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Reduction of power dissipation in digital circuits is a subject of research in industry and
academia. A major component of power dissipation in modern microprocessors is due to
their large interconnect networks which are responsible for the distribution of power and
clocks as well as for the intra-chip communication. Communication is realized by data
and address buses. In this paper we (i) discuss an analytical model for energy estimation
in deep sub-micron buses, (ii) present statistical energy measures based on the analytical
model, (iii) derive the energy limits of communication through buses, (iv) and introduce
energy efficiency measures of communication.

1. Introduction

Power consumption is a major concern in the design of high performance and
portable circuit systems. During the past decade, a lot of effort has been devoted
in developing low power design methodologies 1,2 at all design levels as well as
mathematical models and CAD tools for estimating power consumption 3,4,5.
In CMOS digital circuits, dynamic power dissipation due to capacitive coupling

is still the major power component. The transition activity Ta of a circuit node (1/2
the probability of changing value) is a simple statistical measure widely employed
in power estimation. Transition activity is translated into power dissipation using
P = Taf CLV , where CL is the capacitance between the node and ground, V is
the voltage swing of the node and f is the frequency of operation. The transition
activity alone cannot be used when the node is coupled to other active nodes.
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Coupling between nodes implies that power depends also on their cross-activities
and therefore the simple power formula above is not valid.

In today’s high performance microprocessors with huge interconnect networks,
intra chip communication has been associated with significant power dissipation 6,7.
This is a result of technology scaling into deep sub-micron dimensions that resulted
in the emerging of new parasitic elements between nodes. In interconnect networks
and especially in long buses, where lines are laid out in parallel, and in many cases
with minimum distance to each other, inter-line coupling cannot be ignored 7. Work
has been done in developing compact circuit models for interconnect networks and
estimating the sizes of their elements 8,9,10,11,12.

The first part of the paper, section 2, is devoted in establishing an analytical
energy model for deep sub-micron buses based on the available interconnect circuit
models. Statistical measures are developed in Section 3 to estimate energy dis-
sipation as a function of statistical properties of data or address sequences. The
transition activity matrix is discussed as an extension of transition activity. As an
application of the definitions and the derived expressions, at the end of Section 3
we formulate mathematically a heuristic technique for power reduction presented
in 13.

Buses are very basic communication channels that dissipate energy according
to the sequence of bit vectors they transmit. In Section 4 we study the relation
between information rate and power dissipation in deep sub-micron buses. We
derive analytic expressions of the minimum energy that is required to transmit a
bit of information through the bus. The results are very general and apply to buses
(or other devices) with any energy cost function. Previous work on this problem
has discussed the case of one-line buses (which is the same with buses having many
decoupled lines ) 14. Finally, the energy formulas of Section 2 can be used for
practical cases.

In Section 5 we introduce the energy communication efficiency factor, a measure
of the energy redundancy in communication through buses. The factor equals the
ratio of the amount of power dissipated when given data or address sequences are
transmitted over the minimum amount of power necessary to transmit information
through the bus at the same rate. The efficiency factor can be used in characterizing
the efficiency of power reduction techniques based on coding (like for example those
at 15,16,17,18,19).

2. An Analytical Bus Energy Model

A bus consists of a set of parallel lines as shown in Figure 1. The lines are connected
to the drivers (left) and the receivers (right). In most cases the drivers and the
receivers are (chains of) CMOS inverters. Repeaters may exist at certain places
along the bus dividing it into segments. In that case we can examine each segment
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individually and sum their corresponding energy consumptions.
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Fig. 1. Bus

For the bus lines we use the model of Figure 2 that has been used extensively
for delay estimation as well as signal integrity evaluation 20,21,22,23. The lines are
distributed, laid in parallel along the x axis and have physical length L. They have
serial resistance ri(x), i = 1, 2, . . . , n. The capacitance density between the ith line
and ground is ci,i(x) and that between lines i and j is ci,j(x). Moreover, µi,i(x) is
the density of the self inductance of the ith line and µi,j(x) is the density of the
mutual inductance between lines i and j. The densities may depend on x. Finally,
possible lumped parasitics can be included as limiting cases of distributed ones.
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Fig. 2. Distributed model of the bus lines

Let Ii(x, t) be the current running through the ith line at the point 0 < x < L

and time t ≥ 0 and let Vi(x, t) be the voltage at that point with respect to ground.
If we set I = [I1, I2, · · · , In]T and V = [V1, V2, · · · , Vn]T then the line model satisfies
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the system of partial differential equations:

−∂I

∂x
(x, t) = A(x)

∂V

∂t
(x, t) (1)

where A(x) = [ai,j(x)] is the admitance matrix of the distributed capacitance of the
network at x, i.e.

ai,j(x) =
{ ∑n

k=1 ci,k(x) if i = j
−ci,j(x) if i �= j

(2)

More details of the electrical characterization of the bus lines and their modeling
can be found in 24,25,26.
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Fig. 3. Driver, line, receiver

The drivers and the receivers of the bus are modeled as in Figure 3. The driver
(CMOS inverter) is modelled as a switch connecting the line, either to power supply,
or ground, through the PMOS or NMOS transistors respectively. 27†. The parasitic
capacitance at the output of the ith driver is Cd

i and the parasitic capacitance at
the input of the ith receiver is Cr

i .
The current Idi (t) drawn from Vdd by the ith driver is 0 if the binary value trans-

mitted is 0 and Ii(0, t) +Cd
i ∂Vi(0, t)/∂t if the binary value is 1. The binary values

correspond to the final voltages V f
i = 0 and V f

i = Vdd respectively (superscript f
stands for final). We may write:

Idi (t) =
V f
i

Vdd

{
Ii(0, t) + Cd

i

∂Vi(0, t)
∂t

}
(3)

At the (right) end of the line, x = L, we have the boundary condition:

Ii(L, t) =
∂Vi(L, t)

∂t
(4)

†This model does not account for the short-circuit currents of the drivers. In most buses short-
circuit currents result to negligible energy consumption relatively to that resulting by capacitive
parasitics.



Power Estimation and Power Optimal Communication ...

Let T be the clock period of the bus. At t = 0 the drivers connect the lines to
Vdd or ground and the transmission of the data vector starts. The data is sampled
at the output of the receivers at t = T . In most applications it is reasonable to
assume that time period T is sufficient for the voltages along the lines to settle to
their final values, i.e.:

Vi(x, T ) = V f
i , 0 ≤ x ≤ L , i = 1, 2, . . . , n (5)

The assumption also implies that at t = 0, the voltages along the lines correspond
to their previous binary values (superscript i stands for initial), i.e.:

Vi(x, 0) = V i
i , 0 ≤ x ≤ L , i = 1, 2, . . . , n (6)

We define the vectors of initial and final voltages as V i = (V i
1 , V

i
2 , · · · , V i

n)
T and

V f = (V f
1 , V f

2 , · · · , V f
n )

T
respectively.

The energy drawn from the power supply, by the ith driver, during the transition
period 0 ≤ t ≤ T is given by

EV dd
i =

∫ T

0

Vdd I
d
i (t) dt (7)

The total energy drawn from Vdd is EV dd =
∑n

i=1 E
V dd
i . An expression for EV dd is

given by the following proposition.

Proposition 1. With the assumptions stated above, the energy drawn from Vdd
during the transition of the bus from an initial state V i = (V i

1 , V
i
2 , · · · , V i

n)
T to a

final state V f = (V f
1 , V f

2 , · · · , V f
n )

T
is:

EV dd = (V f )T A (V f − V i) (8)

where A is the admitance matrix of the lumped capacitive network shown in Figure
4 (where for simplicity n = 4):

[A]i,j =
{ ∑n

k=1 Ci,k if i = j
−Ci,j if i �= j

(9)

The capacitance Ci,j is the total capacitance between the bus lines i and j if i �= j

or the total capacitance between the ith bus line and ground, including those of the
driver and receiver, if i = j. Therefore it is:

Ci,j =

{ ∫ L

0
ci,i(x) dx+ Cd

i + Cr
i if i = j∫ L

0
ci,j(x) dx if i �= j

(10)
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Proof: The calculation of the energy E, as a function of the initial and final
voltages, is given in Appendix A.

(1) (2) (3)

C1 1, C2 2,

C1 2,

C1 3,

C3 3,

C2 3, (4)

C4 4,

C2 3,

C2 4,

C 1 4,

Fig. 4. Equivalent capacitive network (n = 4)

Notice that the energy drawn from Vdd is different from the energy lost during
the transition from V i to V f . We have the following proposition.
Proposition 2. With the setup of Proposition 1, the energy loss during the tran-
sition of the bus from an initial state V i = (V i

1 , V
i
2 , · · · , V i

n)
T to a final state

V f = (V f
1 , V f

2 , · · · , V f
n )

T
, is:

E(V i, V f ) =
1
2
(V f − V i)T A (V f − V i) (11)

Proof: In the beginning of the transition, at t = 0, the voltages along the lines are:
V i = (V i

1 , V
i
2 , · · · , V i

n)
T and so the energy stored in the capacitances of the drivers,

lines and receivers is:

Ei =
1
2

n∑
k=1

Ck,k(V i
k )

2 +
1
2

∑
k<r

Ck,r(V i
k − V i

r )
2 =

1
2
(V i)T AV i. (12)

Similarly, at t = T , the voltages along the lines are: V f = (V f
1 , V f

2 , · · · , V f
n )

T and
so the energy stored in the capacitances is:

Ef =
1
2
(V f )T AV f . (13)

Energy conservation implies that the energy drawn from the power supply must
equal the energy loss, E, plus the difference in the energy stored in the capacitors.
Therefore we have:

E = EV dd − (Ef − Ei)

= (V f )T A (V f − V i)− 1
2
(V f )T AV f +

1
2
(V i)T AV i

=
1
2
(V f − V i)T A (V f − V i) (14)



Power Estimation and Power Optimal Communication ...

Example 1. Suppose we want to calculate the energy loss on a four line bus,
during the transition from the state V i = Vdd · (0, 1, 0, 1) to the new state V f =
Vdd · (1, 0, 0, 0). Suppose the bus has total parasitic capacitances like those of the
network in Figure 4. We have:

E = 1
2

(V f − V i)T A (V f − V i)

= Vdd
2

(1,−1, 0,−1) ·




∑4

k=1
C1,k −C1,2 −C1,3 −C1,4

−C2,1

∑4

k=1
C2,k −C2,3 −C2,4

−C3,1 −C3,2

∑4

k=1
C3,k −C3,4

−C4,1 −C4,2 −C4,3

∑4

k=1
C4,k






1
−1
0
−1




Comments: Expression (11) of the energy dissipation is correct even when some
of the grounds in Figure 2 are replaced by Vdd. In modern bus design fabrics like
that of Figure 5 with groups of three or more signal lines are used to minimize the
inductive effects. In this case we can apply formula (11) directly, regarding Vdd and
ground as identical.
Since the wires in consecutive layers are laid out vertically, the coupling between

bus lines and individual wires above and below the bus is relatively very weak. There
are many such couplings and so averaging effect takes place in practise making the
total non-bus wire environment behaving very much like ground.

higher metal layer

lower metal layer

l1 l2 l3
Vdd

l4 l5 l6

Fig. 5. Bus line fabric

Example 2. In the case of a bus with structure like that of Figure 5, capacitive
coupling between non consecutive lines is very weak relatively to that between
consecutive lines. An approximate model of the total capacitance network is shown
in Figure 6.
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CL CL

CI

CL

CI

CL

n
CI CI



P. Sotiriadis & A. Chandrakasan

Fig. 6. Equivalent capacitive network ignoring coupling between non adjacent lines

The admitance matrix A is simplified as:

A =




1 + 2λ −λ 0 · · · 0
−λ 1 + 2λ −λ · · · 0
0 −λ 1 + 2λ · · · 0
...

...
...

. . .
...

0 0 0 · · · 1 + 2λ


 · CL (15)

where λ = CI/CL.

3. Statistical Energy Estimation and the Transition Activity Matrix

Let li(1), li(2), . . . be a sequence of bits transmitted through the ith line. If the ith

line is coupled only to ground, through total capacitance CL, the energy loss during
the kth cycle, given by expression (11), is:

Ei(k) =
1
2
[li(k)− li(k − 1)]2 · V 2

dd · CL (16)

Assuming the random bit sequence is stationary with the wide sense, the expected
energy is given by:

Ei = [Ri(0)−Ri(1)] · V 2
dd · CL (17)

where Ri(r) = li(k) · li(k + r) is the autocorrelation function of the bit sequence
(over-line stands for expectation) . The quantity T a

i = Ri(0)−Ri(1) is the transition
activity of the line. If f is the clock frequency of the bus, the expected energy and
power can be written respectively as:

Ei = T a
i · V 2

dd · CL , Pi = T a
i · f · V 2

dd · CL (18)

This formula applies directly to a bus with decoupled lines and has been used
extensively in the past. In the case of buses with coupled lines we need to generalize
it. Let L(k) = [l1(k), l2(k), · · · , ln(k)]T , k = 1, 2, . . . be a sequence of random bit
vectors transmitted through the bus. It is of course, V (k) = Vdd · L(k). From
equation (11) we get:

E =
1
2
(V (k)− V (k − 1))T A (V (k)− V (k − 1))

=
1
2
trace ((V (k)− V (k − 1))T A (V (k)− V (k − 1)))

=
V 2
dd

2
trace

(
A (L(k)− L(k − 1)) · (L(k)− L(k − 1))T

)
=

V 2
dd

2
trace

(A · [2R(0)−R(1)−RT (1)
])

(19)
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where R(r) = [Ri,j(r)]ni,j=1 = L(k) · LT (k + r) is the autocorrelation matrix of the
vector sequence L(k). We define the transition activity matrix, T a =

[
T a
i,j

]n
i,j=1

as:

T a = R(0)− 1
2
(
R(1) +RT (1)

)
(20)

Then, from expression (19), the expected energy consumption can be written as:

E = V 2
dd · trace (A · T a) (21)

Note that the transition matrix is a generalization of the transition activity and
that expression (21) is a generalization of the left expression in (18). The elements
of the transition matrix are:

T a
i,j = li(k) · lj(k)− 1

2

(
li(k − 1) · lj(k) + li(k) · lj(k − 1)

)
(22)

Example 3. Neglecting the coupling between non-adjacent lines in the bus we get
a total capacitance lumped network like that of Figure 6 and the admitance matrix
A given by expression (15). In this case, because of the symmetry of A, formula
(21) of the expected energy becomes:

E =

{
(1 + 2λ)

n∑
i=1

T a
i,i − 2λ

n−1∑
i=1

T a
i,i+1

}
· V 2

dd · CL

Example 4. Lets assume the setup of the previous example. If the transmitted
bits are independent and uniformly distributed in {0, 1} then:

li(k) · lj(k + r) =
{
1/2 if i = j and r = 0
1/4 otherwise

and the transition activity matrix is T a = 1
4 I, where I is the identity matrix. In

this case the expected energy is:

E =
n(1 + 2λ)

4
· V 2

dd · CL (23)

Example 5. In a recent work, permutation of the data bits was proposed as an
approach to reduce the expected power consumption 13. Instead of transmitting the
sequence of vectors L(k) = [l1(k), l2(k), · · · , ln(k)]T , k = 1, 2, . . . we can transmit
the sequence Lπ(k) = [lπ(1)(k), lπ(2)(k), · · · , lπ(n)(k)]T , k = 1, 2, . . ., where π is a
permutation of the indices 1, 2, . . . , n. The desirable in this approach is to minimize
opposite and maximize concurrent transitions in adjacent lines by choosing the
appropriate permutation. A heuristic approach was presented in 13. Using the
formulation introduced in the previous sections, the problem can be written formally
as follows. Let Π be the n× n permutation matrix corresponding to π. If T a is the
transition activity matrix of the original bus, then the transition activity matrix of
the bus with the permuted data bits is:

T a
π = Π · T a ·ΠT
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and the expected energy consumption is given by the expression:

Eπ = V 2
dd · trace

(A ·Π · T a ·ΠT
)

(24)

The desirable is to minimize expression (24) with respect to the permutation ma-
trix Π. A lower bound of the minimum energy, minπ Eπ, can be easily derived
analytically if we allow Π to be a doubly stochastic matrix.

4. Energy Limits of Communication

Here we use the energy formula derived in Section to study the relation between
energy consumption and information transmission. Information is carried by data
or address sequences. In both cases the transmitted sequence of n − bit vectors,
L(k), k = 1, 2, . . ., is a random process with statistics that can be approximately
estimated or measured 28.

Example 6. Sequences of address vectors are highly predictable; in most cycles
k, it is: L(k) = L(k − 1) + 1 ‡. We can model L(k), k = 1, 2, . . . approximately as a
(first order) Markov chain 29. Then for x, y = 0, 1, . . . , 2n − 1 it is:

Pr(L(k) = y|L(k − 1) = x) = px,y

with px,x+1 very close to 1. In some cases we can simplify the model of the process
even further by assuming that for some small δ it is: px,x+1 = 1 − (2n − 1)δ and
px,y = δ if y �= x+ 1.

Now, a measure of the information rate through the bus is needed. We can use
the entropy rate H(L) of the random process L(k), k = 1, 2, . . . , defined as 30:

H(L) = lim
m→∞

H (L(1), L(2), . . . , L(m))
m

(25)

where H (L(1), L(2), . . . , L(m)) is the entropy of the partial sequence L(1),L(2),. . .,
L(m), that is:

H (L(1), L(2), . . . , L(m)) =

−
∑

L(1),L(2),...,L(m)

Pr (L(1), L(2), . . . , L(m)) · log2 (Pr (L(1), L(2), . . . , L(m)))(26)

The n “physical” bits transmitted during a clock cycle may not be statistically
independent, neither to each other nor to the previous bits transmitted. In the sense
of the Shannon-McMillan-Breiman theorem, H(L) equals the expected number of
bits needed to express the information content of the vector L(k) §30.

‡For notational purposes, the numbers 0, 1, . . . , 2n − 1 are identified with their binary expansions.
This is done throughout the paper.
§When for example L(k) is stationary and ergodic.
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Example 7. For the Markov address process of the previous example we have:

H (L(1), L(2), . . . , L(m)) = H(L(1)) +H(L(2)|L(1)) + . . .+H(L(m)|L(m− 1))
= H(L(1)) + (m− 1)H(L(2)|L(1))

where H(·|·) is the conditional entropy function. In the example, L(k) is uniformly
distributed in 0, 1, . . . , 2n − 1 and therefore it is:

H (L(2)|L(1)) = − 1
2n

∑
x,y

px,y · log2 (px,y)

= −(2n − 1) · δ · log2(δ)− (1− (2n − 1)δ) · log2(1− (2n − 1)δ)

So, the entropy rate of the address process is given by:

H(L) = −(2n − 1) · δ · log2(δ)− (1− (2n − 1)δ) · log2(1− (2n − 1)δ) (27)

Example 8. Now lets consider a bus with the capacitive structure of Figure 6,
n = 8, λ = 5, Vdd = 1V and CL = 100fF ¶. The transition energy is given by
equation (11) where the admitance matrix A is given by expression (15). Suppose
the bus carries sequences of address vectors that can be modeled by a Markov
process like that of example 6 with δ = 1/210. From expression (27) we get that
the process L carries H(L) = 2.8 bits (per cycle or per transmission or per bus
transition) in average. In addition, the expected energy cost per cycle is:

E =
∑
X,Y

V 2
dd · CL

2
(Y −X)T A (Y −X) · Pr(L(k − 1) = X,L(k) = Y ) (28)

where X,Y take all n − bit vector values. Evaluating the above expression (with
Pr(X,Y ) = δ/28 if Y �= X + 1 and Pr(X,X + 1) = [1 − (28 − 1)δ]/28) we get
E = 1.37pJ . So it is:

E/H(L) = 1.37pJ/2.8 bits = 0.49pJ/bit (29)

In average, 0.49pJ must be dissipated per bit of information that is transmitted
through the bus.

The discussion in the example 8 above motivates the following formal definitions.

Definition 1. Suppose a random process L, of n − bit vectors L(k), k = 1, 2, . . .
is transmitted through a bus. The expected energy per information bit of the process
is ‖:

Eb(L) = E(L(k − 1), L(k))/H(L) (30)

¶These are realistic numbers for modern deep sub-micron buses.
‖To avoid technicalities we assume that process L is stationary. The definitions and results of this
section can be directly expanded to more general classes of processes.
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It is important to notice the dependance between the expected energy and the
entropy rate as well as to clarify the difference between the expected energy and
the expected energy per information bit.

Example 9. Lets examine a trivial bus with only one line which carries a sequence
of bits b(1), b(2), . . .. Furthermore, suppose that for some (large) number m and for
every r = 0, 1, 2, . . ., exactly one of the bits b(r2m), b(r2m+1), . . . , b(r2m+(2m−1))
is 1. It is clear that we can encode m bits of information bits into 2m bits that
are physically transmitted. In this case, the entropy rate H(b), of the sequence
b(k), is m/2m bits (per cycle). The expected energy per cycle is E ∼= 1

2m · C · V 2
dd

approximately. Letting m become large, E becomes arbitrarily small! and the
energy per information bit, E/H(b) = 1

m ·C · V 2
dd becomes arbitrarily small as well!

Unfortunately, the entropy rate H(b) tends to zero too.
Example 10. Lets alter the encoding in the previous example. Lets assume that
for every r,m, we allow exactly one k ∈ {0, 1, . . . , 2m − 1} such that b(r2m + k) =
b(r2m + k + 1). All other consecutive (physical) bits have complementary binary
values. Again, we can encode m information bits into 2m physical bits. Letting m

became large we have that E → 1
2CV 2

dd, H(b)→ 0 and E/H(b)→ ∞.
Another important parameter is the size of the bus, that is “the bandwidth of

the communication channel”. The following example shows that information rate
cannot be considered independently of the size of the bus.

Example 11. Lets consider the one hot encoding scheme wherem bits are encoded
into 2m bus lines simply by having exactly one line carrying a 1 and the rest of
them carrying zeros. The energy loss per cycle is bounded above by a constant
e, i.e. E < e. Letting m become large we have that the energy per bit, which is
less than e/m, can become arbitrarily small. At the same time, information rate,
that is equal to m, becomes arbitrarily large. It looks like a win-win situation but
unfortunately it is not. We need to consider the size of the bus, 2m lines, that grows
exponentially withm. Therefore, the energy per information bit must be considered
with respect to the information rate and the size of the bus.

Definition 2. Let L be a random process, of n − bit vectors L(k), k = 1, 2, . . .,
that is transmitted through a bus with n lines. The utilization α, 0 ≤ α ≤ 1, of the
bus by the process is:

α = H(L)/n (31)

The utilization α is the percentage of the “bandwidth” of the bus that is occupied
by the transmission of process L. In example 11, the utilization approaches zero as
the parameter m tends to infinity.
Since it is always desirable to transmit information at low energy cost, the

interesting question to answer is: What is the minimum energy required to transmit
a bit of information through the bus?
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Definition 3. The minimum required energy per information bit transmitted, through
a bus with n lines that is utilized by a factor α, is:

E∗
b (α) = min

L : H(L)/n=α
Eb(L) (32)

The following theorem provides us with the limit of communication energy. The
knowledge of the energy cost E(x, y), of the transition from a state x to a state y,
is required. Equation (11) may be used.
Theorem 1. When the bus is utilized by a factor α, 0 ≤ α ≤ 1, the minimum
energy per information bit is∗∗:

E∗
b (α) = ln(2) ·

(
γ − 1

∂
∂γ ln (ln (µ(γ)))

)−1

(33)

where γ is the positive solution of the equation:

α = − 1
n ln(2)

γ2 ∂

∂γ

(
ln (µ(γ))

γ

)
(34)

and µ(γ) is the maximal eigenvalue of the matrix:

W (γ) =
[
e−γ E(x,y)

]2n−1

x,y=0
(35)

Furthermore, the minimum is attained by a stationary, ergodic, Markov process
having transition probabilities:

Pr (y|x) = 1
µ(γ)

gy
gx

e−γ E(x,y)

where g = (gx)x is the right eigenvector of matrix W (γ) corresponding to µ(γ).

Proof: The proof of the theorem is sketched in Appendix B. Details can be found
in 31.
The maximum utilization of the bus, α = 1, corresponds to the case where the

bits of the random vector process, L(k) = [l1(k), l2(k), · · · , ln(k)]T , k = 1, 2, . . .,
are independent and uniformly distributed in {0, 1}. The rate of this process is of
course n bits per cycle and the expected energy per cycle is:

Eu =
1
22n

2n−1∑
x,y=0

E(X,Y )

For a bus with the capacitive structure of Figure 6, the expected energy per cycle
is given by (23).
∗∗Although expression (33) holds for the case of energy function (11), for general cost functions
there is one exception: if there are some c, θx, x = 0, 1, . . . , 2n −1 such that E(x, y) = c+ θx − θy ,
for every x, y, then it is E∗

b (α) = c/(α n).
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Example 12. Consider again a bus with the capacitive structure of Figure 6. The
energy function of the bus is given by expression (11) with the admitance matrix A
given by (15). In Figures 7 we see the normalized minimum energy per information
bit, E∗

b (α)/Eu, as a function of the bus utilization, α. The three graphs correspond
to the cases: n = 2, 4 and 8 with λ = 5. Energy increases rapidly around α = 0
and α = 1 and it is zero at α = 0. This confirms example 11, that is, the energy
per information bit can be arbitrarily low for sufficiently small rate. Note that this
would not be true if the energy expression (11) included leakage or other terms that
would contribute to energy consumption when there is no transition in the bus.
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Fig. 7. Communication energy limits for a family of buses

5. Energy Efficiency of Communication

Theorem 1 provides us with an energy efficiency measure of information transmis-
sion. We can estimate or measure the entropy rate of data or instruction sequences
28, estimate or measure the energy consumption and finally compare this amount
of energy with the minimum possible energy at the same rate that is given by the
theorem.

Definition 4. Consider a bus with n lines and a random process, of bit vectors
L(k), k = 1, 2, . . ., transmitted through the bus. The communication efficiency of
process L is:

η(L) =
E∗
b (H(L)/n)
Eb(L)

(36)
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The meaning of communication efficiency is the following: The power consumption,
when transmitting process L, is (definition 4.1):

PL = f · H(L) · Eb(L),

where f if the clocking frequency of the bus. Now let L∗ be an energy-optimal
process of the same rate, i.e., Eb(L∗) = E∗

b (H(L)/n) and H(L∗) = H(L). Let L∗

be transmitted and the bus be clocked at a frequency f∗. Then the corresponding
power consumption is:

PL∗ = f∗ · H(L) · Eb(L∗)

= f∗ · H(L) · η(L) · Eb(L)

The two transmissions result in the same power consumption, PL∗ = PL, if f =
η(L) · f∗. Therefore, if we fix the power level, process L∗ achieves 1/η(L) times
higher communication rate than that process L achieves.

Example 13. Consider the setup of example 8. The entropy rate of the process
is 2.8 bits per cycle, the expected energy per information bit is 0.49pJ/bit and
the bus has n = 8 lines. For utilization α = 2.8/8 = 0.35 the minimum energy per
information bit is: E∗

b (0.35) = 0.91∗V 2
dd ·CL/bit = 0.091pJ/bit. Therefore, the com-

munication efficiency of the process in the example is: η(L) = 0.091/0.49 = 0.19.
So, for a given energy amount, the amount of information that can be transmitted
is 1/0.19 = 5.26 times larger than that carried by process L.

6. Conclusions

The expected energy consumption and the limits of communication energy were
derived using an analytical energy model appropriate for buses with coupled lines.
The transition activity matrix was introduced to generalize the transition activities
of individual lines and the problem of optimal permutation of bus lines was ana-
lytically formulated. The communication energy efficiency factor was introduced to
measure the redundancy in energy consumption.

7. Appendix A

Defining the n×n diagonal matrix Cr = diag(Cr
1 , C

r
2 , . . . , C

r
n) we can write equation

(4) in vector form as:

I(L, t) = Cr ∂V (L, t)
∂t

(37)

Integration of equation (1) over 0 ≤ x ≤ L gives:

I(0, t) = I(L, t) +
∫ L

0

A(x)
∂V (x, t)

∂t
dx (38)
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Integrating (38) over 0 ≤ t ≤ T and using (37) we get:

∫ T

0

I(0, t) =
∫ T

0

Cr ∂V (L, t)
∂t

dt+
∫ T

0

(∫ L

0

A(x)
∂V (x, t)

∂t
dx

)
dt

= Cr(V f − V i) +
∫ L

0

(
A(x)

∫ T

0

∂V (x, t)
∂t

dt

)
dx

= Cr(V f − V i) +

(∫ L

0

A(x) dx

)
(V f − V i) (39)

From equations (3) and (7) we have:

EV dd =
n∑

i=1

EV dd
i =

n∑
i=1

V f
i

∫ T

0

{
Ii(0, t) + Cd

i

∂Vi(0, t)
∂t

}
dt

=
n∑

i=1

V f
i

∫ T

0

Ii(0, t)dt+
n∑

i=1

V f
i Cd

i (V
f
i − V i

i )

Defining the n× n diagonal matrix Cd = diag(Cd
1 , C

d
2 , . . . , C

d
n) we can write:

EV dd = (V f )T
∫ T

0

I(0, t)dt+ (V f )TCd (V f − V i)

Finally, replacing (39) in the equation above we get:

EV dd = (V f )T
[∫ L

0

A(x) dx+ Cd + Cr

]
(V f − V i)

Equations (9) and (10) imply that A = ∫ L

0
A(x) dx+ Cd + Cr, therefore it is:

EV dd = (V f )T A (V f − V i)

8. Appendix B

Here we sketch the proof of Theorem 1. For simplicity we assume that the energy
function E is symmetric, this it is true for expression (11). Observe that given a
stationary processes L, with transition probability matrix P = [pi,j ]

2n−1
i,j=0, we can

define a stationary Markov process LM that has transition probability matrix and
stationary probability vector q equal to those of L. It can be verified directly that
qP = q, that processes LM and L have the same expected energy, and that LM has
entropy rate greater or equal to that of L. Therefore the minimum in expression
(32) is achieved within the subset of Markov processes.
A Markov process can be defined by either the pair (P, q) or the joint probability

matrix Π = [πi,j ]
2n−1
i,j=0, with πi,j = qi pi,j . Moreover, we can express the entropy
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rate as:

H(Π) = −
∑
i,j

πi,j log2(
πi,j∑
k πi,k

) (40)

It is of course: H(Π) = H(LM ). When transmitting process LM , the expected
energy (per cycle), as a function of Π, is:

E(Π) =
∑
i,j

πi,j E(i, j) (41)

With the above setup the minimization problem (32) is written as:

E∗
b (α) =

1
an

· min
Π : H(Π)=αn

E(Π) (42)

Since Π is a joint probability matrix of a stationary process, it must satisfy the
following constrains:

πi,j ≥ 0 ,
∑
i,j

πi,j = 1 ,
∑
j

πi,j =
∑
k

πk,i (43)

Ignoring the factor 1/(αn) and the change of logarithmic basis the Lagrangian of
the problem is:

L(Π, v, λ, µ) = v

(∑
i,j

πi,j − 1

)
+
∑
i,j

λi (πi,j − πj,i) −

− θ

(∑
i,j

πi,j ln

(
πi,j∑
k

πi,k

)
− αn

)
+
∑
i,j

πi,j E(i, j) (44)

and the partial derivative of the Lagrangian with respect to the variable πi,j is :

∂L
∂πi,j

= v + λi − λj − θ ln
(

πi,j∑
k πi,k

)
+ E(i, j) (45)

We want to solve the system of equations ∂L
∂πi,j

= 0 and to find the stationary points.
First note that θ = 0 implies: E(i, j) = −v − λi + λj which has been excluded (see
footnote of theorem 1) and it is incompatible with the expression (11). Suppose
now that θ �= 0. Equations ∂L

∂πi,j
= 0, i, j = 0, 1, . . . , 2n − 1 imply:

πi,j∑
k πi,k

= e
v+λi−λj+E(i,j)

µ (46)

Parameters v, λi and µ are real, so applying the transformation : f = ev/µ, gi =
e−λi/µ and γ = −1/µ, we have f > 0 and gi > 0 for every i. Moreover, expression
(46) becomes:

πi,j∑
k πi,k

= f
gj
gi
e−γE(i,j) (47)
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Summing both sides of (47) over j we get gi = f
∑

j e
−γE(i,j)gj which written in

matrix form gives: g = fWg with g = (g0, g1, . . . , g2n−1)T and W = [e−γE(i,j)]i,j .
The matrix fW is always positive and therefore g must be its unique (up to a
factor) positive eigenvector 32. Furthermore, f must be the inverse of the maximal
eigenvalue µ of W . The symmetry of the energy cost function E gives: g′ = f g′W
or more explicitly :

gj = f
∑
i

gie
−γE(i,j) (48)

We define the probability vector q = (g2
0 , g

2
1 , . . . , g

2
2n−1)/‖g‖2 and matrix P =

[pi,j ]
2n−1
i,j=0 with pi,j =

πi,j∑
k
πi,k
. It can be verified that P is a stochastic matrix

and that:

∑
i

qipi,j =
∑
i

g2
i

‖g‖2 f
gj
gi
e−γE(i,j)

=
gj

‖g‖2 f
∑
i

gie
−γE(i,j)

=
g2
j

‖g‖2 = qj

So q is a left eigenvector of P . Finally, it is easy to show that πi,j = qipi,j , i.e.:

πi,j =
gi gj

‖g‖2 fe−γE(i,j) (49)

Also note that πi,j = πj,i. From (40), (47) and (49) we have:

ln(2) · H(Π) = −
∑
i,j

πi,j ln(
πi,j∑
k πi,k

)

= −
∑
i,j

πi,j ln(
1
µ
· gj
gi
e−γE(i,j))

= −
∑
i,j

πi,j {− ln(µ) + ln(gj)− ln(gi)− γE(i, j)}

=
∑
i,j

πi,j {ln(µ) + γE(i, j)}

= ln(µ) + γ
∑
i,j

πi,j E(i, j)

= ln(µ) +
γ

µ

∑
i,j

gi gj

‖g‖2 e−γE(i,j) E(i, j)

= ln(µ)− γ

µ
· ∂µ
∂γ

(50)
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where in the last step we used a result from perturbation theory 32. Manipulating
(50) we get expression (34). Similarly, starting from (41) we have:

E(Π) =
∑
i,j

πi,j E(i, j)

=
1
µ

∑
i,j

gi gj

‖g‖2 e−γE(i,j) E(i, j)

= − 1
µ
· dµ
dγ

= − ∂

∂γ
ln (µ(γ))) (51)

The minimal expected energy per information bit is E/(αn) which after some ma-
nipulation gives expression (33).
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