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Abstract—State space harmonic distortion modeling and estima-
tion are introduced for - filters with fully balanced, weakly
nonlinear tranconductors. The proposed method provides compact
closed-form answers expressed explicitly in terms of the values of
the circuit elements. It can be easily implemented in MATLAB and
applied to - filters of any order. The filter is viewed as a com-
position of three operators in signal space representing the input
stage, the filter core, and the output stage. Each operator is then
decomposed into the superposition of a linear operator and a non-
linear operator. The total distortion at the output is shown to be ap-
proximately the sum of the distortion introduced by the nonlinear
operator of each stage. The theoretical results are found to be in
good agreement with Cadence simulations for the cases of a lossy
integrator and a third-order Butterworth low-pass filter.

Index Terms—Circuit analysis, distortion model, - filters,
fast algorithm, fully balanced, fully differential, harmonic distor-
tion, perturbation, state space, weak nonlinearity.

I. INTRODUCTION

CONTINUOUS-TIME transconductor-capacitor ( - )
filters have received significant attention in the past two

decades. They have been widely employed in a variety of
applications including audio and video applications, telecom-
munications, and low-power analog systems [1]–[11]. Their
tunability, low-power, and high-frequency capability have made
them popular in the analog circuits community.

However, to achieve high frequency performance, linearity
is often sacrificed in favor of simple and fast transconductor
topologies. This results in nonnegligible distortions at the
transconductors and therefore at the output of the - filters.

When a sinusoidal signal of frequency is applied to the
input of the filter, the steady-state response at the output consists
of not only the component at the fundamental frequency , but
also the components at harmonic frequencies .
These higher order terms are referred to as harmonic distortion.
The total harmonic distortion (THD) is defined as

in dB
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where is the amplitude of the component at and is
the amplitude of the component at the th harmonic ,

.
Harmonic distortion is a major issue in many applications

such as antialiasing filters in analog-to-digital converters
(ADC). Suppose for example that the input signal to an ADC is
a sinusoidal signal at 400 kHz and that the sampling frequency
is 1500 kHz. The third-order harmonic component at the output
of the antialiasing filter is at 1200 kHz and thus aliased at 300
kHz, which degrades the signal-to-noise ratio (SNR).

Harmonic distortion and noise dictate the dynamic range of
a system [12]. Over the past decade, significant effort has been
made to optimize filters in terms of their dynamic range and
power dissipation [13]. Companding and dynamic scaling have
been proposed to optimize the dynamic range [14]. Several other
techniques have been discovered to reduce the nonlinearity in
transconductors and therefore in filters [1], [15]–[18].

To advance further, it is important to have an efficient tool to
estimate the harmonic distortion of the filters during the design
process. Most of the existing techniques use the Volterra series
approach [19]–[21], where the nonlinear system is decomposed
into an infinite number of subsystems with polynomial nonlin-
earities. Harmonic components are then evaluated separately for
each subsystem. Other frequency domain methods, such as the
harmonic balance method, solve the determining equations de-
rived from balancing the harmonics, or use partial transfer func-
tions from the input to internal nodes of the filter [13], [22].

Some of these techniques, such as those in [21] and [22], can
produce analytical results of distortions in low-order weakly
nonlinear systems (filters)1 and provide some insight into the
dependence of the distortion on component values. For higher
order systems, especially those without a special topology,
deriving closed-form analytical results using a Volterra series
based approach is usually complicated with high computational
costs, if possible at all.

In contrast to the widely followed path of using transfer func-
tions or Volterra series based methods, this paper proposes a
state space methodology for modeling and estimation of har-
monic distortion. The system is described by differential equa-
tions in the time domain and all the calculations are carried out
in the time domain. Although we only discuss in this paper the
case of fully balanced transconductors with weak third-order

1In this paper, we use the terms systems and filters interchangeably.
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Fig. 1. A single-ended transconductor connected between node j and node i
in a typical G -C filter.

Fig. 2. Fully balanced transconductor connected between node j and node i
in a typical G -C filter.

nonlinearity due to the simpler algebraic results, this approach
can be applied to any - filters.

The paper is organized as follows. Section II introduces the
notations and our assumptions, and discusses state space rep-
resentation of - filters with transconductors having weak
third-order nonlinearity.

In Section III, the filter is divided into the input stage, the
filter core and the output stage. The distortion introduced by
each stage is derived and the THD is shown to be approximately
equal to the sum of the distortion introduced by each stage.

The mathematical results are compared to Cadence simula-
tion results in Section IV for the cases of a lossy integrator and
a third-order Butterworth low-pass filter.

II. - FILTERS WITH WEAK THIRD-ORDER NONLINEARITY

AND THEIR STATE SPACE REPRESENTATION

In most practical cases, the basic building block of a -
filter consists of a transconductor and a grounded capacitor.
Fig. 1 shows a single-ended transconductor connected from
node to node in a typical - filter block. If is its
transconductance, is the voltage at node and is the
current flowing into node due to , ideally we have

(1)

Fully differential (fully balanced) transconductors (e.g.,
Fig. 13) are preferred in most - filter designs, because
their symmetry results in lower nonlinearity. For an ideal fully
differential transconductor, Fig. 2, the equivalent of (1) is

Although in this paper we study - filters based on fully
balanced transconductors, we use the symbol in Fig. 1 due to its
simplicity.

Because of the balanced structure of the transconductor, the
output current can be expressed using only odd powers of

Fig. 3. A lossy G -C integrator.

the input voltage , where the fifth- and higher order terms are
negligible compared to the third-order term in most practical
cases, i.e.,

(2)

These assumptions are typical in analyzing the distortion of fil-
ters with fully balanced transconductors [12], [13], [20] and are
adopted here as well. Also, in many cases, the coefficient of the
third-order power is proportional to , i.e.,

The (small) constant has units of Volt and can be derived an-
alytically (see Appendix I) or extracted from the – character-
istic of the transconductor by numerically fitting the third-order
polynomial in (2) to the data from simulations or measurements
(see examples in Section IV).

Although may not necessarily be true for the
more general case [see (14)], it results in simpler algebraic ex-
pressions and is assumed for notational convenience (see also
Appendix I). Therefore, current is expressed as

(3)

Modeling - filters in state space equations is a straight-
forward procedure as demonstrated in the following two exam-
ples.

Example 2.1: A - lossy integrator is shown in Fig. 3
[23], [24]. The corresponding differential equation is

(4)

By setting and , (4) is expressed in the
standard systematic form

(5)

Now suppose that the transconductors exhibit weak third-order
nonlinearity modeled by (3). Equations (4) and (5) become, re-
spectively

(6)

(7)

It should be noted that the output of the filter in this example is
also the state variable of the filter since it is the voltage across
the capacitor. No output transconductors are needed in this case,
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Fig. 4. A general second-order G -C filter with a current output.

therefore, no distortion is introduced at the output of the filter.
This is true in many filter designs.

Example 2.2: A general form of a second-order - filter
is shown in Fig. 4. If the voltages across capacitors and
are and , respectively, we have

(8)

Contrary to the previous example, the output of this filter is a
current provided by the output transconductors and . If
these transconductors have nonlinearities they may contribute
to the total distortion of the filter.

Now if we set ,

and

then (8) can be rewritten as

(9)

Further, if the nonlinearity of the transconductors is taken into
account and modeled by (3), the filter equations become

(10)

Equation (10) can be written in the matrix form

(11)

where is the Hadamard cube2 of .
Equation (9) is the state space representation of the second-

order - filter in Fig. 4 with all transconductors being linear,
and (11) is the state space representation of the filter when the
weak third-order nonlinearity of the transconductors is taken
into account. The voltages across the capacitors, and , are
the state variables.

A general th-order (linear) - filter can be written as
a single-input, single-output th-order linear system. Let be
the input voltage be the output current of the filter, and let the
state vector be the voltages across the
capacitors. Then, the state space equations [25] of the filter are

(12)

where is the system matrix,
is the input (column) vector, is the transconductor from the
input to the th capacitor , and is the output
(row) vector of the system. In some cases, a feedforward matrix

may be present, i.e., . Since simply replicates
the input we can ignore it without loss of generality.

When the transconductors exhibit weak third-order nonlin-
earity modeled by (3), (12) changes to

(13)

Equations (13) are the filter’s model used in this work3.
Throughout the paper, we assume that the linear system

in (12) is asymptotically stable, the input to the filter is
and we use symbols in bold faces, e.g., and ,

to denote vectors or matrices.

III. ESTIMATION OF HARMONIC DISTORTION

The block diagram of the weakly nonlinear system in (13) is
shown in Fig. 5. The system can be viewed as a cascade of three
stages, the input stage, the filter core stage and the output stage.

2If a = (a ; a ; . . . ; a ) and b = (b ; b ; . . . ; b ) are two n-dimen-
sional column vectors, then a � b = (a b ; a b ; . . . ; a b ) is defined as
the Hadamard product of the two vectors.

3If h = "g does not hold in (2), then (13) must be replaced by the more
general model

_v =Av +Ev +Bu+Fu
(14)

y =Cv +Kv

whereE,F, andK are the corresponding matrices for the third-order nonlinear
terms. Although the algebra is a little more involved in this case, one can follow
exactly the same steps presented in this paper to derive the total distortion of the
filter (system).



ZHANG et al.: STATE-SPACE HARMONIC DISTORTION MODELING 51

Fig. 5. Block diagram of the weakly nonlinear system in (13) viewed as
a cascade of the input stage, the filter core and the output stage. The stages
correspond to signal operators S , S , and S , respectively.

Fig. 6. Operator S , i = 1, 2, 3, is the superposition of a linear operator S
and a nonlinear operator S .

We think of these three stages as operators , , and in the
signal space4 such that

(15)

The response of the whole system is given by the composition
of operators , and

. Each operator , 1, 2, 3, can be expressed
as the superposition of two operators and , respectively,
(see Fig. 6)

for and (16)

is the input-output relationship of the th stage when there

is no distortion (i.e., ), whereas the difference
accounts for the distortion introduced by the th stage. It is

straightforward to express the linear and nonlinear components
of operators and as

is the steady-state solution of the linear system
(see Fig. 7). is the difference

between the steady-state solutions of the systems
and , and accounts for the distortion

introduced by the filter core.

4Note that we consider only the steady-state response of the stages in the case
of a sinusoidal input u. It can been shown that for relatively small ", signals w,
v and y will also be periodic of the same period with u.

Fig. 7. Definition of operator S .

Fig. 8. The eight signal paths of the cascade in Fig. 6 resulting from the
decomposition of operators S , S , and S . Path 1 corresponds to the linear
system. The output of Paths 2, 3, 4 corresepond to the distortion generation
by only the input, filter’s core, and output stages, respectively. Paths 5, 6, 7,
8 correspond to second- and third-order distortion and can be ignored for "
sufficiently small.

Decomposition of operators , and results in eight
signal paths listed in Fig. 8. Since we have assumed that the
transconductors have only weak nonlinearity, the distortion
signal components , , and are small com-
pared to the desired signal components , , and

, respectively. More accurately, it can be derived from
the expressions of , , and , that if is the input to ,
then the amplitude of the signal is about times the
amplitude of , where is the amplitude of . Both
and are considered small. In other words, the output signal
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Fig. 9. Block diagram of the linear system (filter).

can be approximated by the first four terms (corresponding to
Paths 1–4), i.e.,

(17)

In the following four subsections we derive explicit expressions
for the output signals of the first four paths ,

, , and .

A. Solution of the Linear System

Here, we consider the linear system in Fig. 9 that models the
filter when , i.e., all stages are linear. The problem can be
described by system (18) with input .

(18)

We use the following Lemma to derive (the steady-state re-
sponse of the linear filter) . The
proof can be found in Appendix II.

Lemma 3.1: If the linear system (18) is asymptotically stable
and its input is , then its steady-
state solution is , where and are
column vectors given by

(19)

Therefore, the output of the linear system in (18) is

(20)

B. Distortion Introduced by the Input Stage

In this section, we derive the harmonic distortion components
at the output of the filter introduced by the nonlinearity of the
input stage when the other two stages are linear. The situation
is illustrated in Fig. 10 and corresponds to Path 2 in Fig. 8. The
input signal is as before.

To derive , we need to find the
steady-state solution of

(21)

Fig. 10. Distortion introduced by the input stage when the other two stages are
linear.

Using and applying
Lemma 3.1 twice, we conclude that

(22)

The first term in (22) is negligible because its amplitude is in
general much smaller than that of the desired signal given by
(20). Therefore, the distortion introduced by the nonlinearity of
the input stage, when the other two stages are linear, is,

(23)
Note that the amplitude of is proportional to , i.e.,

C. Distortion Introduced by the Filter Core

Here, we derive the harmonic distortion components intro-
duced by the nonlinearity of the filter core when the input and
output stages are linear. The setup is shown in Fig. 11 and
is the steady-state response of the system.

By the definition of (see Fig. 7), we have

(24)

Regular perturbation theory [26] is employed to solve the
nonlinear differential equations (24) (see Appendix III). The so-
lution can be found using the following procedure. First, we
express as an infinite series

Substituting into (24), we get
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Fig. 11. Distortion introduced by the filter core when the other two stages are linear.

Next, the summands are grouped based on the power of

Equating -terms of the same power yields

(25)

(26)

...

The solution of (24) can be obtained by solving this infinite set
of equations. Since is assumed small and all the distortion
components are also expected to be small relative to the desired
signal, can be well approximated by only the first two terms in
the series, i.e., . When the input is ,
the solution for comes directly from Lemma 3.1

(27)

To solve (26), it is convenient to write
where

(28)

Then we have

which can be rewritten as

(29)

by setting

(30)

Applying Lemma 3.1 and using (29) and (30), we have the so-
lution of (26)

(31)

Equation (24) along with approximation implies

(32)

The signal components in at frequency are negligible
compared to the desired signal given by (20). The distortion
introduced by the filter core is5

(33)

Note that are proportional to the amplitude , which implies
that , , , are all proportional to and therefore

5Higher order harmonics may be present at the output of the filter, though
they are negligible compared to the third-order harmonic, which dominates the
distortion of the output. (S �S �S )(u) contains only third-order harmonic
because of the approximation v � v + "v .
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Fig. 12. Distortion introduced by the output stage when the other two stages
are linear.

D. Distortion Introduced by Output Stage

Here, we derive the harmonic distortion introduced by the
output stage when the input stage and the filter core are linear.
Fig. 12 illustrates the setup and the corresponding dynamical
system is given by (34). The input signal is
and is the steady-state response of the system.

(34)

in (34) has been derived and is given by (27). Using (29), we
have

(35)
and

(36)

Again, the signal components of at frequency are neg-
ligible, hence the distortion introduced by the nonlinearity of the
output stage, when the other two stages are linear, is

(37)

Since , are proportional to [see (30) and (28)], we have

E. Total Harmonic Distortion

The total third-order harmonic components at the output of
the filter are

LL

where

and both and are proportional to .
Remark: The expressions of and were derived as-

suming that ALL three stages of the filter are nonlinear and con-
tribute to the total distortion of the filter. If any of them is linear
or is not present (see Example 2.1) the corresponding terms in

and should be removed.
The desired signal at the output of the filter is approximated

by the linear filter output

where

The THD of a - filter modeled by (13) is

dB (38)

Since and are proportional to , and and are
proportional to , we get

(39)

where is a function of only the system parameters and fre-
quency . If is reduced to , the power of the third-order
harmonic distortion and the THD will both drop by 20 dB. If
is reduced to , the power of the third-order harmonic dis-
tortion and the THD will be attenuated by 60 dB and 40 dB,
respectively.

Note that these results apply to nonlinear systems without
memory as well. Consider for example a single transcon-
ductor with weak third-order nonlinearity, ,
and input signal . The harmonic com-
ponents at the output consist of a third-order term of
amplitude . The amplitude of the desired
signal is , and so

.
The proposed process to derive the THD is summarized in

Appendix IV and can be easily implemented in MATLAB.

IV. SIMULATIONS

The proposed THD derivation process is verified in Cadence
SpectreS simulator using the lossy integrator in Fig. 3 and a
third-order low-pass filter. In our simulations, we use the typical
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Fig. 13. Schematic of the transconductor used in Cadence SpectreS simulation
of the lossy integrator and the third-order Butterworth low-pass filter.

fully balanced, cascode-output transconductor in Fig. 13 with
transistor models for the AMI 0.5- m process (AMIS C5).

In these simulations, the filters are driven by a sinusoidal
input signal and a transient analysis is performed. The filter out-
puts are passed on to the FFT function to calculate the THD.

To find the linear transconductance and the parameter, a
dc sweep analysis is performed on the transconductor and the
response is plotted in Fig. 14. This I-V characteristic is then ex-
ported to MATLAB for curve fitting using a third-order poly-
nomial. We get and V .
These values are used in our MATLAB implementation of the
proposed algorithm (summarized in Appendix IV) to estimate
the THD. The results are compared to those from SpectreS sim-
ulations and reported in details in the following.

A. Lossy Integrator: Revisited

If we assume that pF in Fig. 3, by following example
2.1, we have s . The amplitude
of the sinusoidal input is V.

The THD values from SpectreS simulations and MATLAB
implementations are plotted in Fig. 15. The simulation and
theoretical results are in good agreement especially when the
frequency of the input signal is below the 3-dB bandwidth,

MHz, of the integrator. A major
part of the error is due to the bandwidth limitations of the

Fig. 14. DC response of the transconductor in Fig. 13.

transconductors and the phase errors they introduce, hence the
mismatch between the circuit and the derived systematic model.

To further support the discussion in Section III-C, a fast
Fourier transform (FFT) is performed on the filter output
signal, and the result is shown in Fig. 16. For the given input,
the fifth-order harmonic is about 40 dB below the third-order
harmonic and harmonics of even higher order are practically
undetectable.

B. Third-Order Low-Pass Filter

The second test filter is shown in Fig. 17. It is a third-order
Butterworth low-pass filter with transfer function

(40)

and 3-dB frequency MHz.
As before, we have and

V . In this example, pF. Let , and be
the node voltages as shown in Fig. 17 it is then for the linear
(ideal) filter we have

(41)

which can be written in the standard form

(42)

where ,

and
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Fig. 15. Cadence SpectreS simulation and MATLAB calculation of the THD
at the output of the lossy integrator in Fig. 3. The distortion is plotted against
the y axis on the left, while the frequency response of the lossy integrator is
measured against the y axis on the right.

Fig. 16. FFT of Cadence simulation output of the lossy integrator in Fig. 3 with
1 MHz, 0.1 V sinusoidal input, and 2 pF capacitance. Only odd-order harmonics
(3 MHz, 5 MHz. . .) are present.

Fig. 17. Third-order Butterworth low-pass G -C filter.

Fig. 18 shows the THD of the filter obtained from Cadence
simulations and the proposed algorithm (see Appendix IV) im-
plemented in MATLAB. We used the FFT function to extract
the harmonic signals amplitudes from Cadence simulation. This
is computationally expensive requiring numerical processing of
thousands of signal periods after the transients of the filter have
faded out. The theoretical results are in good agreement with

the simulation estimates, especially when the frequency of the
input signal is below the 3-dB frequency

MHz. Also, note that the three distortion curves corre-
sponding to input amplitudes 0.1, 0.2, and 0.4 V are very
similar in shape and shifted vertically relative to each other by

dB as was predicted by (39).
The discrepancy between results obtained from Cadence and

MATLAB is mainly due to numerical errors in the extraction
of distortion from the Cadence simulation data and not due to
the approximations made in the theoretical derivation. Another
source contributing to the error is the limited bandwidth of the
transconductors used in the simulations. The phase shift intro-
duced by them and in general their dynamic behavior can be—to
some extent—incorporated into the filter’s dynamics.

V. CONCLUSION

The paper presents a state-space approach to estimating the
THD of - filters with weakly nonlinear fully balanced
transconductors. The derived algorithm is implemented in
MATLAB. The results from the algorithm are compared with
those from Cadence SpectreS simulations for two example
filters and they are in good agreement. Major advantages of this
approach is its very low numerical complexity and the fact that
the resulting formulas depend directly on the component values
of the filter (matrices , and ). This approach also applies
to any arbitrary - filter. Since it is easily implementable
in MATLAB, one can directly modify the structural matrices
until the THD drops below the desirable levels. This allows for
automated filter optimization.

APPENDIX I
ANALYTICAL DERIVATION OF : AN EXAMPLE

Consider the MOSFET differential pair in Fig. 19. It can be
shown [27] that the drain currents of the two MOSFETs are

(43)

(44)

where . In most cases, the output current is
proportional to the current difference

(45)

Since higher order terms ,
(44) gives that

(46)

(47)

where and .
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Fig. 18. THD of the third-order Butterworth low-pass filter with respect to frequency for input amplitudes a =0.1, 0.2, and 0.4 V. Results derived by using the
proposed algorithm (see Appendix IV) implemented in MATLAB are plotted by solid lines, while data points from Cadence simulations are marked with “+,” “x,”
and “o.” The ac response of the filter is plotted against the y axis on the right. The error remains less than 1.7 dB with the exception of one point when the input
signal frequency is below the 3-dB frequency of 1.07 MHz. At higher frequencies, well within the rejection band, the error increases but remains less than 4.5 dB.
Though larger errors occur when the distortion is less than�80 dB, they are mainly introduced when harmonic signals are extracted from the simulation data and
can be reduced by using an even larger set of data.

Fig. 19. A MOSFET differential pair as a basic transconductor.

APPENDIX II
PROOF OF LEMMA 3.1

Since the system is assumed to be asymp-
totically stable and the input is ,
the steady-state solution must be of the same form [28],

. To find and , we differentiate both
sides of and get

(48)

Substituting and into (48), we get

Separating “ ” and “ ” terms gives

APPENDIX III
A RESULT FROM PERTURBATION THEORY FOR ORDINARY

DIFFERENTIAL EQUATIONS

Consider the system described by differential equation6 (49)
along with initial condition (50).

(49)

(50)

The following theorem is borrowed from [29]. More details
about (regular) perturbation theory can be found, for example,
in [26], [28], and [30].

Theorem 3.1: If has continuous derivatives up to order
and the problem (49), (50) has a unique solution when ,
then there exists an such that the problem (49), (50) has a
unique solution for every . Moreover, there exist
functions , , such that

. The functions can be derived by solving the systems

(51)

with and for all .

6Note that a system with an input u can also be treated as a time dependent
system.
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APPENDIX IV
STEPS TO FIND THE THD

The proposed process for deriving the THD is summarized in
seven steps. The seventh step gives the distortion components
explicitly.

1) Find the state space representation (13) of the -
filter.

Find matrices , and (see Examples 2.1 and 2.2).
Derive analytically (see Appendix I) or experimentally
by fitting a third-order polynomial to the character-
istic of the transconductor (see Section IV). Choose the
amplitude and frequency of the input signal

.
2) Calculate and

3) Calculate ,

4) Calculate and

5) Calculate and

In and keep only the terms corresponding to
stages of the filter that (exist and) introduce distortion.

6) Derive THD

dB

7) The individual harmonic components at the output of the
filter contributed by the input stage, the filter core stage
and the output stage are, respectively
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