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Abstract—We consider the problem of reduction of computation I. INTRODUCTION

cost by introducing redundancy in the number of ports as well as . L
in the input and output sequences of computation modules. Using | T IS fair to say that computation is the most central problem

our formulation, the classical “communication scenaribis the case in applied science and engineering and almost all problems
when a computation module has to recompute the input sequence in these fields are concerned with computing certain desired pa-
at a different location or time with high fidelity and low bit-error rameters. In this light, much effort has been dedicated to de-

rates. We then consider communication with different computa- _. . oo . . :
tional cost objective than that given by bit-error rate. An example signing circuitry and algorithms for computation. The designer

is communication over deep submicrometer very-large scale inte- Of SUch circuits or algorithms always seeks to compute the de-
gration (VLSI) buses where the expected energy consumption per Sired parameters while optimizing certain other objective func-

communicated information bit is the cost of computation. We treat  tions such as the cost of circuitry, the energy consumption, and
this scenario using tools from information theory and establish fun-  the time required to do the computation.

damental bounds on the achievable expected energy consumption : . M
per bit in deep submicrometer VLSI buses as a function of their Wwe m,Odel a general 'compu'Fatlo.n device byk#atk .box
utilization. Some of our results also shed light on coding schemes B- The input to the device at timeis a vector/; of n input

that achieve these bounds. We then prove that the best tradeoff be- bits and the output is a vectar, of m bits. Assuming a causal
tween the expected energy consumption per bit and bus utilization model, depending on the machiea sequence of input vectors
can be achieved using codes constructed from typical sequences Of[t t=1,2,..., T and a sequence of output vectars, ¢ =

Markov stationary ergodic processes. We use this observation to . : .
give a closed-form expression for the best tradeoff between the ex- 1,2 ..., T the deviceS at time has some computation COSt.
pected energy consumption per bit and the utilization of the bus. (SUch as time, energy, etc.). We assume that the computation

This expression, in principle, can be computed using standard nu- Cost is a known function of the input vector sequences.
merical methods.The methodology developed here naturally extends In the above example, the input iarfcodeq’ meaning that
to more general computation scenarios. all input sequences of vectors are possible. Thus, we can pose
Index Terms—Activity, buses, coding, deep submicrometer, dig- the following fundamental problem: Suppose that we can make
ital circuits, energy, entropy, Markov process, power reduction, a second device with larger input and output ports than the min-
stationary process, transition, very-large scale integration (VLSI). jmum required for the computation. Can we use the second de-
vice and exploit the redundancy using coding, so that the re-
sulting computation cost is less than that of the original device?
Naturally, using such a coding scheme implies that the input
and output sequences can be mapped into low-cost sequences of
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the cost of communication, we consider the power consumptiamereV”’ is thetransposeof vectorV and matrix.A is shown

of the communication devices as our objective function. Thie (2) at the bottom of the page. The real parameté non-
motivation to consider this problem stems from a familianegative and depends on the physical properties of the lines
scenario in digital circuit design. Digital circuits are composeslch as geometry, size, and distances between them as well as
of different operational units that execute specific instructionthe type of technology used in the manufacturing process of
The units need to communicate in certain combinations atite bus. The constari, also depends on the technology and
interchange data as well as instruction sequences. For tiis physical design of the bus. For the obsofeie-submicron-
reason, there is a communication network between the uniteter(NSM) technologies\ is practically zero andd reduces
consisting of individual paths. In many cases, these paths #&wea scalar matrix. For moded®ep submicrometer technologies
sets of identical channels laid out in parallel formingus The (DSM) A can be as high as(for example in 0.13:m technolo-
structure of a bus is, in general, simple as it is composed omies). The total energy dissipation corresponding to a sequence
of drivers (transmitters), receivers, and wires between thefa, S,, S, ..., St is given bthT:_l1 E(S; — Siy1). We can
carrying digital signals. Every bus has a certain number afso consider the transition 18 from the initial stateS, that
parallel channels (the wires) which we also dialés Although has cost equal t6(Sy — S1).

the bus is by nature a continuous (time and voltage) electricalln the spirit of the above, it is now natural to ask the following
system, certain timing assumptions allow us to think of it asfandamental question.

discrete value—discrete time system. Under these assumptionﬁ,he Codina Problem Is it possible to reduce the expected
at each time moment, every line carries a bit of information. 9 P P

energy per transmitted bit by adding more lines in the bus? If

Thus, we define &usas a communication device where the . - ;
. . : . 50, what are the achievable limits and the coding schemes to be
input vector is reconstructed at the output with very h|g]$1

fidelity. Used?

When communicating over a bus, a cost for information trans- The key element here is that we add extra lines in the bus
mission has to be paid. For every single bit transmitted througtnile the data stream, that has to be transmitted remains un-
the bus, the receiver and transmitter consume a certain amdglranged. By doing this, we pay an extra area cost on the mi-
of electric energy. Energy is consumed when there is a chargjechip but we also get a communication channel of higher ca-
in the input sequence of the bus. pacity. Therefore, the question stated above can be rephrased as

We also refer to the input vector at times thestateof the follows: what is the relation between additional capacity of the
bus at timef. We find it convenient to use both namiaputand channel and possible energy reduction?
statefor one object, the vector. The reason is that although theNow note that redundancy of the capacity of the channel (bus)
bus does not have memory as a computation device (in cont/é&f be ensued not only by bus expansion but also by data rate re-
to a generafinite-state maching it does have memory (and soduction. From an application point of view, this is a completely
state) when it comes to energy consumption. With a minor abudiferent problem. From a theoretical formulation point of view,
of the definition, we say that the bus hagransition from a this is exactly the same question as that we asked before, that is:

stateS, at timet to another staté, , ; at timet + 1, even when what is the “best” relation between the rate information is being
Siy1 = Sy transmitted and the rate energy is being consumed?

We write S, for the bus input vector at timg whereS; —= There are some places in microprocessor grchitecture where
(sl,s2, 83, ..., s") ands!, ..., s are the bits transmitted redundancy is already present because 'of highly “tempprally”
through linesl, 2, ..., n, respectively, at time. By default, or/and “spatially” correlated data. A partlcqlar examp!e is ad-
the value of a bit is a binary number,or 1. For convenience dress buses where the amount of information transmitted each

though, we regard and1 asrealswhen we use the operatofs time is less than a bit while the size of the busSisr 16. In
and— (in contrast to the binary additian). This is in particular such cases, from an information-theoretic perspective, there is
the case of energy expression (1). a tremendous amount of intrinsic redundancy that can be ex-

The energy cost of the transition from stateto stateS, ;1 ploited to reduce power consumption. Again, the question is

- : how much energy reduction is possible?
licitl 17 I
can be computed explicitly (see [17]) and is equal to Some aspects of this problem have been studied for NSM

buses(A = 0) before. A relation between the bit rate and en-
E(St — Siy1) = Eo(Sis1 — St)A(Ser1 — St) (1) ergy consumption as well as some coding schemea fer 0

1+2) -2 0 o --- 0 0 0
- 142X - o --- 0 0 0
0 - 1422 =2 0 --- 0 0
A: . . . .. .. .. : (2)
0 0 0 0 -+ =X 142X =X

0 0 0 o --- 0 -2 1+2
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have been presented in [12]. Related work involving both thewided. Details of this derivation as well as some related issues
retical and practical aspects of the problem of estimating energyn be found in [25], [26].

consumption and the problem of coding design for energy re-Conclusions and final remarks are given in Section V.
duction has been presented, for example, in [2], [5], [11], [13],

[22]-{24], [16], [6], [14], [15], and [18]—{20]. It is interesting to ll. THE ENTROPY BOUND ON ACHIEVABLE

mention that almost all the proposed practical coding schemes ENERGY REDUCTION

have memory one, in the sense thaf;’jf is the vector trans-
mitted at timet (through the expanded bus), théh depends

only onS;_; and the data vectd, at timet. In general, a prac- .. .
y . M at g b r‘ﬂf the transitionS; — S:+1 is given by (1), where the x

tical coding scheme must introduce minimum possible co . o
plexity and transmission delay to the already very complex (s@em":ltrlx A is given by (2). The constanfi, depends on the

[1]) modern microprocessor architectures. Nonetheless, th?ghnology.anah Is equal to_thlet?]umbtra]r Oftltlﬂ.es in the t'):us [I:Iw].
are certain places in the microprocessors where significant de a‘g convenience, we sély = roughout this paper. Finally,

In this section, we consider the bus model described in the
previous section. Recall that the energy c666; — Sii1)

can be tolerated allowing for more sophisticated coding. recall that the total enefrgy requw_ed tp transmit a sequence
Note that in the case where = 0 the cost function of the (81, 2, 83, ..., Sp) of I succesive input vectors is

general bus with lines reduces into the Sup’’_, (s7,, —s)2. L1

This format has motivated some researchers [23], [24] to design E(e) = Z E(Sy — Siy1)- 3)

coding schemes which reduce the average Hamming distance t=1

between consecutive states of the bus.

In the case of DSM technologi€s > 0), unlike the case of Let @ = {0, 1}" be the set of all binary vectors of length

NSM (A = 0), the above cost function has terms correspondi 14 Fp(gri\(,engtze ga}i S}a(r;j) '32#(%6(1;??42;5&;“?6:3;? of
to interactions between the values transmitted on differept very ' ) g 9
. We will also use the notation &f @ U for the binary sum

lines. This makes the treatment of the above coding problem 'Pany fwo vectorss, U € O. Recall that in the calculation of

the DSM case a more challenging task that is addressed in ﬁ;'gtransition energg(S; — Siy1) using (1) we regard, and
present paper. P ol ¢

! ) o . St+1 asreal and not binary vectors.

The outline of this paper is given next. In Section Il, We |, order to establish achievable upper bounds on the min-
consider the above coding problem. Using a differential coding, ;m possible average energy consumed per transmitted bit, we
scheme where the codewords are carefully chosen to have |4t have to establish some technical results. We start with the
Hamming weights with high probabilities, we compute a gefipllowing simple albeit fundamental definitions and lemma.
eral upper bound on the minimum possible average energy con- i
sumption in a DSM bus. Wheh = 0, our bound is given by an Definition 2.1: We defl_ne a co_dé’ of length L as a set of
explicit simple formula and coincides with that of [12]. In thiS€dUENces of L successive bus input vectars, o3, ..., o
section, we also define the expected energy consumption perrr%[ai}r?;;(iftitei ist(eTr?:te%rcEig?(b;;lty that the codewore € C is
and the utilization of the bus by a stationary process. '

In Section I, we provide a nonconstructive coding scheme Definition 2.2: The entropyper use of the busf a codeC is

based on the typical sequences of certain ergodic stationégfined as

Markov processes. These schemes lead to more powerful 1
existence results and higher power reduction than those of H(C) = —ZZPY(C) log Pr(c) (4)
Section IlI. In contrast, it is harder to compute these reductions ceC

numengally, except for bqses with a sma.II number of Ilne§\7herelog denotes the binary logarithm. This definition extends
These improvements motivate us to consider the category;Qfnhe yuncoded case whefe= 1 andC is the set of all vectors
stationary processes whose states correspond to the statgg @ each transmitted with probability/2".

the bus.

We prove that for every stationary process there isastationa%;r ransmitting a codeword means that we transmit a certain

ergodic Markov process of the same entropy rate (bus utilizacauence oL successive elements 08, 1}™ through the bus,

tion) and less than or equal to energy per bit. As a consequen‘ci:oe,We use the bus times.

it is shown that the minimum possible energy per bit at a given Definition 2.3: Theexpected energy consumption per use of
utilization of the bus is asymptotically achievable using a codige bus when applying the code, is defined as
whose codewords are (finite) typical sequences of an ergodic

1
Markov process. Ear(C) = T Z Pr(c)&(c)
In Section IV, we study the properties of the minimum energy cec
. . oy . . . .- 1
per bit as a function of the bus ut|!|zat|on qnq establish its conti 4 Z Pr(c) Pr(¢)E(or — o)) (5)
nuity. We formulate the computation of theinimum energy per L

. . .. . . c,ceC
bit function as a convex optimization problem which we solve

analytically. An explicit form of this function, that works forwhereos, ando/ are the last and first entries (vectors) of the
a very general class of cost functions (transition costs), is prmedewords: and¢e’, respectively.
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Note that the second term is due to the energy loss on theeemma 2.1:Let X denote a random vector i@ = {0, 1}"
transition between the last statecdind the first state of . We whose components are independently and uniformly distributed
also agree that the energy of codewords with only one entryiiis{0, 1}. Let.S be a given vector i@ and letf(X — S @ X)
zero, that is€ (o) = 0 for everyo € Q. So for codes of length denote the expected value of the random varidil€ — S ®
one,L = 1, the expected energy per use of the bus becomesX). Then

Ean(C) = Z Pr(o) Pr(w)é(o — w). E(X = S X)=2w(S5)E, (11)
o,welC
] ] _wheres is the binary addition and(.S) is the Hamming weight
In the analysis that follows, we are mostly interested in thg y.ector S.

case where the length of the code becomes arbitrarily large. In proof: et
this case, the second term becomes zero and can be ignored. In

particular, if we se€.x = max,, ,eo £(0 — w), there exists S = (s1, S2, .., Sn)
a nonnegative numbe(C) such thae(C) < £nax and X = (21, 72, ..., @)
1 e(C) and
EN(C) = — Pr(e)é(e) + —. 6

ceC

Note also that, on average, we transiitH(C) information According to (1), we have to compute the expectation of
bits perL bus uses. If no code is used, withuses of the bus we £(X — Y) = (Y — X)A(Y — X)'". Matrix .A being given by
can transmit. L information bits. A definition follows naturally. (2) results in

Definition 2.4: We definethe utilizationa of the bus by the _ - 2
codeC to be the ratio of the expected number of information pis X —¥)=(1+2)) Z(yl — i)
transmitted per use of the bus, over the humber of actual bits =t

n—1

transmitted per use of the bus without coding. It is, of course —9)\ Z(y’ ) (i1 — wis). (12)
o 'H(C) (7) i=1
oon Since we deal with the componentsof— X as real numbers,

Furthermore, we define thexpected energy consumption petV€ have(y; — z;) = (—=1)"*s;, hence(y; — z;)? = 5; and
ggormatlon bittransmitted through the bus, when using cGde (i — 2) (Wit — Tig1) = (—D)@HEr) g0
£ (C) Replacing them in (12) we have

(8)

n n—1
E(X = S X) =28, Z s; — 2\ Z(—l)(“”"“)sisi_,_l.

In general, we use the terntilization of the bus to denote i=1 =1
the ratio of a given information rate (the expected number The result follows by taking expectations of both sides and using
bits transmitted per bus use) over the number of lined the  the identityw(S) = 7| s;. O
bus. . i , .

Expression (8) is the ratio of the expected energy cost per bu%:_) ef|_n|t|onf2.hG. l\)Ne define r? paife, ﬁ)awhereoc denoges th%
use over the expected number of information bits transmitt&d |_zat|on 0 the bus a_an the expecte energy per It, to be
per bus use. achievableif and only if there exists an infinite sequence of

In the case of the uncoded bus, the input vectors are regar888,es with strictly increasing lengths that utilize the bus arbi-
as uniformly distributed in the se = {0, 1} and so the trarily close to a numbex; > « and have expected energy con-

individual bits transmitted are independent random variablagmption per bit that gets arbitrarily close to a numBek 3.
with probability 1/2. It can be verified directly using (1), with  Definition 2.7: We define thdimiting expected energy con-

Ey = 1, that the expected energy per use of the bus (per transimption per bit;, at utilization of the busa € [0, 1] to be
tion) is the function

£(S = S =n (1 1;2)\). ) & (a) = inf{3| The pair(a, 3) is achievablg. (13)

Throughout the papegverlinedenotes expectation with re-  The same symbdi, has been used for both the limiting ex-
spect to all random variables involved in the expression (unlgdgcted energy per bit as well as the expected energy per bit of
it is stated otherwise). a given codeg,(C). The argument will determine which one

o ) ) .. we refer to. Let€ .y = max,, ,e0 (0 — w), then for any
Definition 2.5: The expected energy per information bit in, [0, 1], the pair(a, Emax) is always achievable, thus, (a)
the case of the uncoded bus will be denoted&pythat is, is weII, defined.

(142X According to its definition&, («) is perinformationbit the
bu="—7—" (10)  minimum possible energy we have to spend per bit transmitted
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through the bus, when the information ratenis bits per bus where the subscript indicates that the expectation is taken with
use(transition). respect taS;. Recall thatp(U;) = »*(U9/(1 + v)" and so,
Our first result establishes an upper boundfpfw). taking expectation ove$; andU in (18) gives

Theorem 2.1:Leth!(-): [0, 1] — [0, 3] denote the inverse (S, — S, ®U,) =2E, Z w(w)p(u) (19)
of the binary entropy functioh(-) when restricted to the domain =re)
[0, 1]. Then, for any utilizationx and for any bus of size

2h= ()
Ep(a) < o Eu- (14) where we have used (17). Thus, the expected energy per bit

Proof: Let I/ be an information source of indepen-Of the bus, at a utilization arbitrarily close ta is arbitrarily
. 1 i —1
dent vectorsU € Q. Let the components of the vectorclose to2—(?) &, This means that the pa(fm 2k (o) Eu)

v
=2nE, —— =2nEh7! 2
n€u1+y nE,h™ () (20)

« «

U = (ug,us ...,u,) be independent and identicallyis achievable. We conclude that
distributed (i.i.d.) with probabilityp of being one. Let 2h=1()
v = p/(1 — p) denote the ratio of the expected number of &(a) < ———&

ones to the expected number of zeros, arfd’) denotes the
Hemming weightw(U) = Y, u;. Then the probability
distribution ofU is The bound of Theorem 2.1 is depicted in Fig. 1. The ratio
w ne—w(U w(U n &E(a)/&, is plotted on the vertical axis. As we can see, we
p(U) =p* (1= )" =001+ ) ca(n zn/btain significant reduction in energy consumption if we
S0 its entropy is transmit data at a rate less than the maximum.
Next, we show that when the number of liness large it is

as claimed. O

w(U) w(U)
HU) =— v og il (15) in fact possible to achieve the above limit using uniform input
feo Lty 2 ()" distribution and by using low Hamming weight codewords. To
) this end, we recall the following lemma of [8].
“Tron n Z v log(1+v) Lemma 2.2:Let0 < v < £. Then for anyn the following
veQ inequality holds:
— w(l) 3 nh(v vn]
Z)w(U)z/ logv| . (16) onh(v) < Z . n! < gnh()
vee 8nv(l—v) — Jin =)t~

Sincep(U) is a probability distribution, we have _ ) )
whereh(-) is the binary entropy function.

Z W) = (1 4v)" Proof: We refer the reader to of [8, Corollary 9, Ch. 10,
UeQ Sec. 11, p. 310]. O
and Suppose thab < o < 1 is given. Now letv = h™1(«)
Z w(U)’/w(U) = (1 + nu)n—l (17) with yng 1/_2 and congider th_e s&, of all elements inQ =
Uco {0, 1}™ having Hammmg_ weight less th_an or equakio. By
< Lemma 2.2, the cardinalityQ.| of Q. satisfies
I/lOgl/ Znh(l’) < Q < 2nh(l/)
H(U) = n (log(1 +0) - TE). Wi el S

For large n, it can be observed from the above that
log(|Q«|)/n ~ h(v) = «. The approximation approaches the
exact value ag — oo. We now state a second coding scheme.

Lettingp = h~!(«) results in the entropy rat&(U) = an.
Our coding scheme is described next.

First, the initial state of the bu% is assumed to be uniformly
distributed inQ with i.i.d. components and independent of the Theorem 2.2:The bound of Theorem 2.1 can be approached
outcomes of sourcE. Lete > 0 be given; then, at each timie using a uniform input distribution and differential encoding.
as many asn — € bits can be mapped on average into outcomes  Proof: Let the initial state of the buS, be uniformly dis-
of U. Such an encoding scheme exists by the Shannon souttcibuted in Q. Also, letU be an information source producing
coding theorem. Subsequentlyljf is the outcome of the sourceindependent outcomes that are uniformly distributed in the set
at timet andS;_; is the state of the bus at time- 1, then we Q.. The entropy rate of the source is, of coutsg(|Q.|). Now,
set the state of the bus at timéo beS; = S;_; ® U;. suppose that the state of the bus at time 1 is S; 1. If U; is

Because the original state of the bus is uniformly distributethe outcome ot/ at timet we setS; = S; 1 ® U;. SinceSy is
it can be seen that at each timethe state of the bus is alsouniformly distributed inQ it can be seen that at each timthe
uniformly distributed inQ. This means that we can apply Lem-state of the bus is also uniformly distributedgh This means
ma 2.1 and observe that the expected energy atttimssuming thatwe can apply Lemma 2.1 and so the expected energy at time
that inputU, is chosen is given by t is given by

ESt (St — St (&} Ut) = ZW(Ut)Eu (18) ESt (St — St (&} Ut) = 2w(Ut)5u (21)
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Entropy Bound

Normalized Expected Energy per Bit

o 1 1 1 1 1 1 Il 1 1 J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bus Utilization

Fig. 1. The entropy bound.

where the subscript indicates that the expectation is taken owéQ (and states of the bus) with the numberd, ..., 2" — 1,
with respect td5,. Taking expectation of (21) with respectlip  respectively. In this notatior€ (i — j) is the energy required
gives for the transition from statéto state;j of the bus.

E(St — Sy Uy) <2008, = 2nh*1(a)5u. (22) Theorem 3.1:Let M be a Markov source with th&" states,
..., 2" —1. Letr > 0 and suppose that the probability of

L , 1,
Note that as: approaches infinity, and because of Lemma z'gransition from staté to statej is given by

the entropy ratég (| Q. |) of the sourcé/ asymptotically equals

an. Thus, asn — oo, the utilization approaches while the Pr(jli) = 5 ffp(_yg(z =) . (23)
expected energy per bit remains less than or equal to S exp(—r€(i — k)
-1 -1 k=0
20h” ()Eu _ 207 (o) &, O  Letp(i),i=0,1,...,2"—1,denote the steady-state distri-
an @ bution of M andH (M) denote its entropy rate. Then the lim-

For A\ = 0 (the NSM case), the bound of Theorem 2.1 wdfing expected energy per bf}, at utilization4(M)/n of the
also established in [13]. Our result though accounts\for 0 PUS satisfies the inequality
as well, that is, for the case of modern technologies where th@re(H(M) >

is energy coupling between different lines of the bus, the DS n
case. 2n -1 271 .
> p(J)10g< > exp(—vE(j — 7")))
<= r=0 (24)
[ll. CODING THEOREMS FROM STATIONARY Rz H(M)

ERGODIC PROCESSES

The simple bound that was established in the previous sec- Proof: First note that, by definition, the Markov process
tion assumed a basic differential encoding. In that case, the stAfelis irreducible and aperiodic, therefore, the stationary distri-
of the bus at each time depended only on the state at timdution p(4) exists and is unique. Also note that the transition
¢t — 1. This introduced the natural question: Is it possible tBNergy, expression (1), is symmetric with respect to the starting
achieve more energy reduction using encoders with higher or@éd ending states, that&(i — j) = £(j — ) foralli, j. This
memory? We answer the question affirmatively by presenting &iows us to writep(i) explicitly as (see, for example, [21])
example. This example also motivates a systematic study of the 21

problem. Moreovetthe method developed here applies to other , ,;0 exp(—vE(i — k)
computational models as well p(i) = 5i5n . (25)
To proceed it is important to simplify the notation. From now '21 kEO exp(—vE(j — k))
J= =i

on we will identify the vector elements L .
fy In the cases where the energy cost function is not symmetric,

(0,0,...,0),(1,0,...,0), ..., (1,1,...,1) p(7) can be computed using standard methods. We endow the
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processM with the steady-state distribution. The stationargveri =1, 2, ..., |7 (L)| and dividing the sum by7 (L)| we
Markov processM is irreducible, aperiodic, and therefore erobtain
godic. T

Letg = (o1, ..., o) denote a sequence @f successive (M) — e + Z logp ot)
states of the Markov procesdd. Distinct sequences of this type L))
will be indexed by a bold-face superscript,= (o, ..., o%). 17 (L)|
According to the Shannon—-MacMillan—Breiman theorem 4], <, 1 1 25(0’2 L= 0?;)
for everye > 0, there existdy > 0 suchthat, forevery, > Lo, T L= |7 (L) P -
there exists a set of sequeneesf length L, namely |7 (L) 2" 1 on 1

: )1 —vE(j—k
T (] 2, 27U Og’(kzo‘”q’( veli— ”)
L)|
such that 1
SHM) + e+ 2 Z ng logp(o1)

2L(H(M)—e) < |T(L)| < 2L(H(M)+e) (27) |

and Using (6), the first summand in the middle term of the preceding
— .. ot inequality can be written as
HM) — e < 08000 00) gy e gy MY

L T Lo _ ()
for everyi = 1, 2, ..., |T(L)|. The sequences which belong > o) (Z E(of—y — Ui)) =& (C(L)) = =~
to7 (L) are referred to as“typical.” We take the set of typical i=1 k=2

sequencesg (L) of the Markov procesa as our bus code, thatyhere) < e(C) < Emax. Therefore, we have

is, C(L) = T(L), and we choose the elementsfl) with

equal probability. Then the utilizatiom of the bus, using code TN 1og p(ot)
C(L), is such that HM) —e+ 70| > 17 -
=1
HM) e o cHM) € 29)  <venC(n) v
n n n n L
Now, writing A L =
’ + p*(7) 10g< > exp(—vf(j—ﬂf))>
L Tl = = =
Pr(of, ..., 0%) = p(o}) [ ] Pr(ot [ ohy) IT(D)] i)
= <H(M) +e+ |,]. 1 Z
and replacing it into (28) we get
The above result holds for evedy > Ly. Also, £(C(L)) <
log p(o?) 1 & ‘ i Emax < 00. Letting L — oo and using strong typicality [4], we
HM) e+ — =< I > logPr(o} | o}_y) haveji®(j) — p(j) with probability one. Moreover; £ — .
k=2

. Thus, for sufficiently largel, we have
<HM) + e + BRI (30
= ¢ L H(M) — 2¢ <. (C(L))

. . . . 2" —1 2" —1
Taking account of (23) into the above inequalities we get n Z i) log ( Z exp(—vE(j — k)))
log p(o? k=0
H(M) — e + LL( ) SH(M) +2e (32)
L . - . . .
1 i i with probability one. Since is arbitrary, an expected energy
S L ;2”5(0’“_1 = o) consumption arbitrarily close to
2" —1 ) 2n—1 ) on_q on_1q
+ 37 () log (2 exp(—vE(j — k))) =~ HM) = 3 pl)log | Y exp(—vE(j — k)
j=0 k=0 v 7=0 k=0
log p(a}) o R o
<HM)+e+ — 7 (31) is achievable at utilizations arbitrarily close do= H(M)/n.
Thus,
where we have set . .
i N > p(j)log | > exp(—vE(j—r))
p'() = —L(J) HM) 1}, =0 =0
n v H(M)

and Ni(j /) is the number of occurrences of stgtén the se-
quenceri, oi, ..., ot . By summing up the above inequalitiess an achievable pair for every> 0. O
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Exponential Bound for n=2,2=0,1,5

ook — Lambda=0
’ — — Lambda=1
- Lambda=5

Normalized Expected Energy per Bit

0 ; i L ; ) ; s . ; j
0 0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.9 1
Bus Utilization

Fig. 2. The exponential bound far= 2 andA = 0, 1, 5. ForA = 0, the exponential and entropy bounds coincide.

| — Lambda=0
- — Lambda=1 : !
-=- Lambda=5 : : : 4

Normalized Expected Energy per Bit

0 1 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bus Utilization

Fig. 3. The exponential bound far= 4 and\ = 0, 1, 5. ForA = 0 the exponential and entropy bounds coincide.

The bound of Theorem 3.1 is referred to as thgponen- to prove, that for\ = 0, the exponential bound and the entropy
tial bound We have plotted the results of Theorem 3.1 in Figgound coincide.
2—4 for small values of., and with the vertical axis labeled by Motivated by the above result, it is natural to ask if we can use
&(a) /&, This bound is hard to compute for higher values of other stationary ergodic processes, invoke again the Shannon—
since the Markov chairM has too many states. This makes th#cMillan—Breiman theorem, and obtain stronger results. We
computation of the steady-state distribution numerically diffiproceed with the following construction:
cult forn > 8. For comparison, we have also plotted the bound Construction I: Let X denote a stationary ergodic stochastic
of Theorem 2.1. We see in Figs. 2—4 that the bound of Theorgmocess whose outcomes are elementsQf= {0, 1}".
3.1 is always better than the bound of Theorem 2.1 for all tMge consider the setX; consisting of all sequences
plotted values. Moreover, it is seen in the figures, and it is ea&yy, oo, ..., o1, o) of L successive outcomes of the
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Exponential Bound for n=8, x=0,1,5

— Lambda=0 |: oL L
091 - - Lambda=1 : : : : : I
= Lambda=5 : : : : : : h:
0.8F - EEEEEE s s o B . e

Normalized Expected Energy per Bit
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0 ; x . ; ;
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bus Utilization

Fig. 4. The exponential bound far= 8 andX = 0, 1, 5. ForA = 0 the exponential and entropy bounds coincide.

stationary ergodic stochastic proce¥s We have, of course, arbitrary close to each other &s— oo. Combining these two

X c QL. Givene > 0 we also consider the subs@t(X) observations yields the result. O
of Ay that contains all the-typical sequences, that is, all Definition 3.1: Let X be a stationary (not necessarily
(01, 02, ..., 01,1, or) such that

ergodic) process Q. The utilization the expected energy
consumptiorand theexpected energy consumption per diit

1
M) —e< —zlos Pr(o1, 02, ...y 001, o) SH(X) +e processY are defined, respectively, as

These two sets of sequences define, respectively, two o =H(X)/n (33)
codesX(L) = X andC(L) = 7T;(X) of length L. A '

sequence(oy, 03, ..., 0n_1, o) in QL is chosen with Ee(X) =D ) Pr(X1 =0, X =w)f(0 - w)
probability Pr(oy, o9, ..., 05,1, or) if it is regarded as cEQWEQ

a codeword ofX;. If the same sequence is regarded as

a codeword ofC(L), then it is chosen with probability =&o—w) (34)
¢(L)Pr(o1, 09, ..., 011, o1,) Or 0, where an - Eun() o5
o(L)y=1/ 3 Pr(o) ’ H(X)
s€c(L) The following two definitions are analogous to that based on
according to whethefoy, o, ..., o1, o) is, or not, an sequences of codes.

e-typical sequence.

As L. — oo, we know from the Shannon—-McMillan—-Breiman
theorem thaPr(7; (X)) — 1 ande(L) — 1. This implies the
following lemma.

Definition 3.2: We define a paif«, 3), wherea denotes the
utilization of the bus ang the expected energy per bit, to be
achievableby a classX of stationary processes i@, if and
only if there exists an infinite sequence of procesgén X

Lemma 3.1: Let a stationary ergodic procedsbe given. As (not necessarily distinct) such that(x;) — ain, for some
L — oo, the expected energy per Bif(C(L)) of the codeC(L) 1 > « and&y(X;) — f1, for somes; < 8, asi — oc.
consisting of thes-typical sequenceg;, (X') becomes equal to
the expected energy per (X' (L)) of the codeX'(L). The
same is true for the utilizations of the two codes.

Proof: Let&pax = maxy, wezy E(c = w). AsL — oo,
the set of all the codewords it'(L) that are not irC(L) has &,(«, X) = inf{3]| The pair(«, 3) is achievable
an arbitrary small probability. This means that they contribute
at mosto€,,.x to the expected energy per bus transition. This
contribution can be made as small as desired. StiE¢ — 1 We are now in the position to prove the following important
as — oo, the utilizations afforded b¢ (L) and X (L) get theorem.

Definition 3.3: We define thdimiting expected energy con-
sumption per bit, at utilizationa € [0, 1] of a classX of
stationary processes to be the function

by the class of processg§}. (36)
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Theorem 3.2:Let X be a stationary (not necessarily ergodichhus, M is a stationary irreducible ergodic Markov process.
process ir of utilization« and expected energy per Bif(X'). By the continuity of the entropy, the entropy 85 can be
The pair («, & (X)) is acheivable by a sequence of codesmade arbitrary close to the entropy.bi. BecauseP; can get
whose codewords are typical (finite) sequences of stationary as-close taP as desired, the expected energy consumption by
godic Markov processes. typical sequences 0¥15 approaches that of. Thus, a$ — 0,

Proof: Let X be a stationary stochastic process with outve can get arbitrary close to a superior or at least equivalent
comesX;, Xo, X3, ... attimet = 1, 2, 3, ..., respectively, tradeoff between energy and utilization than that of the sta-
and with probability distributio®®r (X1, X, ..., Xj) fork = tionary processt. O
1, 2, .... We can assume th&(X; = o) > 0 for every state
of X, otherwise, we can “removes from the set of states of
X. Let M be the stationary Markov process with stationa
distributionp(c) = Pr(X; = o) and transition probabilities
Pr(wl|o) = Pr(Xy = w| X1 = o). We first observe that

The preceding result motivates us to ask the following ques-
rtion: Given a (utilization, expected energy per bit) pair 3),
¥chievable by a sequence of codes (Definition 2.6), is it possible
to construct a (possibly different) sequence of codes, consisting
of typical sequences of ergodic Markov sources, that achieve

H(X) = lim H(Xp| Xpo1, Xpozs --s X1) (a, B)?
ke—o0 Our goal is to answer this question affirmatively. We start by
<H(X2 | X1) = H(M). (37)

introducing the following construction that is in some way the
Suppose for the moment th&t is an ergodic process. Let> 0 inverse of that u_sed before. Here, we start with_ a givg_n che and
and M(L) be the set of alt-typical sequences of lengih of construct a stationary process of at Ie_ast as high utilization and
the processM. We can conclude from an application of thdn€ same expected energy consumption as that of the code.
Shannon-McMillan—Breiman theorem th&t(L) has at least Constructlpn II: LetC denote_acode oflengtp and utiliza-
9L(H(M)=¢) codewords (forL sufficiently large). Therefore, tion o. We will construcft a_statlonary stocha_\stlc _procés(ﬁ) _
choosinge sufficiently small, the utilization of the bus by theffom C. To do so, we will first construct an interim stochastic
codeM(L) can be as close t&(M)/n as desired. Note that PrOces)V: Y1, Y2, Vs, ... by describing the joint distribution
H(M)/n > H(X)/n. Moreover, the ergodicity of along of the indexed random variablés, Ys, Vs, ...

with Lemma 3.1 imply that the expected energy consumption-€tY 1, Y2, Y3, ... denote the random vectors of length
£ae(M(L)) of the codeM (L) approaches the expected energ§ith

consumptiong,, (M) of the process\t asL — oo. By the
definition of process\ it is also true that,, (M) = E.,(X)

where We define the random vectols;, Y, Y3, ... to be mutually
H L
(X)) = Z Z Pr(X(1) = 0, X(2) = w)E(0 — w). independent and such that for everg O~ we have

cEQWEQ Pr(e), ifeeC
PI‘(Yk = C) = { r( ) i
0, otherwise.

Y =Y-1)p+1, Yh—1)L42, - -+, Yar), fork=1,2,....

Thus, using typical sequences of the ergodic Markov prate¢ss

we can construct a family of codes!( (L) such that ) . . .
y (L) These define the interim stochastic procgssompletely. Now

liminf H(M(L)) > H(X) and lim &.,(M(L)) = €. (X). forl =1,2, ... we define a sequence of distributions (on the
Lmoe Lmeo random variables(;, Xs, ...) by letting
This concludes the theorem in the case that prodess er-

godic. Pr((Xi =21, Xo =12, ..., X; = 11))
It remains to treat the case where the procésds not er- 1 =t
godic. Consider the matriR with thes, jth element =1 > Pr((Yigs =21, Yagi = a2, ..., Yigi = 1))

=0
Pij = Pr(X(2) = j 1 X(1) =) Note that the right-hand side of the expression is a shift-and-

that is, the transition probability matrix of the Markov procesgverage operation. This sequence of distributiorsissistent
M. Then we claim that some of the elementsPadre zeroes. If in the sense that
not, P is anirreducible matrix and is an aperiodic irreducible
Markov chain and hence is ergodic. Consider the row matrix * (Xy =21, Xo =22, Xz =23, ..., X1 = 211))
whoseith element isPr(X (1) = ¢). Then,gP = Pand all = Z Pr((X1 =1, Xo=29, Xz =13, ..., Xy = 1))
the elements of are positive. (This is true because we have =z,c0
assumed that procegsvisits all its states and so process is
irreducible.) For every) < 6 < 1, we setPs = (1 — )P +
§17q, wherel is a row matrix with all of its elements beirlg
We also havegPs; = q for everyé > 0.

We now consider the Markov sourcefs whose stationary
distribution isq and whose state transition matrix . For
every > 0, the matrix Ps has only positive elements andpr((y17 Ya, Ya, ..., V)

A theorem of Kolmogorov [21, p. 21] implies the existence
of a random proces&'(C): X, X, X3, ... characterized by
the family of the above distributions. Next, we prove that the
processY(C) is stationary. To do so, we first observe that the
processy is cyclo-stationary with period in the sense that

1According to Definition 2.6. =Pr((Yi4mr, YoomLs YatmL, -+ YitmL)



800 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 4, APRIL 2003

foralll=1,2,...andm=0,1,....If L=1thenY, =(Y;) where we have used the cyclo-stationarity)ofind the inde-
forall £k = 1, 2, ... and so the process@s and X’ are both pendence of the random vectdrs, Y, Y3, .... By Defini-
stationary. Suppose now that> 1 andj > 1,[> 1 are given. tion 2.2, we have

1
Then ZH(Yi, ..., Y1) = H(C).
Pr(Xiyj=y1, - Xivj=u1) This concludes the proof. O
= > Pr(Xi=wmp, .., X=a, Lemma 3.3: The expected energy consumptiég, (X) of
T T2 0 Ty the process¥(C) equals the expected energy consumption
Xuyj=yr, -0, Xigj=m1) v (C) of the codeC.
L-1 Proof: The energy consumption of a sequence
= Y Z Pr(Yiji=z1, ..., Yigi=uzj, o1, 0o, ..., oy of elements inQ is (Definition 3.1)
ml,rg,...,zj 1=0
Y1+j+i:y1 Yoirjri=y2, -y Yigjri=u1) E(o1, 09, ..., 25 0; — Oiy1).
Z Z Pr(Yiyi=x1, ..., Yiri=1;, The expected energy consumptlon of the stationary process
L i=0 T1, @2, ..., T; X(C) is given by
Yiditi=y1, Yorjri=y2, -« Yirjri =) Ean(X) =E(0 — w)
1 = . 5(0'1,0'2, ...,O’l)
=7 2_; Pr(Yigjpi=y1, Yorjpi=vo, ..., Yigjpi=u1). = 11_1}1010 1 ,
. N o where the expectatiofi(oy, o9, ..., 0;) is taken with respect
Asirunsinthesed, 1, 2..., L —1,thevalue + j mod (L) to the probability distributiorPr(X; = oy, ..., X; = o).

also runs in the same set. Combining this observation and fhgwever,
cyclo-stationarity of the proce$s, we conclude that

1
I Pr(Yiyi, Yogis -, Yigi)

™M

Pr(Xy, Xo, ..., Xp) =

L—-1
- ; Pr(Yigjri =1, Yoqjri = Y. -, Yigjpi = y1) thus, =0
1 L-1 1 —
:_ZPT(Y1+i:y17---;Yl+i:yl) E(o1, 02, ..., 01 _EZ Z E(o1, 02, ..., 01)
L P 1=0 o1,...,0
=Pr(Xi=y, Xo=y2, X =3, ..., Xi= ). Pr(Y“'l =01, Yigi = 1),
_ ) Now, fori = 0,1,2, ..., L —1,wesetl; = L — ¢+ 1and
Thus, the proces&'(C) is stationary. I' = L| L] — . For everyl sufficiently large (e.g., greater than
Lemma 3.2:The entropy rateH(X(C)) of the random 3L)we have
processY (C) is greater than or equal to the entropy E(oy, 09, ..., 00) =&(01, 09, ..., 01,)
:——ZPI‘ ) log Pr(c) +5(U[i701i+1,...,O'li)-l-g(O'li,O'li_;’_l,....,O'l)
oy where we agree that the expected energy of any trivedément
of the code’. sequence is zero, i.€ (o) = 0 for everyo € Q. Then we have
Proof: By the definition of the proces¥(C) we have E(o1,; 0141, - 01) SE(o7, -y o)
L1, (crl” Oli41s -5 071 ) +3LEmax (38)
Pr(Xy, Xo, .o, Xp) =) 7 Pr(Viei, Yoris oo Yivi). were€ax = maxoweo €(0 — w). We conclude that
] _1:(_) 5(01702 ....01)
Since the entropy function is concave, for evéry 1, 2, ...,
we also have —
1L71 —LZO Z 501,02...,0’1)
7 o1,
H(X1, Xo, .., Xy) 2 7 X;)H(Y1+i; Yoti, -5 Yiqi). Pr(Yigi = o1, ..., Yisi = 01)
= L—1
ividi [ [ > . 1
Dividing by ! and Is(t;;gl; 00 wifo)btalrﬂ{(x) > H(Y). But < . Z Z (E@Ls ey 01) + 3LE )
H(Y) = lim L 22 -0 Tk i=0 01, ..., 0
k—oo k PI‘(YlJH =01, 5 YVI+L - Ul)
- lim H(Y1, Yo, ..., Yi) L Lo
. < 7 Z Z &(o,, 7:)
. H(-Y'(’I’—l)L-f—l? Yv(T—l)L—l—?? R KL) 1=0 07, , ..., 0
= lim
k—oo f— kL
1 'Pr(}/lq-—l—i =01y -y }/l’+i = UF) + 3L5max- (39)
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However, Proof: By assumption, there exists a sequence of codes
Pr(Yi,pi=01,, ..., Yy, =op) Cyq, .C2, _C3, ... Of strictly increasing length which utilize the pus
by — v B arbitrarily close to a number greater than or equal tind their
- r( L1 = Olis - YL £] = U“) expected energy consumptions per&ifC;),i = 1, 2, ... get

— Pr ((Y% Ys, ..., YLLJ) S Uli)) _ arbitrary close to a number smaller or equaito _
2 We apply Construction Il and get a sequence of stationary

Since the r_andom vectoks, Y, ..., YL%J are independent, processest; = X(C;),i = 1, 2, .... By Lemma 3.2, the value
we can write H(X;)/n is greater than or equal to the utilization of bus using
Pr(Yi4i =01, -y Yiig = o) the codeC;. By Lemma 3.3, the expected energy consumption
=Pr(Yo=(00,,..., 0041 1)) Eav(X;) equalsé,y (C;). Thus, as — oo, & (X;) (or a subse-
Pr(Ys = (0111, vy Olr2n—1)) guence of it) approaches a number smaller or equal(i@). By
. Theorem 3.2, there exist stationary ergodic Markov processes
- Pr (YL%J = (01—L41; - s Uzi)) M;,i=1,2,...whose typical sequences utilize the bus by a
In addition, we can write factor equal to or larger thaki(X;) /n and have expected energy
Elon,, ..., o) consumption per bit less than or equaldg ;). Combining
these observations we conclude the proof. O
=E&(o1,, -y 0t,40-1) + E(OL,40-1 — 01,4+L)
F E(O1aL, s Olgor1) + E(O1 4201 — 01,421 Corollary 3.1: For everya € (0, 1], the limiting expected

energy consumption per bf;(«) equals&,(a, M.), where

too EOrp, o 01). M, is the set of all stationary ergodic Markov processe€in

The expected energy of the codes by its Definition 2.3

1 Proof: The proof follows from Theorems 3.3, Lemma 3.1,
Ev@=7 D o, oniro) and the definition o€ (). O
Ol;s-- 01,4+ L—1 . .
Pr(Yy= (01, ..., 0041-1)) We can now prove the following important theorem.
i B Z Pr(Ys= (01, ..., o141-1)) Theorem 3.4:For everya € (0, 1], the limiting expected

energy consumption per i} («) equalst,(a, M), whereM

o ;3: Z;;j:l o1ian 1)) is the set of all stationary Markov processegin
irhe oty PhemEL T Proof: The set of stationary Markov processeég,, has
(01,421 = Ol4L)- the set of ergodic Markov stationary processes,, as a subset
Using the cyclo-stationarity gf and the expressions above, wend is a subset of the set of stationary processes.
arrive at Thus, stationary Markov processes must perform at least as
Z Elor,y .., o) Pr(YVi, i =00, .., Yigi = o) well as stationary ergodic Markov processes and at most as well
Tlyr o Oy as stationary processes when considering the tradeoff between

However, we have already proven in Theorem 3.2 that sta-
tionary ergodic Markov sources achieve any tradeoff achievable
by stationary processes. This means that stationary Markov pro-
cesses provide the same tradeoff between utilization and energy
E(o1, 09, ..., 07) <1+ Eay(C) + 3LEmax- (40) consumption as that of the stationary processes and stationary
ergodic Markov processes. We now apply Corollary 3.1.0

I e(C) utilization and expected energy consumption per bit.
-1((f]-1)ewe -2

wheree(C) is as in (6). Finally, replacing the above into (39)
we get

Similarly, we can prove the inequality

L Q%J — 1) Eav(C) = Emax < E(01, 09, .., 07).  (41) V. COMPUTATION OF THE LIMITING ENERGY

CONSUMPTION PER BIT

Combining (40) and (41) and dividing biyve have Theorem 3.4 provides us with the computational arsenal to

L l Emax _ E(o1, 09, ..., 09) calculate&, («) by restricting our attention on the class of sta-
T\L 1) &a(C) ~ I < 1 tionary ergodic Markov sources. To be able to use this arsenal,
3LE s we will need to study the functio, in more details. We start
<&aw(C) + —— (42) with the following lemma.
Letting! — oo, we arrive at Lemma 4.1:For everya € (0, 1], there exists a sequence
Eun(C) = Ean(X). (43) of codes(Cy, C», C3, ... whose bus utilizations tend t@ and

whose expected energies per bit tendf().
O Proof: By the definition of the limiting expected energy
Theorem 3.3:Suppose that the pdie, 3) of utilization and per bit, &(«), there exists a sequence of achievable pairs
expected energy per bit is achievable according to Definitigny;, ;) such thatliminf; ., «; > « and ; — &(a) as
2.6. Then, there exists a family of codes, of strictly increasing— cc. Sincea;, i = 1, 2, ... belong to a compact set, there
lengths and constructed from typical sequences of stationasyists a subsequence of achievable péirs ;) such that
Markov ergodic processes, that achie(es (). &; — aandf; — &(«) for somed > «. By an application
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of Cantor’s diagonalization argument and the definition of Lemma 4.3: For everya € (0, 1] we have
achievable pairs, we conclude that there exists a sequence of .
codes(Cy, Cs, Cs, ... of strictly increasing lengths, whose bus Eo(a) = 1{14{((1)&,(/\/1). (44)
utigz?ti;)ns tend ta¥ and whose expected energies per bittend  proof: Theorem 3.4 implies that
to & (o). .
Consider the following zero-padding construction. Suppose (@) < Mell{l,i(a)gb(M)
that a cod€ of length L, utilization «, and expected energy per . .
bit £,(C) is given. Then, by expanding its codewordd lsyates as the |nf|ml_1m 's taken over a smaller ;gt: NOWGI%. 0 be. :
of value zero, we obtain a new codeof lengthL-+1, utilization given. Applying Theorem 3.4 and the definition of achievability
I ' ol ' we observe that
a 777, and energy per bif;, (C") with
inf 5(,(./\/1) < Sb(a + 6).
L +l ( ) gmax MeM™* (a)
L+i—1]" alL This is true since all stationary Markov processes that are candi-

. L+1 Emax dates for achieving the pdit+e¢, £, (a+¢)) must have entropy
<&(C) < I+ri-1 {51)(@ t I } - rate higher thamn. Sincee > 0 is arbitrary andS,(-) is con-
tinuous, we conclude that
By applying this zero-padding technique to all the codes in .
the sequencé;, C», Cs, ..., We can construct a new sequence Mell{lli: (a)gb(M) < &(a)
of code<’, Cs, C3, ... whose utilization tends ta and whose
energy per bit tends t6,(«).

and the lemma is proven. O

Every pair( P, q) of a2™ x 2" = | Q| x | Q| transition matrix
P and al x 2™ state probability row vectay, satisfyinggP =
q, defines a stationary Markov procesd. Conversely, every
stationary Markov process! defines, in the obvious way, a pair
(P, q) of atransition probability matri¥ and a row probability
Eav(a) = naky() vectorg such thayP = ¢. The expected energy consumption
per bit and the entropy rate @¥1 can be computed using the
and claim that it is continuous. To prove this claim, leglements ofP andg.
aj,az € (0,1] andv € (0,1) be given. By the def- From now on, we will mix the notation by identifying the
inition of achievability and Lemma 4.1, there exist twqrocess\ with the pair( P, ¢). Moreover, we introduce the no-
sequences of code€, Co, C3, ... and Cy, C5, C3, ..., of tationH(P, q) for H(M), Eay (P, q) for Euy (M), and&y (P, q)
strictly increasing lengths, whose utilizations tend 4@ for & (M). Note that the function

Lemma 4.2: The function&,(«) is continuous and nonde-
creasing fol0 < a < 1.
Proof: The nondecreasing property 86f(«) follows di-
rectly from its Definition 2.7. We define the function

and as, respectively, and whose expected energies per bit
. . gaV(P7 (I)
tend to &(a1) and &(ay), respectively. This means that & (M) =&(P, q) = H(P, q)
Eav(C;) tends tona1Ep(a1) = Eav(an) and&,y(CF) tends to . _ 4 _
nasEy(as) = Eav(a2). is continuous with respect to the elements of the pAirg).

Now, we use time sharing betwe€nandC;, with shares of Finally, we can interpret the saf” («) as the set of all pairs

i

The numberv is considered rationaly = 7=, and byvC; o Lemma 4.4:For everya € (0, 1] we have
(1 —v)C¥ we mean the code formed by the concatenatian,of o
codewords o€; andv, — v,, codewords of;. The utilizations E(a) = (P, ) EM* (a) &(P. q)- (45)

of the codes/C; o (1 — v)C} tend tova; + (1 — v)as and the

expected energies per bi},(vC; o (1 —v)C}), of the codes tend
to va1E(a1)+(1—v)axE(asz) ] ThUS,

Proof: The function&, (P, ¢) is continuous on the pair
(P, ¢) and the constraints of the problem define a compact set.

(var+(1-v)as) We thus conclude that then infimum is achieved. (]
Ey(van + (1 — v)as) < var&p(on) + (1 — v)aaby(as) Now we can state and prove the following theorem that wil
(vaq + (1 —v)as) be important in the calculation of the limiting energy per bit.
which establishes the “rational” convexity df,.(a) = Theorem 4.1:For everya € (0, 1] we have
na&,(c). This, along with the monotonicity of., («) imply £nn(P, q)
the continuity of&,, (c) and hence that of,(a) = (%) jn En(a) = min . (46)
. \ . na . (P, q): H(P, ¢)=an an
(0, 1). Moreover, sincef,(1) < oo andé&, is an increasing _ ) L
function, Definitions 2.6 and 2.7 imply that _ _Proof_. To prove the _theorem, we will construct a mini-
mizing pair(P, q) for (45) in Lemma 4.4 such th&{(P, q) =
lir?i E(a) = &(1). O an. Once this is established, the result follows.

Suppose thatP,, ¢.) is a minimizing pair for (45) with

Fora € (0, 1] let M*(«) denote the set of all stationaryH(P*’ 4.) > an. Ford € [0, 1] we define the pair

Markov processed whose states are elements@find have (Po, @) =0(Px, qi) + (1 = 0)(I, qx)
entropy rateH (M) > an. =P, +(1-0)I, q.)
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where[ is the2™ x 2™ identity matrix. The new pair satisfies
the equalityg. Py = g.. Also, we have

Eav(Poy qx) = Eav (0Ps + (1 — 0)1, qu)
=084 (Ps, gx) + (1 = 0)Eun(], ¢.)
=0&u(Py, ¢:) +0.
The concavity of the functiof(-, ¢..) implies that
H(Py, q+) =H(0P« + (1 —6)1, g.)
> 0H(Ps, ) + (1 = 0)H(I, q.)
=0H(Px, q«) + 0.

Finally,

ga\'(P07 q*)
H(P07 (]*)
0 (P, ¢x)

= 0H(P,, ¢.) = Ep(Ps; qx)-

SinceH (P, ¢«) = H(I, ¢«) = 0, there exists som& such
that H( Py, ¢») = an. We conclude thatFy-, ¢.) is also a
minimizing pair of (45) withH(Py/, q.) = an. O

Inlight of Theorem 4.1, the computation&f(«) has beenre-

51,(P97 q*) =

duced to a constrained minimization problem that can be solv

using standard methods such as the application of Lagral
multipliers.

In the following, we will prove that for every € (0, 1) there
is a stationary Markov process that achieves the minimum

the aforementioned problems. We will derive formulas for th€herefore Il belongs tdl .

limiting expected energy as a function of the utilization.

Let (P, q) be a pair of a stochastic matrix and a probabilit

eigenvector of it. The pair defines the matfix= [r; ;17—

with m; ; = ¢;P; ;. For everyi, j, the entriesr; ; satisfy the
following relations:

TI',L'7 j Z 0 (47)
Z ’/Ti_’j =1 (48)
)
and
(49)

j k
The last equality holds because
Zm,j = Z(Iipi,j =q = ZQkPk,i = Zﬂz
J J k k
and can be written also as
> (mij =) =0.
J
The entropy of the matriXI is defined as

%]

M) = =3 i jlog | <2 (50)

i, k
k

and, of course, equals(P, ¢). (We agree tha log% =0and
a zero row of matriXT contributes zero to the entropy.) Now,
independently of the paifP, ¢), we definell to be the set of

all 2 x 2™ matriceslI satisfying the constraints (47)—(49). We

also defindl . as the subset dI consisting of only the positive
matrices. We have the following lemma.

2Here we assume th&l(c — o) = 0 for all ¢ € Q. This is true for the
energy cost function (1).
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Lemma 4.5: The mapping

Ti, j ]
Dok ik i

fromIIL, to the subset of positive stochastic matrices is bijective.

Proof. Suppose that the positive stochastic mattiis the
image of an element’ = [x; ,]; ; of IL,. Then, there exists a
unique positive vectog’ = [g;]; such thatr; ; = ¢; P ;. Itis
straightforward to verify thag; = >, =} ,. To show that the
mappingll — P is injective it suffices to show that there is
only one positive vectog for which [¢; P; ;]; ; belongs tdl .
For vectorg, (49) implies

Z(Iipi,j = Z(ijj,k = qj-
i k

Thereforeg must be a positive left eigenvector 6f The ma-

trix P is positive and, by Perron’s theoremis unique up to a

positive factor. The vectaris uniquely defined because of (48)

which implies}_,; ¢; = >2; ;P ; = 1.

To show the mapping is onto, we start with a positive sto-
stic matrix” and setr; ; = v; F; ;, wherewv is the unique

ét) probability eigenvector oP. Thenzi,j m;,; = land

E Wk,izg UkPk,i:Ui:E vz’Pi,j:E i, -
k k J J

Hb—>P:{

(51)

in
O

In the following, we will writeII = (P, ¢) to denote that
¥ri7j = ¢;; ;. Note that for a matridl € II with a zero row,
there is a set of pair&P, ¢) such thafl = (P, ¢). All of these
pairs have the same vecigrthe entries of which correspond to
zero rows ofll, must be zero.

Lemma 4.6: The sefll is convex. The entropy functicH is
concave il and strictly concave in the subdét, .

Proof. Conditions (47)—(49), directly imply the convexity
of the setll. Now letII' andII? be inII anda be a constant
such thad < a < 1. Setll = all' + (1 — a)II%. Thelog-sum
inequality states that

! 2
1 am; 9 (1- a)7ri,j
SR W SEo + ol (L—a)3 77,
ko k
a7r1'1 4+ (1 — 7['1.2 .
2 (aﬂ'il,j + (1 - a)ﬂzj) log 173 ( )7

with equality if and only if

1
a7,

aZﬂ%,k
k

Therefore, we have

H(I) == (ar} ; + (1 —a)r? ;)
(2%}
log aw},j +(1- a)wzj




804 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 4, APRIL 2003

. 7ri1j For everyi, j we have
—aZwm-log T
i,j Zﬂ-’b,k 5 ’]['L(S
k : »log Zﬂ'g = [(1_26)7ri,j+6(6i,k6j,r+6i,r6j,k)]
7T2 . iy v
1 _ 1 1,] v
' ZW Og<z7‘i2k) 1-26 8 (6 k6j,r + 6i r0
= b log (L—28)m; j + 6 (65 165, + 65 v05. k)
=aH(II )+(1—a)H(H2) (1—=28) Y mio+ 6 (86 + i)

and soH(I1) > a’H(IT') + (1 —a)H(I1%). Suppose now that! wheres; ;is1if i = j and0 otherwise. From the above expres-
andII? have positive elements, and, therefore, belorid toin  sion we can conclude that for every; we have
this case, the equality above holds if and onl if = P2 where

SO’;

716 I

r i+ 10g

Wi,j ‘| i, ] g Z
T

i, J
5
7,

= log gﬂf +ci ;51og 6+ O(8)

with ¢; ; being a nonnegative constanf ¢ = 0, 1 or 2). Now,
andr = 1, 2. Applying Lemma 4.5, we conclude that(IT) = according to our assumptions itig , = 0 while Zj Tk, 5 > 0.

g

v

aH(IIY) + (1 — a)H(11?) if and only if IT' = 112 O This implies that
The expected energy and expected energy per bit corre- xd
sponding to the elements of the $ktare defined analogously Wiﬂ, log 5 a =0+ ¢y, 0logd 4+ O(9)
to those of previous sections. This is done by letting = T,
- me i€ — §) with ¢, » = 2 or ¢, » = 1 depending on whethér = r or not.
) ’ We conclude that there exists a positive constant 1 such
and that for sufficiently smalk
E(TT) = Ep (TT) /H(TT). H(ILs) = H(IT) — c16log 6 + O(6).
Note also that if(P, ¢) = TI then&,,(P, q) = &, (IT) and Also, becausé.,, (IT) depends linearly ofl, there is a constant
&E(P, q) = &(I). Itis straightforward to verify that ¢o such that
Eola) = nen,lﬁﬂ(rrll)zan Eo(ID)- (52) Eav(Ils) = Eay () + c26.
If (P, q) is an optimal point for Note thatH(IT) is positive sinceH(II) > an. Also, E.,(IT)
. is positive since the transition ener§yoc — w) is zero only
Ep(a) = v q§1e111\1/}+(a)5b(P’ q) wheno = w. Therefore, setting; = c¢3/Eave(Il) andey =
’ c1/H(IT) > 0 we have
then the minimizindI in (52) is achieved byl = [¢; P; ;]i, ;.
Conversely, ifll € II achieves the minimum in (52) and Eav(Is) = Eav(ID) . 1+ csd
(P, q) = I then(P, ¢) is the minimizing of H(Is)  H(ID) 1 —cablogéd+O(6)
< B . & (P with ¢4 > 0. This means that there exists an arbitrary small
o) =, woin (D) § for which &(TTs) < &(TT) andH(ITs) > H(TT) = an. A
contradiction! Note that a statewith -, ; > 0 always
Lemma 4.7: Every solutionlI of exists. Hence, there exists a rowlbfvith only positive entries.
] This means that all column-sumsldfare positive and because
& () = HGH_I};}?I»M & (1) of property (49), all row-sums are positive as well. Using the
' - argument above we conclude thais a positive matrix. [
belongs tdl, . .
Proof: Let 1l be a solution of (52). We show first that if ~The above lemmas lead to the following theorem.
for some staté we have)_; ., ; > 0, thenmy, ; > 0forallj.  Theorem 4.2:Problem (52) has a unique solutibih The so-
Suppose that this is not the case and leé such that . = 0. |ytion is positive,IT € I, and with’H(II) = an. There is
Ford € (0, 3), we set noa € (0, 1) for which the solution equals the matrix =
1
s = (1 — 26)T1 + Sexel + be,el g (i -

Proof: From Lemma 4.7, we know that every solution
wheree; is the vector with one in th&h coordinate and zeros of (52) is positive. Linearity of the expected energy func-
everywhere else. It is easy to verify tHaf € II for everyé. If  tion &,,(II) and strict concavity ofH(IT) in II. imply the
wfj denotes the, j element ofils, then unigueness of the solution. The same properties also imply

s that H(1I) = an. This can be shown in a way similar to that
ZW ; log <Z—J5> - 3Here we need to assume tt&tr — w) = 0 only whens = w. This is
Ev v satisfied by the energy cost function (1).
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of Theorem 4.1. FinallyH(Q2) = n results inll # Q since  The fact that the optimdll satisfiesH(II) = an andIl €
an < n. O II; combined with the smoothness of the constraints withjn

The theorem has the following immediate consequences. gives the following result.

Corollary 4.3: The solution of problem (53) is a stationary

Corollary 4.1: The minimizing pai( P, ¢) in (45) exists and point of its Lagrangian

is unique. Furthermore, the transition probability maffand
the probability eigenvectay are positive. L=uv Z ™+ Z N (m; j —7j0)
7,7 1,7

Corollary 4.2: Problem (53) has a unique solution. Its solu-
tion is positive and identical to that of (52). o
—/LZWL',J'IH LY +Z7TL,J€(L—>J) (54)
. 1 — STk —
Ela) = min — Eav(ID). (53) i J ral ij

el H(M=an N
Proof: From Lemma 4.8, the solutidi of the problem is
Lemma 4.8: The (unique) solution of (52) and (53) is a reg@ regular point of its constraints. Therefore, there exists a set of
ular point of the set of (active) constraints of (53), which aréeal numbers), \;, u for which %fj = 0 for all 4, j (see [3,
> mii=1, 3, mi j=3, ki for everyi, andH(IT)=an. Proposition 3.1.1, p. 255]). ' O
Proof. The gradients of the constraints are given in matrix Lemma 4.9: Every stationary pointl

f thelL i
form as follows: of the Lagrangian£

in the subsell, is of the form

9 i 11 1 i
(23 ’J> 11 1 o | gigie D (55)
B=\"0n | T1|:: ... : Zkgrgkeﬂf(’”’”
1 1 -.- 1 " i
L k,r whereg = (go, g1, - - -, g2»—1)"is the unique (up to a constant)
I positive eigenvector of the matri¥’ (v) = [e~7¢(—7)]; ; and
I\ 2 (mij = mj4) ~ is a real number.
A; = ’ 3 Proof: The partial derivative of the Lagrangian with re-
Tk, spect to the variable; ; is
L k,r or
0 0 —% 0 0 B =v+ -\ —puln E%:,k +E(i — 7). (56)
: : %
0 0 -1 0 0 . . . .
_ | L o1 . We are interested in the solutions of the set of equatﬁfi? =
0 0 1 o 0 0,i.e.
: A : _—
. . . . . L _ L 1 ’l,,] N s — . 7
0 .- 0 =1 0 --- 0] v+ Ai = Aj —pln STk +&(i—j)=0 (57)

k
First we examine the cage= 0 and show that it is not feasible.
Suppose thgt. = 0. Then (57) implies that

where the nonzero elements of matricgésare in theith row
and theith column. And finally

O _ {%H(H)} — |log Z7rk,r ‘ (i —j)=—v—X\i+2);, foreveryi, j.
Thor Tk, s Tk, v kv Since the energy cost function, (1), is symmetric, that is,
E(i — j) = E(j — i), we must have\; = \; for everys, j.

The set{4;}, is Iinez:;\rly independent ang is orthog/onal to Therefore£(i — j) = —w, i.e., the cost function is constant.
every 4; under the inner product, V) = tr(XY’). We g yhis is impossible since, from (1), we hagéi — i) = 0
conclude that any nontrivial linear dependence between Uo?ﬁ‘dg(z’ . j) # 0 for everyi # j (matrix A given by (2)
matricesA;, B, andC' can be written ag’ = b + 3, ridi- g positive definite). Thereforey # 0, and the system of
Element-wise this is equivalent tg ; = b + r; — r; or equations (57) implies that

P; . = exp(b+r; — r;), with
) P( z J) T s vEX ;=X +E(i—])
]

=e I . 58
T i Zwi,k ( )
P = 5 2J k
T i,k i Since all the parameters )\;, and ;. are real we can do the
’ transformation;f = e*/#, g; = e~ */# andy = —1/pu, and

Since for every state, Zj P; ; = 1 we conclude that; =

ceEE havef > 0 andg; > 0 for everyi. Then, (58) becomes
r; for all i, j and, thereforeP = 2L-[1]; ;. This impliesII =

[5%:):,; = © as the only irregular point of the constraints. The 5” =f q—’ e~ VeI, (59)
proof follows from an application of Theorem 4.2. O . i k gi
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Fig. 5. Entropy, exponential, and optimal bounds#oe= 2 andA = 5

Entropy, Exponentlal and Optlmal Bounds for n= 4 >\ 5
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Fig. 6. Entropy, exponential, and optimal boundsi#oe= 4 andA = 5

Summing overj, we getg; = f ), e~ 78— g, or written We define the probability vector

in matrix form,g = fWg with g = (g0, 91, ..
W = [e7€@=0)],

s gon — )I and
. The matrix fW is always positive and,

a=1(95. 93> - g3n_1)/lgll”

therefore,g must be its unique (up to a factor) positive e|gen—

verse of the maximal elgenvalu’enax of W. Recall that the
energy cost function is symmetric, i.€¢: — j) = £(j — 1)
for everyi, j. Therefore, we also have thgt= f¢’W or more

explicitl o
i = 1S grem ), (60)

e~ YE(E—7)

;qi Z

IIgII2

2
et G
fE gie V=) = I — g
1

_ 9
g1l lg1l?
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Entropy, Exponential and Optimal Bounds for : n=8, x\=5
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Fig. 7. Entropy, exponential, and optimal boundssfoe= 8 andA = 5.

Applying Lemma 4.5, we gél = (P, ¢). This means that every tion module as a coding and information theory problem. It has
stationary pointl of the Lagrangian must have entries; of been shown that redundancy in the capacity of the computation

the form module can be exploited, using coding techniques, to achieve
9i9i 4 (i) significant reductions in the energy consumption (or other com-
Ti,j = 9112 fe : putation cost). Redundancy can be introduced by adding extra

ports in the module, or by reducing the actual information rate in

U the input, and by coding the input and output sequences. Using

Note that for everyy the matrix is positive and so it has a tools of information theory, we have derived the maximum pos-
unique positive maximal eigenvalue. The matixis also ana- Sible costreductionin an analytic form that can be used for nu-
lytic in ~. Therefore, its eigenvalue and the corresponding ndperical calculations. . 3
malized eigenvector are both analytic functionsyof7, The- Although, for the ease of presentation, we used a specific cost
orem 1, p. 396]. Even more, the stationary pdihof the La- function, it is noted that the methods we established here apply
grangian, parameterized enapproaches the identity matrix ad0 @ very general class of cost functions for which the cost of
~ approaches-co. This is because only transitions from everf sequence of computations is the sum of the costs of the indi-

This concludes the proof of the lemma.

state to itself have zero cost. AlsH, approache$) as~y ap- vidual steps. Some related issues and a more explicit form of
proaches zero. We conclude as follows.

Theorem 4.3:For everya: € (0, 1), there exists a unique
positivey for which matrixII, defined by (55), satisfiel (11) =
an and is the unique solution of problems (52) and (53). The[1]
entropyH(IT) is a strictly decreasing function effor v > 0.

Theorem 4.3 can be proved using well-known results on su-2
perconvex functions and properties of eigenvalues of Hadamard
matrix exponentials. The proof is lengthy, technical, and is
omitted. 3]

Theorem 4.3 is the tool to evaluate the limiting expected en-|4
ergy per transmitted bi€, (o). Figs. 5—7 present the normalized

value&,(«) /€, named theptimal boundas a function of the (3]
bus utilizationa, for A = 5 andn = 2, 4, 8. For comparison,  [g]
we have included the exponential and the entropy bounds.

V. CONCLUSION AND FINAL REMARKS 7]

We have considered the problem of reducing the energy conyg
sumption (or other computation cost functions) in a computa-

&v(+) can be founs in [25]-[27].
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