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A grounded’ RC is a symmetric two-port linear element character-
ized by its resistance per-unitlength in {2/m, its capacitance per-unit
lengthCy in F/m and its total lengttL. It is symbolically represented
by theT" network of Fig. 1.
The total resistance and capacitanceRre RoL andC = CyL,

SingleU RC Integrators respectively. The time constantis defined as
Paul Peter Sotiriadis and Yannis Tsividis T = RyCyL* = RC )

and is a measure of the propagation delay along the body of the

Abstract—This brief proves that single-pole behavior can be achieved U RC. For frequencies much smaller thafir thelUU RC' behaves like
using a single grounded uniformly distributed RC element. The transfer 5 |[umpedRC' element. Thd/ RC accepts all two-port descriptions
function generated out of a grounded.J RC and a memoryless linear feed- [7]); in particular, if Zo is its driving impedance andZ,, is its
back network is studied leading to two novel integrator topologies. i ! © g 1mp m

transimpedance, we have

Index Terms—Active filter, distributed, feedback, integrator, irrational

transfer function, transmission line, topology. |:"'71 ] _ { Zo Zm:| ) [11 } @
Vi Zm  Zo I
I. INTRODUCTION with [7]
Linear distributed RC elements have been studied for several Zo(s) = V75 coth (/75)
decades. Many different approaches have been proposed to exploit Cs
their dynamic behavior in order to compose meaningful types of 3)
impedances, transfer functions and, of course, filters. Filter synthesis Zun(s) = V/Tscsch (ﬁ)_
techniques using distributeBC's can be classified into four general Cs
groups. AlthoughZ, andZ,,, are both irrational functions af it can be verified
1) Exact synthesis of transfer functions rational on the = directly that they satisfy
tanh(a+/s ) plane [1] or theP = cosh(a/s ) plane [2]. R
2) Exact transfer function synthesis, rational on ¢h@ane, using zZi— 7% = . (4)
nonuniform or/and nongrounded or/and multi-layer distributed Cs
structures, e.g., [3], [4]. This relation involves the squares of the impedances, so to realize it

3) Exact transfer function synthesis, rational on thglane, using we need to use tWWETS, or onel RC' in a feedback loop (as it
pairs of uniform commensurate (i.e., of the same time constattjll be shown in Section Ill). Note also that the left part of (4) is the
distributedRCs, e.g., [5], [6]. determinant of the impedance matrix, which is nonzero. Therefore, the

4) Techniques leading to transfer functions approximately ratiorf&fo linear equations (2), relating the four variablés I, V2, I> of

on thes plane. (An excellent source of results and referencestiRe two-port, are independent. TWoRC's are calleccommensurate
[7]. if they have equal time constants. Pairs of commensiifd&té’'s have

n used widely in past works.

This brief proves that we can build an integrator using a single grouno*é?ie

uniformly distributedRC element { RC) along with a linear, mem- L

oryless network. This avoids the need for exactly commensurate pairs [ll. GROUNDED U RC' CONNECTED TOMEMORYLESSLINEAR

[5], [6] or more complex structures [3], [4]. The dynamic behavior of NETWORK (MLLN)

a grounded’ RC' in a memoryless lineal feedback network is studied oy goal is to realize a rational transfer function (from a scalar input

leading to two novel integrator topologies. U to a scalar output”) using only one groundeti RC and no other
dynamic element. Therefore, our network must consist of the single
U RC and arMLLN. TheMLLN could be composed of ideal ampilifiers,

Manuscript received July 20, 2001; revised June 4, 2002. The work of PtRansconductors, gyrators, resistors, etc. The general scheme is shown
Sotiriadis was supported in part by the Alexander S. Onassis Public BengfitFig. 2.

Foundation, the Greek Section of Scholarships and Research. The MLLN must impose two linear relations between the variables
P. P. Sotiriadis was with the Department of Electrical Engineering aw I Vo. L. U ofth ¢ K in addition to th tituti I rela-

Computer Science, Massachusetts Institute of Technology, Cambridge, MAv 11> V2» {2, U Orhenetwork in addiion to the constitutional rela

02139 USA. He is now with the Department of Electrical and Computdions of thell RC' given by (2)

Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA

(e-mail: pps@jhu.edu). EiaoVi+ ki 2Va+ ks + kol + U =0

Y. Tsividis is with the Department of Electrical Engineering, Columbia Uni- (5)
versity, New York, NY 10027 USA.

Digital Object Identifier 10.1109/TCSI.2002.808210 ko 1 Vi 4 ko oVo 4+ ko sly + ko als + 12U =0.

1057-7122/03%$17.00 © 2003 IEEE



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 2, FEBRUARY 2003 305

URC
U—»(V],II,VZ,IZ)—bY
and MLLN

Fig. 2. URC connected toMLLN.

P —» H(s) —» Q0

Fig. 3. P-Q input—output relation of th&’/ RC'.

TheMLLN must realize a relation involving the output as well

Y = k3 1 Vi + k3 2Vo+ k3 30 + k3 ala + psU. (6)

Fig.5. CaseofP = IandQ = V.

We say that the total network igell definedif the Kirchoffs equa-
tions have a unique algebraic solution fidr, I, V>, I>, or equiva-
lently, the set othe four linear equations (2) and (5) is linearly inde-and aMLLN (with one input and one output) always admits the system
pendent with respect to;, I;, Vs, I, (for everyU ands # 0). representation of Fig. 4.

Now, we assume that the total network is well defined. This implies Note that for every “renaming” of the variablé$’, I, V5, I, },
that the two equations (5) are linearly independent and so the matriwe have a different transfer functidi(s). None of the matrice# (s)

ki ke ks ks has any entry that is a rational function ©{7]. On the other hand,
’ e T ’ there are some choices of the matricesh, ¢ andd that result to an
ko k2o kaz ko input—output rational transfer functidf(s) of the system in Fig. 4
must have a nonzero 8 2 determinant. This implies that the pair Y(s)
of equations (5) can be solved for two of the variables in the set G(s) = T(s) (10)
{V1, I, V2, I, }. Let P, andP; be two such variables and &t and '

(. be the remaining ones. In this case, (5) can be written equivalentlyThe transfer functiori7(s) is given by expression (11) whefeis
as the 2 x 2 identity matrix

Pr=a1Q1+ a2Q2 + 01U G(s) = c(E = H(s)A) ™ H(s)b+d. 11)
@)

P =asQ1 + a1Qo + boU A. Implementation Using Transconductors

The voltage-dependent current source or transconductor is in general

for some appropriate constanis, . .., as andby, b.. Replacing (7) - the easiest toimplement and the most common type of dependent linear
into (6), we get (8) for some., ca, d source. Here, we assume that matixs implemented by a number
H . — T
Y = e1Q1 4 2Qs + dU. ®) of transconductors. In this case we have:= I = [[,, I,]' and

Q =V =[Vi, V»]7. Theinput’ is a current and we choose the output
TheU RC element accepts all two-port descriptions [7]; one of therli to be a current as well since the integrators may form cascades. Then,
has to be given by (9) wherH (s) is the appropriate % 2 matrix & andd must be dimensionless ananust be a transconductance. With

function of s these choices the general system of Fig. 4 is reduced to that of Fig. 5.
P Matrix Z is the impedance matrix of thl& RC given by (2) and
{Ql] = H(s)- [ 1} . (9) (3). By replacingb, Z, A, ¢ andd into (11) we have the following
Q2 P expression for the transfer functidi(s):
It is worth mentioning here that all four entries of each matrix de- 1020 + N Zom + 15 2
s J . . . . . m&m S Cs
scription of thel/ RC' are irrational functions of [7]. It is straight for- G(s) = =0z — 0 7 7 +d (12)
ward to verify thait is impossible to realize a rational transfer function podo = pmdm + ps
using a singld’ RC' without feedback where

SettingP = [P1, BT and@Q = [Q1, Q»]7, one can think of the

= ; . . . 1o =bic bac:
URC as a dynamical system, with thex22 transfer function matrix o =b1e1 + b2c2

H (s), whose input is? and its output i) as shown in Fig. 3. Nm =bicz +baex
We define the matrix s = —asbicy + asbacy + azbics — arbacs
| po =a1 + aq
T las ay pm =az +as

ps =104 — (2a3.
and the vectors = [by, b2]”, ande = [¢1, ¢2]. Then, (7)—(9) become

P=AQ+bU.Y = cQ + dU andQ = H(s)P, respectively, and case in whiclG(s) becomes rational, and more specifically a one-pole

are captured in the block diagram of Fig. 4. transfer function, is when the coefficients &f and~Z,,, are zero, i.e
ThelU'RC corresponds to the central blogk(s), and equations (7) ' = e

and (8) correspond to the feedback loop and the output part respec-
tively. It is concluded that a well-defined network consisting 6TRC’ bicr + baca =0 bica +becr =0 (13)

In generalG(s) is an irrational function of as areZ, andZ,,.. A
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and
a; +ay =0 az + az = 0. (14)
The system of equations (13) can be written in matrix form Y
|:Cl C2:|. |:l)1:| — |:0:| (15) U a(V1+V2) ’
Co C1 bg 0

Since the vectar = [b;, b,]” (and the vector = [¢;, ¢.]”) cannot
be zero (except in pathological cases), the determinant of the sysfelfh 8- Integrator (1).
(15) must be zero, s@ = +¢;. Therefore there are two possible pairs
(up to a multiplicative factor) of ande that satisfy (13), i.e. + ) ,*

b 1 '3' y‘{ '
) M p M fex, 2] = {1, —1] L 1 1

i [’;ﬂ =3 {_ﬂ [e1, ea] = 4L, 1] =

URC
VI .
for some dimensionless constafitand some transconductange U ) a(v,-v,) a(v,-v, ( U
Equations (14) imply thais = —a» andas = —a; which combined 172
with equations (16) give the transfer functions = = = = =

2(a1 + a2)ByR

2]

o)
A

; (o) — Fig. 7. Integrator (Il).
i) Gls) = CETY: @7y Fio grator (1)
. ) 2(a; — az)BvR The abstract network in Fig. 5 is realized by that of Fig. 7. In this
i) Gls) = m (18) case, the input is currefif that flowsantisymmetricallyinto the two
ports of thel/ RC. The constant was again set to one. The feedback
From (17) and (18), we get a lossless integrator when= a2 = |oop is realized by the two “internal” voltage dependent current sources
—as = —aq, and whem, = —ay = a3 = —a4, respectively. These that drive the two portsymmetrically
two cases correspond to Integrator (I) and Integrator (Il) topologiesThe transfer function of the network is the same with that of Inte-
examined in the following. grator (1) given by expression (20). A discussion on the operation prin-
ciple of Integrator (I1) and its relation to ttoemmon/differentiainodes
IV. GROUNDED-U RC' INTEGRATOR() of the U RC can also be found in [8].
Here, we examine the lossless integrator corresponding to Case i),
(16), (17). We set VI. CONCLUSION
1 1 1 This brief has shown that integrators can be built out of a single
A=a {_1 _1} b= L] (19) grounded URC (uniformly distributed RC' element). This is in
) [ 1] i=0 contrast to all previously proposed integrator topologies based on
= [1, — —

distributed elements, which required pairs of exactly matched (com-
With these choices, the abstract network in Fig. 5 is realized by that®nsurate]” RC's or other complicated distributed structures. Here,
Fig. 6. The input current flowsymmetricallyinto the two ports of the the dynamic behavior of memoryless linear feedback loops around a
URC. The feedback loop is realized by the tigernal voltage-de- 9rounded #C' has been studied and has led to two novel integrator
pendent current sources that driygpositecurrents into the two ports. t©oPologies. An alternative viewpoint and derivation can be found

The transfer function of the network can be obtained by remaoi@ésewhere [8]. It can be shown that there are four additional classes of
the values of the parametets b, ¢, d into (12) or (17). This results in lossy integrators that result from the presented feedback approach and

the following expression: use only transconductors and one ground@@C. There are many
more classes of integrators and lossy integrators that use other types of
G(s) = Y{(s) — 4ayR 1 (20) dependent sources; these can be derived using a systematic deduction
U(s) C s along the lines presented here.
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Design and Analysis of Nonlinear Control for
Uncertain Linear Systems

Xinkai Chen and Chun-Yi Su

Abstract—By using the input—output information, the problem of ro-
bust output tracking control is addressed for linear dynamical systems with
arbitrary relative degrees. The considered systems are confined to min-
imum phase systems with unknown parameters, and unmatched distur-

For systems with unknown parameters and unmatched disturbances,
an interesting robust approach is developed in [14] based on state-space
techniques, where the input—output information andathegori knowl-
edge concerning the disturbance bounds are used. The overall system
can be ensured to be globally uniformly ultimately bounded (GUUB)
which can be made arbitrarily close to exponential stability if the control
energy permits. However, the perfecpriori knowledge concerning
the disturbance bounds may not be easily obtained in practice.

This brief demonstrates the design of a nonlinear output tracking con-
troller for systems with both unknown parameters and unmatched dis-
turbances. The unmatched disturbances are composed of a bounded part
and a class of unmodeled dynamics. The pedeciori knowledge con-
cerning the disturbance bounds is not required. The disturbance bounds
are adaptively updated online. The considered systems may have higher
relative degrees. The proposed formulation is inspired by the “nonlinear
differentiator” proposed in [1], and [2], which is motivated by the vari-
able structure control and adaptive control methods. The design proce-
dureinthis brief can be summarized as three steps. First, a special signal

bances composed of a bounded part and a class of unmodeled dynamicsjS gene_rated, which can be thought of as an estimate of a filter. of the
The a priori knowledge concerning the disturbance bounds is unknown. The INPUt signal. Second, the derivatives up to a certain order of this spe-
development of the nonlinear robust controller involves three steps. First, cial signal are derived, where a backstepping idea [4] is used. Third,
a special signal is generated, which can be thought of as an estimate of athe output tracking control input is synthesized by using the derivatives
filter of the input signal. Second, the derivatives up to a certain order of this  of the special signal. The proposed nonlinear control law ensures the

special signal are derived. Third, the output tracking control input is syn- . - . )
thesized by using the derivatives of the special signal. In the above process,unlform boundedness of all the signals in the closed-loop system and

the upper bounds of the disturbances are adaptively updated on-line. The achieves output tracking within a desired precision. The effectiveness
proposed control law ensures the uniform boundedness of all the signals of the proposed method is demonstrated through simulation.
in the closed-loop system and achieves the output tracking to within a de-  This brief is organized as follows. Section Il gives the problem for-
fr']rr%i p{}*’;'ﬁ}'g{;ﬁgze effectiveness of the proposed method is demonstrated myation. In Section 11, firstly, a special signal (which can be thought of
9 ’ as an estimate of a filter of the input signal) is generated. Secondly, the
Index Terms—nput-output information, minimum phase systems, derivatives up to a certain order of the special signal are derived. Finally,
output tracking, relative degree, robust control, unmatched uncertainty. the output tracking control input is determined, and the stability of the
closed-loop system is analyzed. Section IV gives a design example to
|. INTRODUCTION illustrate the proposed formulation. Section V provides conclusions.

In robust output tracking control, a central problem is to design a
feedback control for a plant such that the output of the plant can asymp-
totically track a class of reference signals and reject a class of disturConsider an uncertain system of the form
bances while maintaining closed-loop stability. For the class of linear
systems, the solvability of the output tracking problem was thoroughly a(s)y(t) = b(s)u(t) + v(t) @

studied in [3], [4], and [7}-{11]. However, the system disturbances a%eres denotes the differential operaterit) andy(#) are scalar input

generally assumed to be either constant or bounded. For minimu mut velvie) K onal d of model
phase systems with unknown parameters and bounded disturban%gg,ou pul, respective VK.) IS an unknown signai composed ot mode
cértainties, nonlinearities and disturbances, et.) andb(s) are

several typical adaptive methods achieving output tracking were sfé@— .
gested in [5], [6]. scribed by
For systems with uncertainties, variable structure control has been
investigated in robust control literature because of its effective perfor-
mances [12], [13], [15]. However, in this kind of approach, the system

uncertainties or disturbances are still assumed both bounded an . . .
can be easily seen thatt) is an unmatched unknown signal. For

matched. Also, the results are restricted to minimum phase dynamical .. . . - i
. . - simplicity, the signab(¢) is called the “disturbance” of the system. It
systems with relative degree one. The proposed formulations cannot S
. . . Is,assumed that the initial time is.
cope with systems of higher relative degrees, and cannot deal wi . -
he following assumptions are made.

unmatched disturbances or uncertainties. In the variable structure ) ' ) ]
control, the unmatched disturbances become part of the equivalerf®L) 0(s) is & Hurwitz polynomiala(s) andb(s) are coprime.
control and must be estimated for the construction of the equivalenfA2) ~The indexes: andr are knownb, 7 0 and the sign of itis
control. known. Without loss of generality, it is assumigd> 0.
(A3) The parameters in(s) andb(s) are unknown constants but
they are bounded in known compact sets. More specifically,

Manuscript received February 28, 2002; revised August 4, 2002. This paper there are known constants,, @;, b ; andb; such that for
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Il. PROBLEM STATEMENT

1

a(s)=s"+a15"" + -+ an_15+a, 2
b(s) =brs" " 4+ brprs" T T b A buas b (3)
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