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Single- Integrators

Paul Peter Sotiriadis and Yannis Tsividis

Abstract—This brief proves that single-pole behavior can be achieved
using a single grounded uniformly distributed element. The transfer
function generated out of a grounded and a memoryless linear feed-
back network is studied leading to two novel integrator topologies.

Index Terms—Active filter, distributed, feedback, integrator, irrational
transfer function, transmission line, topology.

I. INTRODUCTION

Linear distributedRC elements have been studied for several
decades. Many different approaches have been proposed to exploit
their dynamic behavior in order to compose meaningful types of
impedances, transfer functions and, of course, filters. Filter synthesis
techniques using distributedRCs can be classified into four general
groups.

1) Exact synthesis of transfer functions rational on the� =
tanh(�

p
s ) plane [1] or theP = cosh(�

p
s ) plane [2].

2) Exact transfer function synthesis, rational on thes plane, using
nonuniform or/and nongrounded or/and multi-layer distributed
structures, e.g., [3], [4].

3) Exact transfer function synthesis, rational on thes plane, using
pairs of uniform commensurate (i.e., of the same time constant)
distributedRCs, e.g., [5], [6].

4) Techniques leading to transfer functions approximately rational
on thes plane. (An excellent source of results and references is
[7].

This brief proves that we can build an integrator using a single grounded
uniformly distributedRC element (URC) along with a linear, mem-
oryless network. This avoids the need for exactly commensurate pairs
[5], [6] or more complex structures [3], [4]. The dynamic behavior of
a groundedURC in a memoryless lineal feedback network is studied
leading to two novel integrator topologies.
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Fig. 1. Grounded .

II. GROUNDEDUNIFORMLY DISTRIBUTEDRC LINE (URC)

A groundedURC is a symmetric two-port linear element character-
ized by its resistance per-unit lengthR0 in
/m, its capacitance per-unit
lengthC0 in F/m and its total lengthL. It is symbolically represented
by theT network of Fig. 1.

The total resistance and capacitance areR = R0L andC = C0L,
respectively. The time constant� is defined as

� = R0C0L
2 = RC (1)

and is a measure of the propagation delay along the body of the
URC. For frequencies much smaller than1=� theURC behaves like
a lumpedRC element. TheURC accepts all two-port descriptions
[7]; in particular, if Z0 is its driving impedance andZm is its
transimpedance, we have

V1
V2

=
Z0 Zm
Zm Z0

�
I1
I2

(2)

with [7]

Z0(s) =

p
�s coth (

p
�s )

Cs
(3)

Zm(s) =

p
�s csch (

p
�s )

Cs
:

AlthoughZ0 andZm are both irrational functions ofs, it can be verified
directly that they satisfy

Z2

0 � Z2

m =
R

Cs
: (4)

This relation involves the squares of the impedances, so to realize it
we need to use twoURCs, or oneURC in a feedback loop (as it
will be shown in Section III). Note also that the left part of (4) is the
determinant of the impedance matrix, which is nonzero. Therefore, the
two linear equations (2), relating the four variablesV1; I1; V2; I2 of
the two-port, are independent. TwoURCs are calledcommensurate
if they have equal time constants. Pairs of commensurateURCs have
been used widely in past works.

III. GROUNDEDURC CONNECTED TOMEMORYLESSLINEAR

NETWORK (MLLN)

Our goal is to realize a rational transfer function (from a scalar input
U to a scalar outputY ) using only one groundedURC and no other
dynamic element. Therefore, our network must consist of the single
URC and anMLLN. TheMLLNcould be composed of ideal amplifiers,
transconductors, gyrators, resistors, etc. The general scheme is shown
in Fig. 2.

TheMLLN must impose two linear relations between the variables
V1; I1; V2; I2; U of the network in addition to the constitutional rela-
tions of theURC given by (2)

k1; 1V1 + k1; 2V2 + k1; 3I1 + k1; 4I2 + �1U =0

(5)

k2; 1V1 + k2; 2V2 + k2; 3I1 + k2; 4I2 + �2U =0:

1057-7122/03$17.00 © 2003 IEEE



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 2, FEBRUARY 2003 305

Fig. 2. connected toMLLN.

Fig. 3. – input–output relation of the .

TheMLLN must realize a relation involving the output as well

Y = k3; 1V1 + k3; 2V2 + k3; 3I1 + k3; 4I2 + �3U: (6)

We say that the total network iswell definedif the Kirchoffs equa-
tions have a unique algebraic solution forV1; I1; V2; I2, or equiva-
lently, the set ofthe four linear equations (2) and (5) is linearly inde-
pendent with respect toV1; I1; V2; I2 (for everyU ands 6= 0).

Now, we assume that the total network is well defined. This implies
that the two equations (5) are linearly independent and so the matrix

k1; 1 k1; 2 k1; 3 k1; 4

k2; 1 k2; 2 k2; 3 k2; 4

must have a nonzero 2� 2 determinant. This implies that the pair
of equations (5) can be solved for two of the variables in the set
fV1; I1; V2; I2g. LetP1 andP2 be two such variables and letQ1 and
Q2 be the remaining ones. In this case, (5) can be written equivalently
as

P1 = a1Q1 + a2Q2 + b1U

(7)

P2 = a3Q1 + a4Q2 + b2U

for some appropriate constantsa1; . . . ; a4 andb1; b2. Replacing (7)
into (6), we get (8) for somec1; c2; d

Y = c1Q1 + c2Q2 + dU: (8)

TheURC element accepts all two-port descriptions [7]; one of them
has to be given by (9) whereH(s) is the appropriate 2� 2 matrix
function ofs

Q1

Q2

= H(s) �
P1

P2
: (9)

It is worth mentioning here that all four entries of each matrix de-
scription of theURC are irrational functions ofs [7]. It is straight for-
ward to verify thatit is impossible to realize a rational transfer function
using a singleURC without feedback.

SettingP = [P1; P2]
T andQ = [Q1; Q2]

T , one can think of the
URC as a dynamical system, with the 2� 2 transfer function matrix
H(s), whose input isP and its output isQ as shown in Fig. 3.

We define the matrix

A =
a1

a3

a2

a4

and the vectorsb = [b1; b2]
T , andc = [c1; c2]. Then, (7)–(9) become

P = AQ + bU , Y = cQ + dU andQ = H(s)P , respectively, and
are captured in the block diagram of Fig. 4.

TheURC corresponds to the central blockH(s), and equations (7)
and (8) correspond to the feedback loop and the output part respec-
tively. It is concluded that a well-defined network consisting of aURC

Fig. 4. Feedback representation of the total network.

Fig. 5. Case of = and = .

and aMLLN (with one input and one output) always admits the system
representation of Fig. 4.

Note that for every “renaming” of the variablesfV1; I1; V2; I2g,
we have a different transfer functionH(s). None of the matricesH(s)
has any entry that is a rational function ofs [7]. On the other hand,
there are some choices of the matricesA, b, c andd that result to an
input–output rational transfer functionG(s) of the system in Fig. 4

G(s) =
Y (s)

U(s)
: (10)

The transfer functionG(s) is given by expression (11) whereE is
the 2� 2 identity matrix

G(s) = c(E �H(s)A)�1H(s)b+ d: (11)

A. Implementation Using Transconductors

The voltage-dependent current source or transconductor is in general
the easiest to implement and the most common type of dependent linear
source. Here, we assume that matrixA is implemented by a number
of transconductors. In this case we have:P = I = [I1; I2]

T and
Q = V = [V1; V2]

T . The inputU is a current and we choose the output
Y to be a current as well since the integrators may form cascades. Then,
b andd must be dimensionless andc must be a transconductance. With
these choices the general system of Fig. 4 is reduced to that of Fig. 5.

Matrix Z is the impedance matrix of theURC given by (2) and
(3). By replacingb; Z; A; c andd into (11) we have the following
expression for the transfer functionG(s):

G(s) =
�0Z0 + �mZm + �s

R

Cs

1� �0Z0 � �mZm + �s
R

Cs

+ d (12)

where

�0 = b1c1 + b2c2

�m = b1c2 + b2c1

�s =�a4b1c1 + a2b2c1 + a3b1c2 � a1b2c2

�0 = a1 + a4

�m = a2 + a3

�s = a1a4 � a2a3:

In general,G(s) is an irrational function ofs as areZ0 andZm. A
case in whichG(s) becomes rational, and more specifically a one-pole
transfer function, is when the coefficients ofZ0 andZm are zero, i.e.,
when

b1c1 + b2c2 =0 b1c2 + b2c1 = 0 (13)
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and

a1 + a4 =0 a2 + a3 = 0: (14)

The system of equations (13) can be written in matrix form

c1 c2

c2 c1
�

b1

b2
=

0

0
: (15)

Since the vectorb = [b1; b2]
T (and the vectorc = [c1; c2]

T ) cannot
be zero (except in pathological cases), the determinant of the system
(15) must be zero, soc2 = �c1. Therefore there are two possible pairs
(up to a multiplicative factor) ofb andc that satisfy (13), i.e.

i)
b1

b2
= �

1

1
[c1; c2] = 
[1; �1]

ii)
b1

b2
= �

1

�1
[c1; c2] = 
[1; 1]

(16)

for some dimensionless constant� and some transconductance
.
Equations (14) imply thata3 = �a2 anda4 = �a1 which combined
with equations (16) give the transfer functions

i) G(s) =
2(a1 + a2)�
R

cs+ (a2
2
� a2

1
)R

(17)

ii) G(s) =
2(a1 � a2)�
R

cs+ (a2
2
� a2

1
)R

: (18)

From (17) and (18), we get a lossless integrator whena1 = a2 =
�a3 = �a4, and whena1 = �a2 = a3 = �a4, respectively. These
two cases correspond to Integrator (I) and Integrator (II) topologies
examined in the following.

IV. GROUNDED-URC INTEGRATOR(I)

Here, we examine the lossless integrator corresponding to Case i),
(16), (17). We set

A = �
1 1

�1 �1
b =

1

1

c = 
[1; �1] d = 0

: (19)

With these choices, the abstract network in Fig. 5 is realized by that of
Fig. 6. The input current flowssymmetricallyinto the two ports of the
URC. The feedback loop is realized by the twointernal voltage-de-
pendent current sources that driveoppositecurrents into the two ports.

The transfer function of the network can be obtained by replacing
the values of the parametersA; b; c; d into (12) or (17). This results in
the following expression:

G(s) =
Y (s)

U(s)
=

4�
R

C
�
1

s
: (20)

Since� and
 are transconductances, the productsKa = �R and
K
 = 
R are dimensionless quantities representing aninternaland an
outputamplification factor, respectively.

Further discussion on the operation principle of Integrator (I) and
how this is related to the separation of thecommon/differentialmodes
of theURC can be found in [8].

V. GROUNDED-URC INTEGRATOR(II)

Here, we derive the lossless integrator corresponding to Case ii), (16)
and (18). We set

A = �
1 �1

1 �1
b =

1

�1

c = 
[1; 1] d = 0

: (21)

Fig. 6. Integrator (I).

Fig. 7. Integrator (II).

The abstract network in Fig. 5 is realized by that of Fig. 7. In this
case, the input is currentU that flowsantisymmetricallyinto the two
ports of theURC. The constant� was again set to one. The feedback
loop is realized by the two “internal” voltage dependent current sources
that drive the two portssymmetrically.

The transfer function of the network is the same with that of Inte-
grator (I) given by expression (20). A discussion on the operation prin-
ciple of Integrator (II) and its relation to thecommon/differentialmodes
of theURC can also be found in [8].

VI. CONCLUSION

This brief has shown that integrators can be built out of a single
groundedURC (uniformly distributedRC element). This is in
contrast to all previously proposed integrator topologies based on
distributed elements, which required pairs of exactly matched (com-
mensurate)URCs or other complicated distributed structures. Here,
the dynamic behavior of memoryless linear feedback loops around a
groundedURC has been studied and has led to two novel integrator
topologies. An alternative viewpoint and derivation can be found
elsewhere [8]. It can be shown that there are four additional classes of
lossy integrators that result from the presented feedback approach and
use only transconductors and one groundedURC. There are many
more classes of integrators and lossy integrators that use other types of
dependent sources; these can be derived using a systematic deduction
along the lines presented here.
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Design and Analysis of Nonlinear Control for
Uncertain Linear Systems

Xinkai Chen and Chun-Yi Su

Abstract—By using the input–output information, the problem of ro-
bust output tracking control is addressed for linear dynamical systems with
arbitrary relative degrees. The considered systems are confined to min-
imum phase systems with unknown parameters, and unmatched distur-
bances composed of a bounded part and a class of unmodeled dynamics.
Thea priori knowledge concerning the disturbance bounds is unknown. The
development of the nonlinear robust controller involves three steps. First,
a special signal is generated, which can be thought of as an estimate of a
filter of the input signal. Second, the derivatives up to a certain order of this
special signal are derived. Third, the output tracking control input is syn-
thesized by using the derivatives of the special signal. In the above process,
the upper bounds of the disturbances are adaptively updated on-line. The
proposed control law ensures the uniform boundedness of all the signals
in the closed-loop system and achieves the output tracking to within a de-
sired precision. The effectiveness of the proposed method is demonstrated
through simulation.

Index Terms—Input–output information, minimum phase systems,
output tracking, relative degree, robust control, unmatched uncertainty.

I. INTRODUCTION

In robust output tracking control, a central problem is to design a
feedback control for a plant such that the output of the plant can asymp-
totically track a class of reference signals and reject a class of distur-
bances while maintaining closed-loop stability. For the class of linear
systems, the solvability of the output tracking problem was thoroughly
studied in [3], [4], and [7]–[11]. However, the system disturbances are
generally assumed to be either constant or bounded. For minimum
phase systems with unknown parameters and bounded disturbances,
several typical adaptive methods achieving output tracking were sug-
gested in [5], [6].

For systems with uncertainties, variable structure control has been
investigated in robust control literature because of its effective perfor-
mances [12], [13], [15]. However, in this kind of approach, the system
uncertainties or disturbances are still assumed both bounded and
matched. Also, the results are restricted to minimum phase dynamical
systems with relative degree one. The proposed formulations cannot
cope with systems of higher relative degrees, and cannot deal with
unmatched disturbances or uncertainties. In the variable structure
control, the unmatched disturbances become part of the equivalent
control and must be estimated for the construction of the equivalent
control.
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For systems with unknown parameters and unmatched disturbances,
an interesting robust approach is developed in [14] based on state-space
techniques, where the input–output information and thea priori knowl-
edge concerning the disturbance bounds are used. The overall system
can be ensured to be globally uniformly ultimately bounded (GUUB)
which can be made arbitrarily close to exponential stability if the control
energy permits. However, the perfecta priori knowledge concerning
the disturbance bounds may not be easily obtained in practice.

This brief demonstrates the design of a nonlinear output tracking con-
troller for systems with both unknown parameters and unmatched dis-
turbances. The unmatched disturbances are composed of a bounded part
andaclassofunmodeleddynamics.Theperfectapriori knowledgecon-
cerning the disturbance bounds is not required. The disturbance bounds
are adaptively updated online. The considered systems may have higher
relative degrees. The proposed formulation is inspired by the “nonlinear
differentiator” proposed in [1], and [2], which is motivated by the vari-
able structure control and adaptive control methods. The design proce-
dure in this brief can be summarized as three steps. First, a special signal
is generated, which can be thought of as an estimate of a filter of the
input signal. Second, the derivatives up to a certain order of this spe-
cial signal are derived, where a backstepping idea [4] is used. Third,
the output tracking control input is synthesized by using the derivatives
of the special signal. The proposed nonlinear control law ensures the
uniform boundedness of all the signals in the closed-loop system and
achieves output tracking within a desired precision. The effectiveness
of the proposed method is demonstrated through simulation.

This brief is organized as follows. Section II gives the problem for-
mulation. In Section III, firstly, a special signal (which can be thought of
as an estimate of a filter of the input signal) is generated. Secondly, the
derivatives up to a certain order of the special signal are derived. Finally,
the output tracking control input is determined, and the stability of the
closed-loop system is analyzed. Section IV gives a design example to
illustrate the proposed formulation. Section V provides conclusions.

II. PROBLEM STATEMENT

Consider an uncertain system of the form

a(s)y(t) = b(s)u(t) + v(t) (1)

wheres denotes the differential operator;u(t) andy(t) are scalar input
and output, respectively;v(t) is an unknown signal composed of model
uncertainties, nonlinearities and disturbances, etc.;a(s) andb(s) are
described by

a(s) = s
n + a1s

n�1 + � � � + an�1s+ an (2)

b(s) = brs
n�r + br+1s

n�r�1 + � � � + bn�1s+ bn: (3)

It can be easily seen thatv(t) is an unmatched unknown signal. For
simplicity, the signalv(t) is called the “disturbance” of the system. It
is assumed that the initial time ist0.

The following assumptions are made.

(A1) b(s) is a Hurwitz polynomial.a(s) andb(s) are coprime.
(A2) The indexesn andr are known.br 6= 0 and the sign of it is

known. Without loss of generality, it is assumedbr > 0.
(A3) The parameters ina(s) andb(s) are unknown constants but

they are bounded in known compact sets. More specifically,
there are known constantsa i, ai, b j and bj such that for
1 � i � n andr � j � n

a i � ai � ai b j � bj � bj (4)

whereb r > 0.
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