider the R-CSN in Fig. 10. It is

and . Therefore,

and the realized device is

C. The Notion of Capacity

Consider an D-CSN like that in Fig. 2. All
configurations of the switches are distinguishable4 using the
current measurement tests in Fig. 4. Every configuration corre-
sponds in a one-to-one fashion to a unique electrical behavior,
i.e., a device. Therefore, the information capacity of the net-
work is bits. By extending this idea to the
case of R-CSNs, the storage capacity of an R-CSN is

bits, where is the number of devices that can be
realized by it.

4See the discussion in the beginning of Section II-B Every measurement in
Fig. 4 is independent of the other ones.

A simple exact and an asymptotic lower bound of the capacity
is derived in the following lemma.

Lemma 2: The information capacity of R-CSNs is
at least bits and is asymptotically equal to or greater
than bits as .

Proof: There are configurations of the switches such
that every horizontal wire is connected to exactly one vertical
wire (e.g., Fig. 11). Therefore, bits. Also, for
every , there exists , , such that

[29]. We conclude that .

III. THE NUMBER OF DEVICES

To simplify notation, we use subscript to indicate horizontal
wires and subscript to indicate vertical wires. The set of all
wires of the R-CSN is .

Definition 4: The connectivity partition of a device is a
partition of the wires’ set such that two wires are in the
same block of if and only if they are connected (through a
path). Every wire that is not connected to any other wire forms
a singleton in the partition.

Example 5: The wires’ set of the R-CSNs in Fig. 5
is . The connectivity partitions of the de-
vices realized by the left and the right configurations in Fig. 5
are and ,
respectively. Compare and with their corresponding de-

vices and , respectively.

Example 6: The wires’ set of the R-CSN in Fig. 10 is
and the connectivity parti-

tion corresponding to that particular configuration is

Remark 4: The connectivity partition of an R-CSN with a
given configuration, and the device it realizes carry exactly the
same amount of information. In several instances one is more
convenient to use than the other.

Remark 5: Although every device has a unique connectivity
partition, there are connectivity partitions that do not correspond
to any device. For example, there is no device realized by a
R-CSN having connectivity partition
because for any two horizontal wires to be connected, to each
other, they must be connected to a vertical ones as well.

Definition 5: Let be the set of all partitions of the wires’ set
having the following properties: for every and every

block , is either a singleton or it contains at least one
horizontal and at least one vertical wire.

Lemma 3: The set contains the connectivity partitions of
all devices realized by R-CSNs and no other partition
of .
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Proof: Let be the connectivity partition of a device re-
alized by an R-CSN. Let be a block of it. By
definition is not empty. If is not a singleton, then, not all
wires in can be horizontal because in this case they cannot
be connected to each other, similarly, not all wires in can be
vertical. Therefore, .

Conversely: given we close all switches of the
R-CSN, such that and belong to some (the same)

block , is a horizontal wire, and is a vertical wire.5

We open all the remaining switches. Let be the realized de-
vice and its connectivity partition. We show that .
Note that is finer than since every block of is by con-
struction a subset of a block of . Now we show that .
Let where ’s are the hor-
izontal wires and ’s are the vertical wires in . Suppose that
there exists a horizontal wire . By construction of
the configuration, there exists a minimum-length path of closed
switches from to either a vertical or a horizontal wire in .
The last switch in this path connects a wire in with a wire
in . By construction again, this switch is open, therefore, we
have a contradiction. Hence, it must be and so .

Remark 6: Note that the correspondence between devices and
connectivity partitions is bijective. Therefore, Lemma 3 leads to
the following corollary that will be used in the counting of the
devices realized by R-CSNs.

Corollary 1: The number of devices, , realizable by
R-CSNs is .

Instead of using brute-force enumeration of all possible con-
nectivity partitions to calculate , we can construct a bijective
map between the set of connectivity partitions, , and another
set whose elements we can enumerate easier. This is done in
Lemma 4.

Note that the sets of the horizontal and the vertical wires of
an R-CSN are denoted by and

, respectively.

Lemma 4: The set of connectivity partitions of
R-CSNs, , can be mapped bijectively into the set con-
taining the six-tuples satisfying the following
properties 1) to 6):

1) is a proper subset of , possibly the empty set.
2) is a proper subset of , possibly the empty set.
3) is an integer such that .
4) is a partition of into (nonempty) blocks.
5) is a partition of into (nonempty) blocks.
6) is a bijection from to .

and the six-tuple , where is
a dummy function.

Proof: The lemma is proved by constructing a bijec-
tion . Consider a connectivity partition

in corresponding to a device . Let be
the set of the horizontal wires that are not connected to any
(vertical) wire; similarly, let be the set of the vertical wires
that are not connected to any (horizontal) wire. Set ,

5Notation is slightly violated here.

, and , it may be or .
Note that the wires in appear as singletons in .
Without loss of generality, we assume that
are these singletons and so , i.e., all
disconnected wires.

If , then contains only singletons and so ,
. In this case, we set . If

, every one of the remaining subsets con-
tains at least one horizontal and one vertical wire.6 For

, is uniquely decomposed as where
and . We define , to be the partitions

, of the sets
and , respectively (based on the connectivity of

the wires). The six-tuple is completed by defining the bijection
from to such that for . Fi-

nally, we set .
Surjectivity: Starting from a six-tuple in
we configure an R-CSN in the following way. If

, we open all switches.
Otherwise, we close all switches such that and

for some and we open all remaining ones.
Let be the realized device and its corresponding con-
nectivity partition. It is straightforward to verify that

.
Injectivity: Consider two distinct connectivity partitions ,

of R-CSNs corresponding to devices , , re-
spectively, and let

and

Since , there must exist two wires , (hori-
zontal, vertical, or both) that are connected, to each other, in one
of the devices and not in the other one. If

we conclude that . If

then one of , must be horizontal and one must be vertical.
This along with the assumption about the connectivity of two
wires imply that which leads to .

The following corollary results from the combination of
Corollary 1 and Lemma 4.

Corollary 2: The capacity of the R-CSN is .

IV. EXACT EXPRESSIONS FOR R-CSNS’ CAPACITY

The following theorem provides the exact information ca-
pacity of R-CSNs. The expressions involve Stirling’s
numbers of the second kind . By definition, is

6It is not possible to have two horizontal wires connected together without
being connected to a vertical wire.
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TABLE I
THE NUMBER OF DEVICES, D(N;M)

Fig. 12. Information capacity of N �M R-CSNs for independently varying N and M .

the number of distinct ways that a set of elements can be par-
titioned into nonempty subsets [28]. A useful expression of

is given by (2) [29]

(2)

Theorem 1: The information capacity of R-CSNs is
bits, where

(3)

Proof: The proof is based on Corollary 2, the definitions
of , , , , , , , , in Lemma 4 and its proof,
and the enumeration of the elements in . We count for

, corresponding to the case that all wires are
disconnected and we use properties 1)–6) of the rest of the ele-
ments in . For and ,

there are ways to choose the sets of disconnected
horizontal and vertical wires and such that

and . Then, , the number of block in partitions
and , ranges from to . For every

value of , we can choose partition in possible
ways7 and partition in possible ones. Finally,
there are ways to map into bijectively.

The values of for are shown
in Table I. Note that .

The information capacity (bits) of
R-CSNs is shown in Fig. 12, where the sizes vary inde-
pendently from to . As expected, the maximum capacity
is achieved for maximum sizes.

A. The Capacity When is Fixed

In practical circuits the sizes may have to satisfy certain
constraints due to physical size, circuit related or other limita-
tions. It is interesting to examine how the capacity depends on
such possible constraints. For example, Fig. 13 shows the ca-
pacity of R-CSNs when the number of terminals

7Note that jHHH �Hj = N � i, jVVV � V j =M � j , and use the definition of
Stirling’s numbers of the second kind.
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Fig. 13. Information capacity of N �M R-CSNs, as a function of N , when
N +M is fixed.

Fig. 14. Information capacity of N �M R-CSNs, as a function of N , when
NM is fixed.

is fixed and equals 128, 256, 512, and 1024, while varies be-
tween 1 and 127, 255, 511, and 1023, respectively. Capacity is
maximized when .

B. The Capacity When is Fixed

In the case of D-CSNs, the capacity depends only on the
product of their sizes. How does the capacity of R-CSNs
depend on the product ? In Fig. 14, we see the graphs of
the capacity for varying when the product is fixed. The
capacity is maximized when or . This is expected
since in this case all configurations of the switches result
in distinct devices. The graphs are convex and the capacity is
minimized when is minimum; if for some
integer , the minimum is achieved when .

C. More Compact Expressions of and

By changing the order of summation in (3), we can get the
alternative expression for given in Corollary 3. The proof is
similar to that of Theorem 1; here we count first with respect to
the number of the blocks in the partitions , then we count with

Fig. 15. Exact expression and bounds for the capacity of N �N R-CSNs, in
comparison with the capacity of D-CSNs.

respect to the number of disconnected horizontal and vertical
wires.

Corollary 3: The number of devices can be expressed as

(4)

A compact expression of and is given by Theorem 2.

Theorem 2: The information capacity of R-CSNs is
bits where

(5)

Expression (5) can be used in commbnation with (2) for the
exact calculation of the capacity. In the case of square
R-CSNs, expression (5) simplifies to

(6)

It can be shown that is bounded below by
for every (see Section VII) and bounded above

by for (proof of Theorem 3 in the Ap-
pendix). Fig. 15 presents the graphs of the three expressions
along with that of the capacity of D-CSNs. The dependence of
the ratio on is illustrated in Fig. 16.

The proof of Theorem 2 is based on the following lemma that
introduces an identity on Stirling numbers of the second kind.

Lemma 5: For every two positive integers with

(7)

Proof: Recall that is the number of partitions of
a set with elements into nonempty blocks [28]. Now, con-
sider the set and let be a fixed pos-
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Fig. 16. The capacity of N �N R-CSNs relative to N log (N) for small to
medium values of N .

itive integer with . Let be the set of all partitions of
into nonempty blocks, it is .
The set can be partitioned itself into blocks,

, where is the set of all partitions of
whose block containing the element has exactly
elements (totally). There are subsets of containing the el-
ement and having exactly elements (totally) and
there are ways that the remaining
elements of can be partitioned into blocks. Therefore,

and since we conclude that

Proof of Theorem 2: Rewriting (4) as

and applying Lemma 5 twice we derive (5).

V. APPROXIMATE EXPRESSIONS FOR R-CSNS’ CAPACITY

The exact calculation of R-CSNs’ capacity, , may
not be an easy computational task for large sizes and , and
it may even be practically impossible for very large and .
This motivates the derivation of low-complexity approximate
expressions of the capacity. Such an expression is

Fig. 17. Percentile difference between B (N;M) and capacity B(N;M).

Fig. 18. Percentile difference between B (N;M) and capacity B(N;M).

bits (8)

with

where is the natural logarithm and . Note that
depends only on the sum, , of the sizes and

not explicitly on the pair . Fig. 17 shows the percentile
error of the approximation when
and range from to . The approximation of
by improves percentage-wise as . For
large , the approximation can be improved further if is
replaced by , the real solution of the transcendental equation

.
A simpler, empirical, but less accurate approximation of the

capacity is given by function in (9). It also
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Fig. 19. Percentile difference between B (N), B (N) and capacity B(N).

depends only on and is more accurate for large values
of both and

bits (9)

Fig. 18 presents the percentile error
of when and range from to .

In the case of square R-CSNs, expressions (8) and (9)
become (10) and (11), respectively.

bits (10)

with and

(11)

Their percentile errors

and

are shown in Fig. 19. Note that the -axis is in log-scale.

VI. ASYMPTOTIC CAPACITY OF R-CSNS

The information capacity of square R-CSNs
is asymptotic to for approaching infinity. This is
stated formally in Theorem 3 that is proved in the Appendix.

Theorem 3: The capacity of
R-CSNs has the property

(12)

Fig. 20. The capacity ofN �N R-CSNs relative toN log (N) for very large
values of N .

Remark 7: Note that the statement is stronger than saying
“ is in the order of ,” which could have been
derived using complexity theory, e.g., [23], [24].

Remark 8: Due to the nature of the asymptotic approximation
of the capacity, the ratio approaches the limit only

for very large values of . Fig. 20 shows the graph of this ratio
for ranging from to .

Similarly, the information capacity of rectangular
R-CSNs is asymptotic to for

both and approaching infinity. The proof of Theorem 4 is
similar to that of Theorem 3 and is omitted.
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Fig. 21. The capacity of N �M R-CSNs relative to (N +M) log (N +M) for very large values of N and M .

Theorem 4: The capacity of
R-CSNs has the property

(13)

Fig. 21 presents the ratio of the capacity, approximated
using function , over the asymptotic expression

. The approximation error is insignif-
icant for large . The slice coincides with the
graph in Fig. 20.

Since are positive, it is

Moreover, is convex, so for and

By choosing , , and we get

Combination of the two inequalities gives

(14)

From (13) and (14) we also conclude that

(15)

VII. DATA STORAGE IN R-CSNS: SOME COMMENTS

In the standard paradigm of digital storage and digital signal
processing, information is encoded in sets of binary variables.
Unless error correction or other type of coding is used, these
variables are considered independent by default, e.g., bits stored
in non-ECC RAM.

Under the assumption that nanodevices, like R-CSNs, should
operate the way traditional digital circuits do, or communicate
directly with traditional digital circuits, a major question is
raised: how is standard binary representation of data translated
into configurations of R-CSNs8 and via versa?

For an R-CSN the answer is equivalent to finding an
injection , where for some integer

and is the set of devices9 realized by the
R-CSN. Function should be realizable in hardware

with the minimum possible complexity. To this end, sacrificing
part of R-CSN’s capacity may allow for simpler realization. For
example, the domain of can be restricted and an injection

can be defined instead, where is the maximum
possible integer. Although the derivation of such a function is
out of the scope of this work, the following observation is in
order.

Consider the case where , and the configu-
ration10 of the R-CSN is restricted within the set

s.t. has exactly one in every row

Note that is also the set of devices corresponding to these
configurations (since for it is , see
Lemma 1). The situation is illustrated in Fig. 22 for and

. Moreover, it is .
The advantage of this setup is that the encoding function

is the standard one-hot encoder11 bijection (after reducing its

8See Section II-C.
9See Definition 3 in Section II-B.
10Definition 1, Section II.
11It maps the n-bit input vector to its binary value +1.
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Fig. 22. A paradigm of encoding in a 4 � 8 R-CSN.

range to its image) from to . Similarly,
the inverse function is the one-hot decoder. In this way we
can store

bits of information.
Although making the nanodevices compatible with the stan-

dard digital world is very important, new paradigms of signal
processing that do not require immediate data translation may
also have their value. R-CSNs of the aforementioned class, for
example, realize discrete functions from to .
By simply cascading the R-CSNs one can form the composi-
tion of these functions. Ability to temporarily store the output
value and feed it back to the input allows for iterative mappings
as well. The set-theoretic inverse of the function is also trivial
to generate, etc.

More examples and discussion on encoding and decoding
schemes can be found in [2], [22], [23], [25] and [26].

VIII. CONCLUDING REMARKS

The information storage capacity of crossbar
switching networks with ohmic (resistive) contact switches
(R-CSNs) has been derived explicitly and has been compared
to that of crossbar switching networks with semiconductive
(diode) switches (D-CSNs). Simple approximate formulas of
R-CSNs’ capacity have been provided as well. It has been
shown that the capacity of square R-CSNs is asymptotic
to , for large values of , and that the capacity
of R-CSNs is asymptotic to
under some conditions on . Cases where satisfy
certain constraints have been considered and the maximization
of the capacity has been discussed.

APPENDIX

Two Lemmas, A1 and A2, are introduced first in order to
prove Theorem 3 in Section VI.

Lemma A1: For all positive integers with it is

(16)

Proof: The Stirling numbers of the second kind, ,
have the following generating function, [29]:

(17)

Dividing both sides of (17) by and integrating them on
the positively oriented circle , centered at the origin of the
complex plane and having radius , we get

(18)

From (18) we have

(19)

Combining (18) and (19) we get

which for implies inequality (16).

Definition A1: Given two positive sequences, and
, such that for sufficiently large , we write12

if and only if

for

It can be verified directly from Definition A1 that is an
equivalence relation having the following basic properties.

1. for every sequence .
In particular, .

2. If and then as long as

or

12With a slight abuse of notation we also write � � � .
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is bounded, e.g., when for sufficiently large ,
or when for sufficiently large .

3. If and then as long as

or

is bounded, e.g., when for sufficiently

large , or when for sufficiently large .
4. if for sufficiently large .
5. if are bounded sequences.
6. .
7. for every bounded integer sequence .
8. for every bounded sequence and

.
Stirling’s formula, for some

, can be used to derive properties 6)–8).

Lemma A2: For every given integer , there exists a
positive sequence such that and

for every .
Proof: Let be two integers such that . Then

there exist integers so that and .
The function of is analytic and

Note that the coefficients of all powers of in the parentheses
above are positive. This, along with imply that
is larger than . Since , we conclude that

. From (18) and the fact that , we
have

which gives . Therefore,

(20)

From (6), we get that

and so . Using (20) and the fact that
is an increasing function, i.e., , we get

(21)

Equation implies which along with (21)
gives

(22)

Recall that is fixed and ( ). Directly from
Definition A1 we have the equivalence

Since , Property 8 gives that

and so

(23)

Also, Property 6 along with Property 1 give

(24)

Now consider the four sequences

Since

and because of (23) and (24) we can apply Property 3 to get
, i.e.,

(25)

The lemma is proved by combining (22) and (25) and setting

(26)

Proof of Theorem 3: Expression (6) and inequality (16) lead
to the following steps:
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Therefore, where . Using
Properties 1 and 7 we get that

(27)

Picking an integer and combining the above results with
Lemma A2 we also get that

(28)

Taking the logarithms of the three parts in (28) and dividing by
gives

which implies directly that

(29)

From Lemma A2, we have which commbned
with (27) imply that

(30)

Finally, by combining (29) and (30) we get

which holds for every . Taking we conclude
that limit exists and equals .
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