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Abstract—We consider the problem of reduction of computation
cost by introducing redundancy in the number of ports as well as
in the input and output sequences of computation modules. Using
our formulation, the classical “communication scenario” is the case
when a computation module has to recompute the input sequence
at a different location or time with high fidelity and low bit-error
rates. We then consider communication with different computa-
tional cost objective than that given by bit-error rate. An example
is communication over deep submicrometer very-large scale inte-
gration (VLSI) buses where the expected energy consumption per
communicated information bit is the cost of computation. We treat
this scenario using tools from information theory and establish fun-
damental bounds on the achievable expected energy consumption
per bit in deep submicrometer VLSI buses as a function of their
utilization. Some of our results also shed light on coding schemes
that achieve these bounds. We then prove that the best tradeoff be-
tween the expected energy consumption per bit and bus utilization
can be achieved using codes constructed from typical sequences of
Markov stationary ergodic processes. We use this observation to
give a closed-form expression for the best tradeoff between the ex-
pected energy consumption per bit and the utilization of the bus.
This expression, in principle, can be computed using standard nu-
merical methods.The methodology developed here naturally extends
to more general computation scenarios.

Index Terms—Activity, buses, coding, deep submicrometer, dig-
ital circuits, energy, entropy, Markov process, power reduction,
stationary process, transition, very-large scale integration (VLSI).
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I. INTRODUCTION

I T IS fair to say that computation is the most central problem
in applied science and engineering and almost all problems

in these fields are concerned with computing certain desired pa-
rameters. In this light, much effort has been dedicated to de-
signing circuitry and algorithms for computation. The designer
of such circuits or algorithms always seeks to compute the de-
sired parameters while optimizing certain other objective func-
tions such as the cost of circuitry, the energy consumption, and
the time required to do the computation.

We model a general computation device by a “black box,”
. The input to the device at timeis a vector of input

bits and the output is a vector of bits. Assuming a causal
model, depending on the machine, a sequence of input vectors

, and a sequence of output vectors,
, the device at time has some computation cost

(such as time, energy, etc.). We assume that the computation
cost is a known function of the input vector sequences.

In the above example, the input is “uncoded,” meaning that
all input sequences of vectors are possible. Thus, we can pose
the following fundamental problem: Suppose that we can make
a second device with larger input and output ports than the min-
imum required for the computation. Can we use the second de-
vice and exploit the redundancy using coding, so that the re-
sulting computation cost is less than that of the original device?

Naturally, using such a coding scheme implies that the input
and output sequences can be mapped into low-cost sequences of
the second device. The above problem is fundamental and worth
answering. However, cost models for most computation circuits
are hard to find. In the absence of a general model, in this paper,
we restrict our attention to circuits with known computation cost
functions.The methods that we develop though can be applied
to a very general class of circuits.

One interesting example is the case when the output vector
is identical to the input vector. This is the case when the com-
puting module reproduces the input vector with high fidelity at
another location or time. This is precisely the “communication
scenario.” Communication is simply a small subset of the com-
putational problems which can be dealt with using our method.

For some classical channels, coding for reducing the proba-
bility of error in this scenario has a well-established history. In
fact, if the cost of computation is the bit-error probability, much
effort has been dedicated to decrease this cost using error-cor-
rection codes in the past 50 years.

In this paper, we consider the communication scenario.
However, we assume that we have an error-free communication
channel. Instead of using the probability of error in this case as
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the cost of communication, we consider the power consumption
of the communication devices as our objective function. The
motivation to consider this problem stems from a familiar
scenario in digital circuit design. Digital circuits are composed
of different operational units that execute specific instructions.
The units need to communicate in certain combinations and
interchange data as well as instruction sequences. For this
reason, there is a communication network between the units
consisting of individual paths. In many cases, these paths are
sets of identical channels laid out in parallel forming abus. The
structure of a bus is, in general, simple as it is composed only
of drivers (transmitters), receivers, and wires between them
carrying digital signals. Every bus has a certain number of
parallel channels (the wires) which we also calllines. Although
the bus is by nature a continuous (time and voltage) electrical
system, certain timing assumptions allow us to think of it as a
discrete value–discrete time system. Under these assumptions,
at each time moment, every line carries a bit of information.
Thus, we define abus as a communication device where the
input vector is reconstructed at the output with very high
fidelity.

When communicating over a bus, a cost for information trans-
mission has to be paid. For every single bit transmitted through
the bus, the receiver and transmitter consume a certain amount
of electric energy. Energy is consumed when there is a change
in the input sequence of the bus.

We also refer to the input vector at timeas thestateof the
bus at time . We find it convenient to use both namesinputand
statefor one object, the vector. The reason is that although the
bus does not have memory as a computation device (in contrast
to a generalfinite-state machine), it does have memory (and so
state) when it comes to energy consumption. With a minor abuse
of the definition, we say that the bus has atransition from a
state at time to another state at time , even when

.
We write for the bus input vector at time, where

and are the bits transmitted
through lines , respectively, at time. By default,
the value of a bit is a binary number,or . For convenience
though, we regard and asrealswhen we use the operators
and (in contrast to the binary addition). This is in particular
the case of energy expression (1).

The energy cost of the transition from stateto state
can be computed explicitly (see [17]) and is equal to

(1)

where is thetransposeof vector and matrix is shown
in (2) at the bottom of the page. The real parameteris non-
negative and depends on the physical properties of the lines
such as geometry, size, and distances between them as well as
the type of technology used in the manufacturing process of
the bus. The constant also depends on the technology and
the physical design of the bus. For the obsoletenon-submicron-
meter(NSM) technologies is practically zero and reduces
to a scalar matrix. For moderndeep submicrometer technologies
(DSM) can be as high as(for example in 0.13-m technolo-
gies). The total energy dissipation corresponding to a sequence

is given by . We can
also consider the transition to from the initial state that
has cost equal to .

In the spirit of the above, it is now natural to ask the following
fundamental question.

The Coding Problem: Is it possible to reduce the expected
energy per transmitted bit by adding more lines in the bus? If
so, what are the achievable limits and the coding schemes to be
used?

The key element here is that we add extra lines in the bus
while the data stream, that has to be transmitted remains un-
changed. By doing this, we pay an extra area cost on the mi-
crochip but we also get a communication channel of higher ca-
pacity. Therefore, the question stated above can be rephrased as
follows: what is the relation between additional capacity of the
channel and possible energy reduction?

Now note that redundancy of the capacity of the channel (bus)
can be ensued not only by bus expansion but also by data rate re-
duction. From an application point of view, this is a completely
different problem. From a theoretical formulation point of view,
this is exactly the same question as that we asked before, that is:
what is the “best” relation between the rate information is being
transmitted and the rate energy is being consumed?

There are some places in microprocessor architecture where
redundancy is already present because of highly “temporally”
or/and “spatially” correlated data. A particular example is ad-
dress buses where the amount of information transmitted each
time is less than a bit while the size of the bus isor . In
such cases, from an information-theoretic perspective, there is
a tremendous amount of intrinsic redundancy that can be ex-
ploited to reduce power consumption. Again, the question is
how much energy reduction is possible?

Some aspects of this problem have been studied for NSM
buses before. A relation between the bit rate and en-
ergy consumption as well as some coding schemes for

...
...

...
. . .

. . .
. . .

...
(2)
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have been presented in [12]. Related work involving both theo-
retical and practical aspects of the problem of estimating energy
consumption and the problem of coding design for energy re-
duction has been presented, for example, in [2], [5], [11], [13],
[22]–[24], [16], [6], [14], [15], and [18]–[20]. It is interesting to
mention that almost all the proposed practical coding schemes
have memory one, in the sense that if is the vector trans-
mitted at time (through the expanded bus), then depends
only on and the data vector at time . In general, a prac-
tical coding scheme must introduce minimum possible com-
plexity and transmission delay to the already very complex (see
[1]) modern microprocessor architectures. Nonetheless, there
are certain places in the microprocessors where significant delay
can be tolerated allowing for more sophisticated coding.

Note that in the case where the cost function of the
general bus with lines reduces into the sum .
This format has motivated some researchers [23], [24] to design
coding schemes which reduce the average Hamming distance
between consecutive states of the bus.

In the case of DSM technologies , unlike the case of
NSM , the above cost function has terms corresponding
to interactions between the values transmitted on different
lines. This makes the treatment of the above coding problem in
the DSM case a more challenging task that is addressed in the
present paper.

The outline of this paper is given next. In Section II, we
consider the above coding problem. Using a differential coding
scheme where the codewords are carefully chosen to have low
Hamming weights with high probabilities, we compute a gen-
eral upper bound on the minimum possible average energy con-
sumption in a DSM bus. When , our bound is given by an
explicit simple formula and coincides with that of [12]. In this
section, we also define the expected energy consumption per bit
and the utilization of the bus by a stationary process.

In Section III, we provide a nonconstructive coding scheme
based on the typical sequences of certain ergodic stationary
Markov processes. These schemes lead to more powerful
existence results and higher power reduction than those of
Section II. In contrast, it is harder to compute these reductions
numerically, except for buses with a small number of lines.
These improvements motivate us to consider the category of
stationary processes whose states correspond to the states of
the bus.

We prove that for every stationary process there is a stationary
ergodic Markov process of the same entropy rate (bus utiliza-
tion) and less than or equal to energy per bit. As a consequence,
it is shown that the minimum possible energy per bit at a given
utilization of the bus is asymptotically achievable using a code
whose codewords are (finite) typical sequences of an ergodic
Markov process.

In Section IV, we study the properties of the minimum energy
per bit as a function of the bus utilization and establish its conti-
nuity. We formulate the computation of theminimum energy per
bit function as a convex optimization problem which we solve
analytically. An explicit form of this function, that works for
a very general class of cost functions (transition costs), is pro-

vided. Details of this derivation as well as some related issues
can be found in [25], [26].

Conclusions and final remarks are given in Section V.

II. THE ENTROPY BOUND ON ACHIEVABLE

ENERGY REDUCTION

In this section, we consider the bus model described in the
previous section. Recall that the energy cost
of the transition is given by (1), where the

matrix is given by (2). The constant depends on the
technology and is equal to the number of lines in the bus [17].
For convenience, we set throughout this paper. Finally,
recall that the total energy required to transmit a sequence

of succesive input vectors is

(3)

Let be the set of all binary vectors of length
. For every , the state (and input) of the bus at time is in
. For every , let denote the Hamming weight of
. We will also use the notation of for the binary sum

of any two vectors . Recall that in the calculation of
the transition energy using (1) we regard and

asreal and not binary vectors.
In order to establish achievable upper bounds on the min-

imum possible average energy consumed per transmitted bit, we
first have to establish some technical results. We start with the
following simple albeit fundamental definitions and lemma.

Definition 2.1: We define a code of length as a set of
sequences of successive bus input vectors
where . The probability that the codeword is
transmitted is denoted by .

Definition 2.2: The entropyper use of the busof a code is
defined as

(4)

where denotes the binary logarithm. This definition extends
to the uncoded case where and is the set of all vectors
in , each transmitted with probability .

Transmitting a codeword means that we transmit a certain
sequence of successive elements of through the bus,
so we use the bus times.

Definition 2.3: Theexpected energy consumption per use of
the bus, when applying the code, is defined as

(5)

where and are the last and first entries (vectors) of the
codewords and , respectively.
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Note that the second term is due to the energy loss on the
transition between the last state ofand the first state of . We
also agree that the energy of codewords with only one entry is
zero, that is, for every . So for codes of length
one, , the expected energy per use of the bus becomes

In the analysis that follows, we are mostly interested in the
case where the length of the code becomes arbitrarily large. In
this case, the second term becomes zero and can be ignored. In
particular, if we set , there exists
a nonnegative number such that and

(6)

Note also that, on average, we transmit information
bits per bus uses. If no code is used, withuses of the bus we
can transmit information bits. A definition follows naturally.

Definition 2.4: We definethe utilization of the bus by the
code to be the ratio of the expected number of information bits
transmitted per use of the bus, over the number of actual bits
transmitted per use of the bus without coding. It is, of course

(7)

Furthermore, we define theexpected energy consumption per
information bittransmitted through the bus, when using code,
as

(8)

In general, we use the termutilization of the bus to denote
the ratio of a given information rate (the expected number of
bits transmitted per bus use) over the number of linesof the
bus.

Expression (8) is the ratio of the expected energy cost per bus
use over the expected number of information bits transmitted
per bus use.

In the case of the uncoded bus, the input vectors are regarded
as uniformly distributed in the set and so the
individual bits transmitted are independent random variables
with probability . It can be verified directly using (1), with

, that the expected energy per use of the bus (per transi-
tion) is

(9)

Throughout the paper,overlinedenotes expectation with re-
spect to all random variables involved in the expression (unless
it is stated otherwise).

Definition 2.5: The expected energy per information bit in
the case of the uncoded bus will be denoted by, that is,

(10)

Lemma 2.1:Let denote a random vector in
whose components are independently and uniformly distributed
in . Let be a given vector in and let
denote the expected value of the random variable

. Then

(11)

where is the binary addition and is the Hamming weight
of vector .

Proof: Let

and

According to (1), we have to compute the expectation of
. Matrix being given by

(2) results in

(12)

Since we deal with the components of as real numbers,
we have , hence and

Replacing them in (12) we have

The result follows by taking expectations of both sides and using
the identity .

Definition 2.6: We define a pair , where denotes the
utilization of the bus and the expected energy per bit, to be
achievableif and only if there exists an infinite sequence of
codes with strictly increasing lengths that utilize the bus arbi-
trarily close to a number and have expected energy con-
sumption per bit that gets arbitrarily close to a number .

Definition 2.7: We define thelimiting expected energy con-
sumption per bit at utilization of the bus to be
the function

The pair is achievable (13)

The same symbol has been used for both the limiting ex-
pected energy per bit as well as the expected energy per bit of
a given code . The argument will determine which one
we refer to. Let , then for any

, the pair is always achievable, thus,
is well defined.

According to its definition, is per informationbit the
minimum possible energy we have to spend per bit transmitted
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through the bus, when the information rate is bits per bus
use(transition).

Our first result establishes an upper bound on .

Theorem 2.1:Let denote the inverse
of the binary entropy function when restricted to the domain

. Then, for any utilization and for any bus of size

(14)

Proof: Let be an information source of indepen-
dent vectors . Let the components of the vector

be independent and identically
distributed (i.i.d.) with probability of being one. Let

denote the ratio of the expected number of
ones to the expected number of zeros, and denotes the
Hemming weight . Then the probability
distribution of is

so its entropy is

(15)

(16)

Since is a probability distribution, we have

and

(17)

so

Letting results in the entropy rate .
Our coding scheme is described next.

First, the initial state of the bus is assumed to be uniformly
distributed in with i.i.d. components and independent of the
outcomes of source . Let be given; then, at each time,
as many as bits can be mapped on average into outcomes
of . Such an encoding scheme exists by the Shannon source-
coding theorem. Subsequently, if is the outcome of the source
at time and is the state of the bus at time , then we
set the state of the bus at timeto be .

Because the original state of the bus is uniformly distributed,
it can be seen that at each time, the state of the bus is also
uniformly distributed in . This means that we can apply Lem-
ma 2.1 and observe that the expected energy at timeassuming
that input is chosen is given by

(18)

where the subscript indicates that the expectation is taken with
respect to . Recall that and so,
taking expectation over and in (18) gives

(19)

(20)

where we have used (17). Thus, the expected energy per bit
of the bus, at a utilization arbitrarily close to, is arbitrarily
close to . This means that the pair
is achievable. We conclude that

as claimed.

The bound of Theorem 2.1 is depicted in Fig. 1. The ratio
is plotted on the vertical axis. As we can see, we

can obtain significant reduction in energy consumption if we
transmit data at a rate less than the maximum.

Next, we show that when the number of linesis large it is
in fact possible to achieve the above limit using uniform input
distribution and by using low Hamming weight codewords. To
this end, we recall the following lemma of [8].

Lemma 2.2:Let . Then for any the following
inequality holds:

where is the binary entropy function.
Proof: We refer the reader to of [8, Corollary 9, Ch. 10,

Sec. 11, p. 310].

Suppose that is given. Now let
with and consider the set of all elements in

having Hamming weight less than or equal to. By
Lemma 2.2, the cardinality of satisfies

For large , it can be observed from the above that
. The approximation approaches the

exact value as . We now state a second coding scheme.

Theorem 2.2:The bound of Theorem 2.1 can be approached
using a uniform input distribution and differential encoding.

Proof: Let the initial state of the bus be uniformly dis-
tributed in . Also, let be an information source producing
independent outcomes that are uniformly distributed in the set

. The entropy rate of the source is, of course, . Now,
suppose that the state of the bus at time is . If is
the outcome of at time we set . Since is
uniformly distributed in it can be seen that at each timethe
state of the bus is also uniformly distributed in. This means
that we can apply Lemma 2.1 and so the expected energy at time

is given by

(21)
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Fig. 1. The entropy bound.

where the subscript indicates that the expectation is taken over
with respect to . Taking expectation of (21) with respect to
gives

(22)

Note that as approaches infinity, and because of Lemma 2.2,
the entropy rate of the source asymptotically equals

. Thus, as , the utilization approaches while the
expected energy per bit remains less than or equal to

For (the NSM case), the bound of Theorem 2.1 was
also established in [13]. Our result though accounts for
as well, that is, for the case of modern technologies where there
is energy coupling between different lines of the bus, the DSM
case.

III. CODING THEOREMS FROM STATIONARY

ERGODIC PROCESSES

The simple bound that was established in the previous sec-
tion assumed a basic differential encoding. In that case, the state
of the bus at each time depended only on the state at time

. This introduced the natural question: Is it possible to
achieve more energy reduction using encoders with higher order
memory? We answer the question affirmatively by presenting an
example. This example also motivates a systematic study of the
problem. Moreover,the method developed here applies to other
computational models as well.

To proceed it is important to simplify the notation. From now
on we will identify the vector elements

of (and states of the bus) with the numbers ,
respectively. In this notation, is the energy required
for the transition from stateto state of the bus.

Theorem 3.1:Let be a Markov source with the states,
. Let and suppose that the probability of

transition from state to state is given by

(23)

Let , , denote the steady-state distri-
bution of and denote its entropy rate. Then the lim-
iting expected energy per bit at utilization of the
bus satisfies the inequality

(24)

Proof: First note that, by definition, the Markov process
is irreducible and aperiodic, therefore, the stationary distri-

bution exists and is unique. Also note that the transition
energy, expression (1), is symmetric with respect to the starting
and ending states, that is, for all . This
allows us to write explicitly as (see, for example, [21])

(25)

In the cases where the energy cost function is not symmetric,
can be computed using standard methods. We endow the
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process with the steady-state distribution. The stationary
Markov process is irreducible, aperiodic, and therefore er-
godic.

Let denote a sequence of successive
states of the Markov process . Distinct sequences of this type
will be indexed by a bold-face superscript, .
According to the Shannon–MacMillan–Breiman theorem [4],
for every , there exists such that, for every ,
there exists a set of sequencesof length , namely

(26)

such that

(27)

and

(28)

for every . The sequences which belong
to are referred to as “-typical.” We take the set of typical
sequences of the Markov process as our bus code, that
is, , and we choose the elements of with
equal probability. Then the utilization of the bus, using code

, is such that

(29)

Now, writing

and replacing it into (28) we get

(30)

Taking account of (23) into the above inequalities we get

(31)

where we have set

and is the number of occurrences of statein the se-
quence . By summing up the above inequalities

over and dividing the sum by we
obtain

Using (6), the first summand in the middle term of the preceding
inequality can be written as

where . Therefore, we have

The above result holds for every . Also,
. Letting and using strong typicality [4], we

have with probability one. Moreover, .
Thus, for sufficiently large , we have

(32)

with probability one. Since is arbitrary, an expected energy
consumption arbitrarily close to

is achievable at utilizations arbitrarily close to .
Thus,

is an achievable pair for every .
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Fig. 2. The exponential bound forn = 2 and� = 0; 1; 5. For� = 0, the exponential and entropy bounds coincide.

Fig. 3. The exponential bound forn = 4 and� = 0; 1; 5. For� = 0 the exponential and entropy bounds coincide.

The bound of Theorem 3.1 is referred to as theexponen-
tial bound. We have plotted the results of Theorem 3.1 in Figs.
2–4 for small values of and with the vertical axis labeled by

. This bound is hard to compute for higher values of
since the Markov chain has too many states. This makes the
computation of the steady-state distribution numerically diffi-
cult for . For comparison, we have also plotted the bound
of Theorem 2.1. We see in Figs. 2–4 that the bound of Theorem
3.1 is always better than the bound of Theorem 2.1 for all the
plotted values. Moreover, it is seen in the figures, and it is easy

to prove, that for , the exponential bound and the entropy
bound coincide.

Motivated by the above result, it is natural to ask if we can use
other stationary ergodic processes, invoke again the Shannon–
McMillan–Breiman theorem, and obtain stronger results. We
proceed with the following construction:

Construction I: Let denote a stationary ergodic stochastic
process whose outcomes are elements of .
We consider the set consisting of all sequences

of successive outcomes of the
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Fig. 4. The exponential bound forn = 8 and� = 0; 1; 5. For� = 0 the exponential and entropy bounds coincide.

stationary ergodic stochastic process. We have, of course,
. Given we also consider the subset

of that contains all the -typical sequences, that is, all
such that

These two sets of sequences define, respectively, two
codes and of length . A
sequence in is chosen with
probability if it is regarded as
a codeword of . If the same sequence is regarded as
a codeword of , then it is chosen with probability

or , where

according to whether is, or not, an
-typical sequence.

As , we know from the Shannon–McMillan–Breiman
theorem that and . This implies the
following lemma.

Lemma 3.1:Let a stationary ergodic processbe given. As
, the expected energy per bit of the code

consisting of the -typical sequences becomes equal to
the expected energy per bit of the code . The
same is true for the utilizations of the two codes.

Proof: Let . As ,
the set of all the codewords in that are not in has
an arbitrary small probability. This means that they contribute
at most to the expected energy per bus transition. This
contribution can be made as small as desired. Since
as , the utilizations afforded by and get

arbitrary close to each other as . Combining these two
observations yields the result.

Definition 3.1: Let be a stationary (not necessarily
ergodic) process in . The utilization, the expected energy
consumptionand theexpected energy consumption per bitof
process are defined, respectively, as

(33)

(34)

and

(35)

The following two definitions are analogous to that based on
sequences of codes.

Definition 3.2: We define a pair , where denotes the
utilization of the bus and the expected energy per bit, to be
achievableby a class of stationary processes in, if and
only if there exists an infinite sequence of processesin
(not necessarily distinct) such that , for some

and , for some , as .

Definition 3.3: We define thelimiting expected energy con-
sumption per bit at utilization of a class of
stationary processes to be the function

The pair is achievable

by the class of processes (36)

We are now in the position to prove the following important
theorem.
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Theorem 3.2:Let be a stationary (not necessarily ergodic)
process in of utilization and expected energy per bit .
The pair is acheivable1 by a sequence of codes
whose codewords are typical (finite) sequences of stationary er-
godic Markov processes.

Proof: Let be a stationary stochastic process with out-
comes at time , respectively,
and with probability distribution for

. We can assume that for every state
of , otherwise, we can “remove” from the set of states of

. Let be the stationary Markov process with stationary
distribution and transition probabilities

. We first observe that

(37)

Suppose for the moment that is an ergodic process. Let
and be the set of all -typical sequences of length of
the process . We can conclude from an application of the
Shannon–McMillan–Breiman theorem that has at least

codewords (for sufficiently large). Therefore,
choosing sufficiently small, the utilization of the bus by the
code can be as close to as desired. Note that

. Moreover, the ergodicity of along
with Lemma 3.1 imply that the expected energy consumption

of the code approaches the expected energy
consumption of the process as . By the
definition of process it is also true that
where

Thus, using typical sequences of the ergodic Markov process
we can construct a family of codes such that

and

This concludes the theorem in the case that processis er-
godic.

It remains to treat the case where the processis not er-
godic. Consider the matrix with the th element

that is, the transition probability matrix of the Markov process
. Then we claim that some of the elements ofare zeroes. If

not, is an irreducible matrix and is an aperiodic irreducible
Markov chain and hence is ergodic. Consider the row matrix
whose th element is . Then, and all
the elements of are positive. (This is true because we have
assumed that processvisits all its states and so process is
irreducible.) For every , we set

, where is a row matrix with all of its elements being.
We also have for every .

We now consider the Markov source whose stationary
distribution is and whose state transition matrix is . For
every , the matrix has only positive elements and

1According to Definition 2.6.

thus, is a stationary irreducible ergodic Markov process.
By the continuity of the entropy, the entropy of can be
made arbitrary close to the entropy of . Because can get
as close to as desired, the expected energy consumption by
typical sequences of approaches that of . Thus, as ,
we can get arbitrary close to a superior or at least equivalent
tradeoff between energy and utilization than that of the sta-
tionary process .

The preceding result motivates us to ask the following ques-
tion: Given a (utilization, expected energy per bit) pair ,
achievable by a sequence of codes (Definition 2.6), is it possible
to construct a (possibly different) sequence of codes, consisting
of typical sequences of ergodic Markov sources, that achieve

?
Our goal is to answer this question affirmatively. We start by

introducing the following construction that is in some way the
inverse of that used before. Here, we start with a given code and
construct a stationary process of at least as high utilization and
the same expected energy consumption as that of the code.

Construction II: Let denote a code of lengthand utiliza-
tion . We will construct a stationary stochastic process
from . To do so, we will first construct an interim stochastic
process by describing the joint distribution
of the indexed random variables .

Let denote the random vectors of length
with

for

We define the random vectors to be mutually
independent and such that for every we have

if

otherwise.

These define the interim stochastic processcompletely. Now
for we define a sequence of distributions (on the
random variables ) by letting

Note that the right-hand side of the expression is a shift-and-
average operation. This sequence of distributions isconsistent
in the sense that

A theorem of Kolmogorov [21, p. 21] implies the existence
of a random process characterized by
the family of the above distributions. Next, we prove that the
process is stationary. To do so, we first observe that the
process is cyclo-stationary with period in the sense that
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for all and . If then
for all and so the processes and are both
stationary. Suppose now that and , are given.
Then

As runs in the set , the value
also runs in the same set. Combining this observation and the
cyclo-stationarity of the process, we conclude that

Thus, the process is stationary.

Lemma 3.2:The entropy rate of the random
process is greater than or equal to the entropy

of the code .
Proof: By the definition of the process we have

Since the entropy function is concave, for every ,
we also have

Dividing by and letting we obtain . But

where we have used the cyclo-stationarity ofand the inde-
pendence of the random vectors . By Defini-
tion 2.2, we have

This concludes the proof.

Lemma 3.3:The expected energy consumption of
the process equals the expected energy consumption

of the code .
Proof: The energy consumption of a sequence

of elements in is (Definition 3.1)

The expected energy consumption of the stationary process
is given by

where the expectation is taken with respect
to the probability distribution .
However,

thus,

Now, for , we set and
. For every sufficiently large (e.g., greater than

) we have

where we agree that the expected energy of any trivial-element
sequence is zero, i.e., for every . Then we have

(38)

were . We conclude that

(39)
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However,

Since the random vectors are independent,
we can write

In addition, we can write

The expected energy of the codeis by its Definition 2.3

Using the cyclo-stationarity of and the expressions above, we
arrive at

where is as in (6). Finally, replacing the above into (39),
we get

(40)

Similarly, we can prove the inequality

(41)

Combining (40) and (41) and dividing bywe have

(42)

Letting , we arrive at

(43)

Theorem 3.3:Suppose that the pair of utilization and
expected energy per bit is achievable according to Definition
2.6. Then, there exists a family of codes, of strictly increasing
lengths and constructed from typical sequences of stationary
Markov ergodic processes, that achieves .

Proof: By assumption, there exists a sequence of codes
of strictly increasing length which utilize the bus

arbitrarily close to a number greater than or equal toand their
expected energy consumptions per bit , get
arbitrary close to a number smaller or equal to.

We apply Construction II and get a sequence of stationary
processes , . By Lemma 3.2, the value

is greater than or equal to the utilization of bus using
the code . By Lemma 3.3, the expected energy consumption

equals . Thus, as , (or a subse-
quence of it) approaches a number smaller or equal to . By
Theorem 3.2, there exist stationary ergodic Markov processes

, whose typical sequences utilize the bus by a
factor equal to or larger than and have expected energy
consumption per bit less than or equal to . Combining
these observations we conclude the proof.

Corollary 3.1: For every , the limiting expected
energy consumption per bit equals , where

is the set of all stationary ergodic Markov processes in.

Proof: The proof follows from Theorems 3.3, Lemma 3.1,
and the definition of .

We can now prove the following important theorem.

Theorem 3.4:For every , the limiting expected
energy consumption per bit equals , where
is the set of all stationary Markov processes in.

Proof: The set of stationary Markov processes,, has
the set of ergodic Markov stationary processes,, as a subset
and is a subset of the set of stationary processes.

Thus, stationary Markov processes must perform at least as
well as stationary ergodic Markov processes and at most as well
as stationary processes when considering the tradeoff between
utilization and expected energy consumption per bit.

However, we have already proven in Theorem 3.2 that sta-
tionary ergodic Markov sources achieve any tradeoff achievable
by stationary processes. This means that stationary Markov pro-
cesses provide the same tradeoff between utilization and energy
consumption as that of the stationary processes and stationary
ergodic Markov processes. We now apply Corollary 3.1.

IV. COMPUTATION OF THE LIMITING ENERGY

CONSUMPTIONPER BIT

Theorem 3.4 provides us with the computational arsenal to
calculate by restricting our attention on the class of sta-
tionary ergodic Markov sources. To be able to use this arsenal,
we will need to study the function in more details. We start
with the following lemma.

Lemma 4.1:For every , there exists a sequence
of codes whose bus utilizations tend to and
whose expected energies per bit tend to .

Proof: By the definition of the limiting expected energy
per bit, , there exists a sequence of achievable pairs

such that and as
. Since , belong to a compact set, there

exists a subsequence of achievable pairs such that
and for some . By an application
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of Cantor’s diagonalization argument and the definition of
achievable pairs, we conclude that there exists a sequence of
codes of strictly increasing lengths, whose bus
utilizations tend to and whose expected energies per bit tend
to .

Consider the following zero-padding construction. Suppose
that a code of length , utilization , and expected energy per
bit is given. Then, by expanding its codewords bystates
of value zero, we obtain a new codeof length , utilization

, and energy per bit with

By applying this zero-padding technique to all the codes in
the sequence , we can construct a new sequence
of codes whose utilization tends to and whose
energy per bit tends to .

Lemma 4.2:The function is continuous and nonde-
creasing for .

Proof: The nondecreasing property of follows di-
rectly from its Definition 2.7. We define the function

and claim that it is continuous. To prove this claim, let
and be given. By the def-

inition of achievability and Lemma 4.1, there exist two
sequences of codes, and , of
strictly increasing lengths, whose utilizations tend to
and , respectively, and whose expected energies per bit
tend to and , respectively. This means that

tends to and tends to
.

Now, we use time sharing betweenand , with shares of
and , respectively, to obtain the code .

The number is considered rational, , and by
we mean the code formed by the concatenation of

codewords of and codewords of . The utilizations
of the codes tend to and the
expected energies per bit, , of the codes tend
to . Thus,

which establishes the “rational” convexity of
. This, along with the monotonicity of imply

the continuity of and hence that of in
. Moreover, since and is an increasing

function, Definitions 2.6 and 2.7 imply that

For let denote the set of all stationary
Markov processes whose states are elements ofand have
entropy rate .

Lemma 4.3:For every we have

(44)

Proof: Theorem 3.4 implies that

as the infimum is taken over a smaller set. Now let be
given. Applying Theorem 3.4 and the definition of achievability
we observe that

This is true since all stationary Markov processes that are candi-
dates for achieving the pair must have entropy
rate higher than . Since is arbitrary and is con-
tinuous, we conclude that

and the lemma is proven.

Every pair of a transition matrix
and a state probability row vector, satisfying

, defines a stationary Markov process. Conversely, every
stationary Markov process defines, in the obvious way, a pair

of a transition probability matrix and a row probability
vector such that . The expected energy consumption
per bit and the entropy rate of can be computed using the
elements of and .

From now on, we will mix the notation by identifying the
process with the pair . Moreover, we introduce the no-
tation for , for , and
for . Note that the function

is continuous with respect to the elements of the pair .
Finally, we can interpret the set as the set of all pairs

with . This leads to the following result.

Lemma 4.4:For every we have

(45)

Proof: The function is continuous on the pair
and the constraints of the problem define a compact set.

We thus conclude that then infimum is achieved.

Now we can state and prove the following theorem that will
be important in the calculation of the limiting energy per bit.

Theorem 4.1:For every we have

(46)

Proof: To prove the theorem, we will construct a mini-
mizing pair for (45) in Lemma 4.4 such that

. Once this is established, the result follows.
Suppose that is a minimizing pair for (45) with

. For we define the pair
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where is the identity matrix. The new pair satisfies
the equality . Also, we have2

The concavity of the function implies that

Finally,

Since , there exists some such
that . We conclude that is also a
minimizing pair of (45) with .

In light of Theorem 4.1, the computation of has been re-
duced to a constrained minimization problem that can be solved
using standard methods such as the application of Lagrange
multipliers.

In the following, we will prove that for every there
is a stationary Markov process that achieves the minimum in
the aforementioned problems. We will derive formulas for the
limiting expected energy as a function of the utilization.

Let be a pair of a stochastic matrix and a probability
eigenvector of it. The pair defines the matrix
with . For every , the entries satisfy the
following relations:

(47)

(48)

and

(49)

The last equality holds because

and can be written also as

The entropy of the matrix is defined as

(50)

and, of course, equals . (We agree that and
a zero row of matrix contributes zero to the entropy.) Now,
independently of the pair , we define to be the set of
all matrices satisfying the constraints (47)–(49). We
also define as the subset of consisting of only the positive
matrices. We have the following lemma.

2Here we assume thatE(� ! �) = 0 for all � 2 Q. This is true for the
energy cost function (1).

Lemma 4.5:The mapping

from to the subset of positive stochastic matrices is bijective.
Proof: Suppose that the positive stochastic matrixis the

image of an element of . Then, there exists a
unique positive vector such that . It is
straightforward to verify that . To show that the
mapping is injective it suffices to show that there is
only one positive vector for which belongs to .
For vector , (49) implies

(51)

Therefore, must be a positive left eigenvector of. The ma-
trix is positive and, by Perron’s theorem,is unique up to a
positive factor. The vector is uniquely defined because of (48)
which implies .

To show the mapping is onto, we start with a positive sto-
chastic matrix and set , where is the unique
(left) probability eigenvector of . Then and

Therefore, belongs to .

In the following, we will write to denote that
. Note that for a matrix with a zero row,

there is a set of pairs such that . All of these
pairs have the same vector, the entries of which correspond to
zero rows of , must be zero.

Lemma 4.6:The set is convex. The entropy function is
concave in and strictly concave in the subset .

Proof: Conditions (47)–(49), directly imply the convexity
of the set . Now let and be in and be a constant
such that . Set . The log-sum
inequality states that

with equality if and only if

Therefore, we have
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and so . Suppose now that
and have positive elements, and, therefore, belong to. In
this case, the equality above holds if and only if where

and . Applying Lemma 4.5, we conclude that
if and only if .

The expected energy and expected energy per bit corre-
sponding to the elements of the setare defined analogously
to those of previous sections. This is done by letting

and

Note also that if then and
. It is straightforward to verify that

(52)

If is an optimal point for

then the minimizing in (52) is achieved by .
Conversely, if achieves the minimum in (52) and

then is the minimizing of

Lemma 4.7:Every solution of

belongs to .
Proof: Let be a solution of (52). We show first that if

for some state we have , then for all .
Suppose that this is not the case and letbe such that .
For , we set

where is the vector with one in theth coordinate and zeros
everywhere else. It is easy to verify that for every . If

denotes the element of , then

For every we have

where is if and otherwise. From the above expres-
sion we can conclude that for every we have

with being a nonnegative constant ( or ). Now,
according to our assumptions it is while .
This implies that

with or depending on whether or not.
We conclude that there exists a positive constant such
that for sufficiently small

Also, because depends linearly on , there is a constant
such that

Note that is positive since . Also,
is positive since the transition energy is zero only3

when . Therefore, setting and
we have

with . This means that there exists an arbitrary small
for which and . A

contradiction! Note that a state with always
exists. Hence, there exists a row ofwith only positive entries.
This means that all column-sums ofare positive and because
of property (49), all row-sums are positive as well. Using the
argument above we conclude thatis a positive matrix.

The above lemmas lead to the following theorem.

Theorem 4.2:Problem (52) has a unique solution. The so-
lution is positive, , and with . There is
no for which the solution equals the matrix

.
Proof: From Lemma 4.7, we know that every solution

of (52) is positive. Linearity of the expected energy func-
tion and strict concavity of in imply the
uniqueness of the solution. The same properties also imply
that . This can be shown in a way similar to that

3Here we need to assume thatE(� ! !) = 0 only when� = !. This is
satisfied by the energy cost function (1).
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of Theorem 4.1. Finally, results in since
.

The theorem has the following immediate consequences.

Corollary 4.1: The minimizing pair in (45) exists and
is unique. Furthermore, the transition probability matrixand
the probability eigenvector are positive.

Corollary 4.2: Problem (53) has a unique solution. Its solu-
tion is positive and identical to that of (52).

(53)

Lemma 4.8:The (unique) solution of (52) and (53) is a reg-
ular point of the set of (active) constraints of (53), which are:

, for every , and .
Proof: The gradients of the constraints are given in matrix

form as follows:

...
...

...

...
...

...
...

...

...
...

...
...

...

where the nonzero elements of matricesare in the th row
and the th column. And finally

The set is linearly independent and is orthogonal to
every under the inner product . We
conclude that any nontrivial linear dependence between the
matrices , , and can be written as .
Element-wise this is equivalent to or

, with

Since for every state, we conclude that
for all and, therefore, . This implies

as the only irregular point of the constraints. The
proof follows from an application of Theorem 4.2.

The fact that the optimal satisfies and
combined with the smoothness of the constraints within

gives the following result.

Corollary 4.3: The solution of problem (53) is a stationary
point of itsLagrangian

(54)

Proof: From Lemma 4.8, the solution of the problem is
a regular point of its constraints. Therefore, there exists a set of
real numbers , , for which for all (see [3,
Proposition 3.1.1, p. 255]).

Lemma 4.9:Every stationary point of the Lagrangian
in the subset is of the form

(55)

where is the unique (up to a constant)
positive eigenvector of the matrix and

is a real number.
Proof: The partial derivative of the Lagrangian with re-

spect to the variable is

(56)

We are interested in the solutions of the set of equations
, i.e.,

(57)

First we examine the case and show that it is not feasible.
Suppose that . Then (57) implies that

for every

Since the energy cost function, (1), is symmetric, that is,
, we must have for every .

Therefore, , i.e., the cost function is constant.
But this is impossible since, from (1), we have
and for every (matrix given by (2)
is positive definite). Therefore, , and the system of
equations (57) implies that

(58)

Since all the parameters and are real we can do the
transformation: , , and , and
have and for every . Then, (58) becomes

(59)
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Fig. 5. Entropy, exponential, and optimal bounds forn = 2 and� = 5.

Fig. 6. Entropy, exponential, and optimal bounds forn = 4 and� = 5.

Summing over , we get or written
in matrix form, with and

. The matrix is always positive and,
therefore, must be its unique (up to a factor) positive eigen-
vector [10, Theorem 4.4, p. 16 ]. Therefore,must be the in-
verse of the maximal eigenvalue of . Recall that the
energy cost function is symmetric, i.e.,
for every . Therefore, we also have that or more
explicitly

(60)

We define the probability vector

and using (60) we show that it is a left eigenvector of
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Fig. 7. Entropy, exponential, and optimal bounds forn = 8 and� = 5.

Applying Lemma 4.5, we get . This means that every
stationary point of the Lagrangian must have entries of
the form

This concludes the proof of the lemma.

Note that for every the matrix is positive and so it has a
unique positive maximal eigenvalue. The matrixis also ana-
lytic in . Therefore, its eigenvalue and the corresponding nor-
malized eigenvector are both analytic functions of[7, The-
orem 1, p. 396]. Even more, the stationary pointof the La-
grangian, parameterized on, approaches the identity matrix as

approaches . This is because only transitions from every
state to itself have zero cost. Also, approaches as ap-
proaches zero. We conclude as follows.

Theorem 4.3:For every , there exists a unique
positive for which matrix , defined by (55), satisfies

and is the unique solution of problems (52) and (53). The
entropy is a strictly decreasing function offor .

Theorem 4.3 can be proved using well-known results on su-
perconvex functions and properties of eigenvalues of Hadamard
matrix exponentials. The proof is lengthy, technical, and is
omitted.

Theorem 4.3 is the tool to evaluate the limiting expected en-
ergy per transmitted bit, . Figs. 5–7 present the normalized
value , named theoptimal bound, as a function of the
bus utilization , for and . For comparison,
we have included the exponential and the entropy bounds.

V. CONCLUSION AND FINAL REMARKS

We have considered the problem of reducing the energy con-
sumption (or other computation cost functions) in a computa-

tion module as a coding and information theory problem. It has
been shown that redundancy in the capacity of the computation
module can be exploited, using coding techniques, to achieve
significant reductions in the energy consumption (or other com-
putation cost). Redundancy can be introduced by adding extra
ports in the module, or by reducing the actual information rate in
the input, and by coding the input and output sequences. Using
tools of information theory, we have derived the maximum pos-
sible costreductionin an analytic form that can be used for nu-
merical calculations.

Although, for the ease of presentation, we used a specific cost
function, it is noted that the methods we established here apply
to a very general class of cost functions for which the cost of
a sequence of computations is the sum of the costs of the indi-
vidual steps. Some related issues and a more explicit form of

can be founs in [25]–[27].
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