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A B S T R A C T

An Integrated Analog Gaussian Mixture Model classifier architecture is introduced consisting of multiple
Gaussian function circuits and a Winner-Take-All circuit. It is modular and scalable to the number of classes and
clusters, and, to the input dimensionality. The operating principles of the classifier are illustrated in detail and
are used in a low-power, low-voltage and fully-tunable implementation targeting bearing fault management
applications. The implementation was done in a 90 nm CMOS process using the Cadence IC Suite for the
electrical and physical design. Post-layout simulation results were compared with a software implementation
of the classifier confirming the proper operation of the design.
1. Introduction

In these days, the unprecedented availability of data and the
progress in computing hardware have resulted in significant advance-
ments in the fields of Machine Learning (ML) and Deep Learning (DL).
[1] By leveraging large sets of open-access data, ML techniques provide
automated decision-making, targeting a vast range of applications such
as medical prognosis [2], financial predictions [3], industrial fault
management [1], etc. The deployment of ML techniques in production
involves data gathering and a computationally demanding process
of algorithmic inference. In most cases, this process takes place in
expensive hardware systems, such as data-centers.

Many of the ML application described above require real-time com-
putation, which raises the need for impractical data transferring be-
tween the data acquisition systems and the data-centers. The solution
to this problem is edge computing, with acquisition and computation
systems integrated in the same device, eliminating the communication
overhead [4]. This leads to a new domain of the smart industry, where
Internet of Things (IoT) applications can benefit from the use of ML
models [5]. An important aspect of the IoT systems is power consump-
tion [6]; devices must perform high computation tasks autonomously
by relying on batteries. This in turn results in the need for unprece-
dented low power dissipation and low area utilization. Therefore, in
the last decades, there is a new trend in which low area and low power
hardware accelerators are used for IoT and ML applications, directly
connected to smart sensors or systems [7].
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The research topic of hardware accelerators, involves the design
of digital and/or analog circuits to perform ML operations in hard-
ware. In the case of digital circuitry, Field-Programmable Gate Arrays
(FPGAs) [8], GPUs [9] and digital ASICs [10] are the main building
blocks for hardware accelerators, providing better computation speeds
compared to conventional computers. FPGAs and digital ASICs, in
particular, provide lower power consumption and more compact chip
areas in comparison with GPUs. This reduction in power consumption
is achieved without affecting the required accuracy. Though digital
accelerators have gained popularity, mainly due to their ease of im-
plementation, analog ones provide a promising alternative [11–13]. By
leveraging the low-power properties of analog circuits, fueled by their
capability to operate in sub-threshold [14], analog integrated classifiers
could prove beneficial in comparison to their digital counterparts.
Such classifiers can be used in a conceptual fully analog system level
architecture for on sensor classification, as depicted in Fig. 1.

Motivated by recent works highlighting the modeling capabilities
of the Gaussian Mixture Models (GMMs) [1] we propose a new analog
integrated GMM-based classifier. The proposed architecture is fully
electronically tunable, which allows for the realization of classifiers
that can handle different classification problems. The overall design
utilizes two analog building blocks, namely a Gaussian function circuit
(Bump circuit) [15] and a Winner-Take-all (WTA) circuit [16]. The
proposed architecture is used to design one classifier targeting damage
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Fig. 1. Fully analog integrated implementation of a classification system.
assessment in motor bearings using two different open-source datasets.
Post-layout simulation results, conducted in a TSMC 90 nm CMOS
process and simulated using Cadence IC Suite, confirm the accuracy
of the example implementation by comparing it with a software-based
one.

The remainder of this article is organized as follows. The necessary
background regarding the GMM is discussed in Section 2. Section 3
analyses the high level architecture of the proposed classifier as well
as the transistor level implementations of the basic building blocks.
Section 4 presents the training and tuning capabilities of the proposed
architecture. The accuracy of the presented classifier is evaluated using
two real-life datasets and one toy dataset in Section 5. Since there
are not any analog integrated GMM implementations in the literature,
works with similar scope are summarized and discussed in Section 6.
Finally, Section 7 concludes the article.

2. Gaussian mixture model

Mixture Models (MM) are probabilistic models that can easily and
efficiently describe complex data, making them suitable for applications
in various areas of science and engineering [17]. In practice, MM-
based classifiers can outperform complex models like Support Vector
Machines (SVMs) and Neural Networks (NNs), that typically require
excessive computational resources for training and prediction [1]. The
most widespread MM is the GMM which is based on the Normal
distribution and benefits from its properties [17]. GMMs constitute a
highly researched topic in the literature and therefore, we consider that
their implementation in analog hardware has merit.

A GMM represents the density of an 𝑁-dimensional random variable
as a weighted sum of 𝐾 Gaussian densities, thereby offering more
expressiveness than a single Gaussian (Normal distribution) [17,18].
A GMM 𝜆𝑐 is uniquely defined by the number of components 𝐾, the
weight factors [𝑤𝑐

𝑖 ]
𝐾
𝑖=1, the mean value vectors [𝐌𝑐

𝑖 ]
𝐾
𝑖=1, 𝐌𝑐

𝑖 ∈ R𝑁

and the covariance matrices [𝜮𝑐
𝑖 ]
𝐾
𝑖=1, 𝜮𝑐

𝑖 ∈ R𝑁×𝑁 of each Gaussian
component. Let us consider an 𝑁-dimensional input vector 𝐗 ∈ R𝑁 .
The probability density function (PDF) of 𝐗, as approximated by 𝜆𝑐 , is
given by [18]:

𝑝(𝐗|𝜆𝑐 ) =
𝐾
∑

𝑖=1
𝑤𝑐

𝑖 ⋅ (𝐗|𝐌𝑐
𝑖 ,𝜮

𝑐
𝑖 ). (1)

Here it holds that ∑𝐾
𝑖=1 𝑤

𝑐
𝑖 = 1 and 0 ≤ 𝑤𝑐

𝑖 ≤ 1 for 𝑖 = 1, 2,… , 𝐾. The
𝑖th 𝑁-D Gaussian component of the 𝜆𝑐 is denoted by  (𝐗|𝐌𝑐

𝑖 ,𝜮
𝑐
𝑖 ) and

its value is given by
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where |.| denotes the Euclidean norm. For a diagonal matrix 𝜮𝑐
𝑖 , the

above expression is simplified to

 (𝐗|𝐌𝑐
𝑖 ,𝜮

𝑐
𝑖 ) =

𝑁
∏

𝑛=1
 (𝑥𝑛|𝜇𝑐
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𝑐
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2), (3)

where 𝑥𝑛, 𝜇𝑐
𝑛 and (𝜎𝑐𝑛)

2 are scalars taken as the 𝑛th entry of vectors 𝐗,
𝐌𝑐

𝑖 and the (𝑛, 𝑛)-th entry of the matrix 𝜮𝑐
𝑖 , respectively. The univariate

Gaussian distribution for scalar inputs 𝑥𝑛 is:

 (𝑥𝑛|𝜇𝑐
𝑛, (𝜎

𝑐
𝑛)

2) = 1
√

(2𝜋) ⋅ (𝜎𝑐𝑛)2
𝑒
− 1

2 ⋅
(𝑥𝑛−𝜇𝑐𝑛 )

2

(𝜎𝑐𝑛 )2 . (4)

When GMMs are used in an unsupervised manner, each component
captures a specific cluster of the examined dataset. This makes them
suitable for clustering problems. In classification problems, such as the
ones targeted by the proposed architecture, multiple GMMs are used.
In this case, for each class, a single GMM is used for data clustering
irrespectively to the other classes. The number of components (clusters)
is chosen based on the complexity of the dataset’s distribution. For an
input vector 𝐗 and 𝐶 classes, the posterior probabilities 𝑝(𝜆𝑐 |𝐗) are
computed for each GMM [𝜆𝑐 ]𝐶𝑐=1 using the Bayes theorem:

𝑝(𝜆𝑐 |𝐗) =
𝑝(𝜆𝑐 )𝑝(𝐗|𝜆𝑐 )

𝑝(𝐗)
. (5)

Here, 𝑝(𝜆𝑐 ) is the prior and 𝑝(𝐗) is the evidence probability. When
comparing the posterior probabilities of two classes, the evidence is
ignored, since it is independent of the chosen class and serves only as a
normalization constant. Therefore the overall classifier determines the
winning class via

𝑦 = argmax
𝑐∈[1,𝐶]

{𝑝(𝜆𝑐 )𝑝(𝐗|𝜆𝑐 )}. (6)

3. Proposed classifier’s architecture

In this Section, the high level architecture of the proposed GMM-
based classifier is discussed. To elucidate the reasoning behind this
architecture, we assume a classification problem including 𝑁𝑐𝑙𝑎 classes
and 𝑁𝑑 inputs. The number of clusters, 𝑁𝑐𝑙𝑢, is a hyperparameter of
the overall classifier and it is chosen by exploratory data analysis of
the specific application. This assumption highlights the generality of
the proposed architecture, since it can be implemented accounting for
various input dimensions, classes or clusters.

The structure of the proposed analog GMM-based classifier is shown
in Fig. 2. Based on the classification problem formulation described pre-
viously, the classifier requires a single 𝑁𝑐𝑙𝑎-input WTA block and 𝑁𝑐𝑙𝑎
GMM cells, each one composed of 𝑁𝑐𝑙𝑢 cluster cells. The cluster cells
are in fact multidimensional Gaussian function circuits with 𝑁𝑑 inputs.
Each cell derives the probability of an input vector 𝐗 = [𝑥1,… , 𝑥𝑁𝑑

]
belonging to a specific cluster, calculated using the Gaussian PDF of
the cluster, according to (3).
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Fig. 2. Analog GMM-based classifier with 𝑁𝑐𝑙𝑎 GMM cells (classes), 𝑁𝑐𝑙𝑢 cluster cells (clusters) per class and 𝑁𝑑 -D inputs. The WTA circuit determines the output of the classifier
via the currents [𝐼𝑖]

𝑁𝑐𝑙𝑎
𝑖=1 .
Based on (1), the probability of 𝐗 belonging to a specific class is
the sum of the probabilities of the clusters composing the class. This
summation is performed within a GMM cell using current mirrors in
order to reduce possible distortions. The WTA block implements the
argmax operator and based on (6) compares the class probabilities to
indicate the largest one (winning class). Additionally, by utilizing a
typical WTA circuit, the winning class is indicated via a digital one-hot-
vector [𝐼1,… , 𝐼𝑁𝑐𝑙𝑎

] (the currents [𝐼𝑖]
𝑁𝑐𝑙𝑎
𝑖=1 are in a binary format) [16].

Therefore, the entire classifier’s output is digital.
The utilized building blocks impose a number of constraints on the

maximum number of classes, clusters and input dimensions. Specifi-
cally, the number of classes is bounded by the WTA circuit’s ability to
accurately compare a large number of inputs. Similarly, by increasing
the number of individual currents summed on a node, unwanted dis-
tortion is also increased. Therefore, the maximum number of clusters
is limited by the quality of this summation. The number of input di-
mensions depends on the realized multidimensional Gaussian function
circuit. There are multiple circuits that produce Gaussian PDFs, but in
the literature they are restricted to low dimensional inputs, usually less
than 5 [15].
3

3.1. Basic building blocks

In this subsection, the building blocks that will be used to validate
the proposed classifier are thoroughly explained. Specifically, two basic
analog blocks are required; a circuit generating a Gaussian PDF and
a circuit for the argmax operator. Regarding the first, a typical Bump
circuit [19] produces a univariate Gaussian curve and can be easily ex-
panded for multivariate ones [20]. For the argmax, the standard Lazzaro
WTA circuit [16] is used. Although these circuits provide the necessary
functionalities needed for the classifier, a number of modifications
were made to further increase the classifier’s accuracy. Additionally,
to minimize the system’s power consumption all transistors operate in
the sub-threshold region and the power supply rails are set to 𝑉𝐷𝐷 =
−𝑉𝑆𝑆 = 0.3 V for the entire classifier.

3.1.1. Modified bump circuit
Typical Bump circuits [19] output a univariate Gaussian function

curve. In this work, to increase the quality of the Gaussian curve
and enhance robustness, a modified Bump circuit, shown in Fig. 3,
is utilized instead. In particular, instead of the non-symmetric current
correlator used in [19], a symmetric one (transistors 𝑀 − 𝑀 of
𝑝1 𝑝6
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Fig. 3. Modified Gaussian Function circuit. The voltage 𝑉𝑖𝑛 corresponds to the system’s
input. The parameter voltages 𝑉𝑟, 𝑉𝑐 and the bias current 𝐼𝑏𝑖𝑎𝑠 control the mean value,
the variance and the height of the Gaussian function.

Table 1
MOS Transistors’ Dimensions (Fig. 3).

Block W/L (μm∕μm) Current Correlator W/L (μm∕μm)

𝑀𝑛1, 𝑀𝑛4 1.6∕0.4 𝑀𝑝1, 𝑀𝑝2 1.6∕1.6
𝑀𝑛2, 𝑀𝑛3 0.8∕0.4 𝑀𝑝3 −𝑀𝑝6 0.4∕1.6
𝑀𝑛5 −𝑀𝑛8 0.4∕1.6 – –
𝑀𝑛9, 𝑀𝑛10 1.6∕1.6 – –

Fig. 3) is preferred. The motivation for this modification stems from
the need for symmetric Gaussian curves, when comparing two PDFs in
the case of GMMs. In practice, using a symmetric current correlator, the
symmetry for inputs around the mean value is preserved even for small
currents, as shown in Fig. 4. The cascode current mirror composing
of transistors 𝑀𝑛5 − 𝑀𝑛10 (Fig. 3) is used to enhance mirroring even
for small bias currents. All transistors’ dimensions are summarized in
Table 1.

A multivariate Gaussian function curve, and hence a multivariate
PDF, is produced based on (3). In practice, the connection of two or
more Bump circuits in a cascaded format is equivalent to their multi-
plication [20]. For each Bump circuit the mean value and the variance
are controlled by its voltage parameters 𝑉𝑟 and 𝑉𝑐 , respectively [19]. In
this topology, the first Bump circuit has a bias current 𝐼𝑏𝑖𝑎𝑠, setting the
height of the Gaussian PDF, while the rest are biased with the output
current of the previous Bump cell. An illustration of the Bump cascade,
implementing a multivariate PDF, is shown in 5. It is worth mentioning
that in a typical Gaussian function, the height is set by the variance
through the normalization term 𝛼:

𝛼 = 1
√

(2𝜋)𝑁𝑑
|𝜮|

. (7)

In our case, the Gaussian curve’s height is set directly by the bias
current 𝐼𝑏𝑖𝑎𝑠.

3.1.2. Modified winner-take-all circuit
The following block to be discussed is the WTA circuit. In order to

properly explain the utilized modified WTA circuit, the typical Lazzaro
4

WTA circuit is briefly discussed. In a 𝑁𝑐𝑙𝑎 classification problem, this
circuit is composed of 𝑁𝑐𝑙𝑎 neurons with a common bias current, shown
in Fig. 6. Each neuron is responsible for the input and output of a single
class. In particular, the output current of the neuron with the largest
input current has a non-zero value, while the rest are zero. In the case
where more than one input currents have similar values, this circuit
operates in the linear region and more than one winners may occur.
This is not desirable in most classification applications.

To address this issue, a modified WTA circuit is shown in Fig. 7.
In particular, 3 WTA circuits are connected in a cascaded format,
similarly to [21]. By alternating the NMOS and PMOS designs, there is
no need for connecting circuitry between two consecutive WTA circuits.
To highlight the benefits of this modification, Fig. 8 demonstrates
the decision boundaries of a Lazzaro WTA circuit and the proposed
Cascaded WTA circuit for the same 1-D dummy problem. The Cascaded
WTA circuit provides much steeper linear region, in comparison with
the Lazzaro WTA circuit. All transistors’ dimensions for the NMOS
neuron (in Fig. 6) are set to 𝑊

𝐿 = 0.4 μm
1.6 μm .

4. Training and tuning capabilities

The modified Bump circuit (Section 3.1) has electronically tunable
parameters. This, in turn, allows for tuning the entire classifier elec-
tronically, even after the final design of the circuit. Therefore, one can
apply the same analog classifier’s topology to different problems, by
using an offline training procedure to determine the parameters tailored
to each problem and providing the appropriate electronic references to
the circuit.

4.1. Offline training

To provide with the circuit’s necessary parameters, a software im-
plementation is required. The datasets are available in digital format
and their features are pre-processed to account for the circuit’s op-
erational range (in this work, [−100, 200]mV). Then, a software-based
classifier with the same number of classes, clusters and input dimen-
sions as the one developed in hardware is trained on these datasets.
Through this classifier, the mean values, the variances and the weights
of each cluster are processed to derive the voltage parameters 𝑉𝑟, 𝑉𝑐 and
the bias currents 𝐼𝑏𝑖𝑎𝑠 of the hardware implementation. This procedure
is performed only once and the resulting parameters are exported and
saved in an analog memory [22].

For each cluster cell, parameter voltages [𝑉𝑟𝑖]
𝑁𝑑
𝑖=1, where 𝑁𝑑 is the

number of the input dimensions, correspond to the entries of the
modeled Gaussian PDF’s mean vector. These values can be written
directly to an analog memory. On the other hand, the parameter volt-
ages [𝑉𝑐𝑖]

𝑁𝑑
𝑖=1 control the variance of each cluster through a non-linear,

monotonically increasing, bounded function. To derive this function a
single Bump circuit was simulated using different values over 𝑉𝑐 and
the resulting Gaussian curves were used to fit a polynomial model that
maps the acquired variances to the excitation voltages 𝑉𝑐 . Each cluster
cell is biased with a current 𝐼𝑏𝑖𝑎𝑠, which is the product of three separate
parameters; the 𝑝𝑟𝑖𝑜𝑟 probability of each class, the weights of each
cluster and the normalization term 𝛼 in Eq. (7). It is worth noting
that the bias currents are normalized in the [14, 18] nA range, which
ensures the proper operation of the circuit while maintaining a low
power consumption.

4.2. Architecture tunability

The proposed classifier is capable of post-layout tuning in the
number of dimensions, clusters and classes, which effectively alters the
way the architecture’s building blocks operate. It is underlined that this
is an additional capability of the proposed classifier and it should not
be confused with the Gaussian curve’s tunability described previously.
A particular case where this capability proves helpful is the following:
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Fig. 4. Comparison between the output current of the existing Bump circuit and the modified one. The circuit’s parameters are 𝑉𝑟 = 0 V, 𝑉𝑐 = 0 V and (left) 𝐼𝑏𝑖𝑎𝑠 = 1 nA (right)
𝐼𝑏𝑖𝑎𝑠 = 16 nA.

Fig. 5. A 𝑁𝑑 -D Bump circuit implementation built by connecting 𝑁𝑑 Bump circuits in a cascaded format. Each Bump circuit has its own voltage inputs and parameters 𝑉𝑖𝑛, 𝑉𝑟
and 𝑉𝑐 .

Fig. 6. Standard Lazzaro NMOS WTA with 𝑁𝑐𝑙𝑎 neurons. The complementary PMOS WTA can be built accordingly.

Fig. 7. The proposed Cascaded WTA circuit built by alternating the simple NMOS and PMOS WTA designs.
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Fig. 8. Comparison between the Lazzaro WTA and the Cascaded WTA. The input
current 𝐼𝑖𝑛1 is constant and equal to 5 nA, while the input current 𝐼𝑖𝑛2 = 𝐼𝑖𝑛 ranges
linearly between 4 nA and 6 nA.

by designing a relatively large system (𝑁𝑐𝑙𝑎 classes, 𝑁𝑐𝑙𝑢 clusters, 𝑁𝑑
sequentially connected bump circuits), any classification problem of
𝑚 ≤ 𝑁𝑐𝑙𝑎 classes, 𝑘 ≤ 𝑁𝑐𝑙𝑢 clusters and 𝑛 ≤ 𝑁𝑑 dimensional inputs
can be addressed by the same classifier’s topology.

The selection of the input dimensionality is controlled via the volt-
age parameters 𝑉𝑟 and 𝑉𝑐 , as well as the input voltage 𝑉𝑖𝑛. Specifically,
for the first (𝑁𝑑 − 𝑛) out of the 𝑁𝑑 sequentially connected Bumps,
which form a cluster, all three voltages 𝑉𝑟, 𝑉𝑐 , 𝑉𝑖𝑛 should be set to the
highest possible voltage value. By doing so these Bump circuits simply
operate as current buffers for the bias current. Therefore, the system’s
𝑛-D input is directed to the rest of the 𝑛 Bump circuits. An important
factor that needs to be considered is that this reduction in the number
of dimensions does not reduce the total power consumption.

The class and cluster tunability is achieved mainly through the bias
current 𝐼𝑏𝑖𝑎𝑠. In particular, by setting the bias current of a cluster cell
to zero, it remains inactive since its output current is typically much
less than 1 nA. However, in the case of multivariate Bump circuits, the
aforementioned deviation is drastically increased when passing through
the chain of the univariate Bump circuits composing the multivariate
one. To tackle this issue voltages 𝑉𝑖𝑛 and 𝑉𝑟 must be set to values that
are far away from each other (for example to set 𝑉𝑟 to the low supply
voltage and 𝑉𝑖𝑛 to the high supply voltage). Consequently, a class is
inactive when all its clusters are inactive. Unlike the reduction in the
input dimension, reducing the number of clusters and/or classes greatly
reduces the total power consumption.

Due to the architecture’s ability to deactivate clusters there are
two additional design capabilities that need to be considered. First,
the architecture can be set in an idle state which greatly reduces the
total power consumption. This is achieved either by deactivating all
of its cluster cells or, less preferably, by setting the input voltages 𝑉𝑖𝑛
to the lowest possible voltage. Second, one can design a system in
which cluster cells, which are implemented by different Bump circuits
and produce different Gaussian curves, are activated or deactivated
based on the application. This alleviates the limitations of the Gaussian
curve’s tunability range and effectively allows for designing multiple
classifiers using the same circuit.

5. Application examples and simulation results

In this Section, to demonstrate the proposed architecture’s proper
operation, the classifier is tested on a custom toy and two real-life
bearing fault management datasets, also used in [1]. The toy dataset
has 𝑁𝑐𝑙𝑎 = 2 classes and 𝑁𝑑 = 2-D input data, while the other two
datasets have 𝑁𝑐𝑙𝑎 = 4 and 𝑁𝑐𝑙𝑎 = 3 classes and 𝑁𝑑 = 13-D input
data. The number of clusters for the GMM-based classifier targeting
the Toy dataset is set to 𝑁 = 2, whereas for the other two datasets
6

𝑐𝑙𝑢
Table 2
Dataset properties.

No. of classes No. of clusters No. of dimensions No. of instances

2-D Toy 2 2 2 10000
CWRU 4 4 13 580
VSBD 3 3 13 354

Table 3
Decision Boundaries’ Accuracy.
Design Accuracy

Proposed 0.932
Baseline 0.873

it is 𝑁𝑐𝑙𝑢 = 4 and 𝑁𝑐𝑙𝑢 = 3. For demonstration, the above dataset-
related information are also provided in Table 2. By employing the
techniques explained in Section 4.2, a system layout with 4 classes,
4 clusters per class and 16 sequentially connected Bump circuits can
address all three previously mentioned datasets. Therefore, a single
system layout, shown in Fig. 9, is designed and tuned to account for dif-
ferent classes, clusters and dimensionalities. The implementation of the
layout is based on the common-centroid technique and extra dummy
transistors are used in order to avoid mismatches and manufacturing
considerations [23].

To highlight the benefits of the proposed architecture, we consider
a baseline GMM-based classifier, for comparison. The baseline archi-
tecture employs the typical Bump [19] and WTA [16] circuits, instead
of the modified ones proposed in Section 3.1, which are utilized in the
proposed one. We also compare both the proposed and the baseline
classifiers with a software-based one. The proposed classifier was tested
using post-layout simulation, whereas the baseline one using schematic
simulations. All of the circuits and layouts discussed are developed in
the Cadence IC design suite using a TSMC 90 nm CMOS process. For
the software-based training and parameter extraction Python’s Sklearn
package [24] is utilized. The experiments were executed on a Linux
workstation with 8 cores.

5.1. 2-D Toy dataset

The first classification problem considers a 2-D toy dataset. The
decision boundaries of this simple problem can be illustrated in 2-D,
therefore allowing for visual comparison between the results of the
considered circuits. To construct this toy dataset, we consider four
2-D Gaussian distributions with means and variances equal to 𝜇1 =
[−0.05, 0.06], 𝜎1 = [0.02, 0.04], 𝜇2 = [0.15, 0.04], 𝜎2 = [0.03, 0.08], 𝜇3 =
[0.04, 0.17], 𝜎3 = [0.05, 0.03], 𝜇4 = [0.04,−0.05], 𝜎4 = [0.07, 0.02], where
the covariance matrices are diagonal. The decision-space is [−0.1, 0.2]2

and the regions where class A is the desired outcome are those where
the sum of the likelihoods of the first and second previously mentioned
distributions exceeds the sum of the likelihoods of the other two. The
rest of the region are associated with class B. Fig. 10 (left) depicts the
Ground Truth decision boundary of this problem.

By using a set of uniformly distributed points of the decision-space
as inputs of the proposed classifier, its predictions were computed
and saved. The same procedure holds for the baseline architecture.
The resulting decision boundaries for the proposed and the baseline
architectures are shown in Fig. 10 (middle) and (right), respectively.
Since the decision boundaries represent the system’s prediction for any
given input, it is reasonable to assume that a decision boundary which
resembles the Ground Truth one has a good accuracy. In this case, the
proposed architecture has more limited white (ambiguous) regions and
resembles the Ground Truth more accurately, compared to the baseline
one. This is verified in Table 3, where the accuracies of the proposed

and the baseline designs are presented.
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Fig. 9. Layout of a proposed GMM architecture (Proposed I) based on the design methodology (extra dummy transistors are used).
Fig. 10. 2-D decision boundaries: (left) Ground Truth (middle) the results of the proposed classifier (right) the results of the baseline classifier. The colors indicate the normalized
output currents of the WTA circuit. In the white regions the value of the output current corresponding to class A is close to the value of the output current corresponding to class
B. This results to low quality digital output signals for these regions. The proposed architecture has less white regions then the baseline one.
5.2. Case western reverse university dataset

The Case Western Reverse University (CWRU) dataset [25] is a
bearing fault management dataset that contains accelerometer data of
motors that are either operating correctly or are damaged on the inner
raceway, the rolling element or the outer raceway of the bearing. The
data also contain information regarding the load of the motors. In this
work, we use this dataset to classify motors into four different operat-
ing conditions, namely operating correctly, faulty with inner raceway
defect, faulty with outer raceway defect and faulty with rolling element
defect. This classification takes place irrespectively of the motor’s load
conditions.

In each class, only the drive-end accelerometer data are used. These
include 20-seconds time series entries, each sampled at 12 ⋅ 103 samples
per second, which are split into 20 segments of equal duration (1 second
each). Each segment is processed to produce the 13 features shown in
Table 4. This results in 580 13-D input data forming the training and
testing sets by using a 70%− 30% train-test split. Both training and test
sets are balanced, since the four classes have 98, 112, 112, 84 training
and 42, 48, 48, 36 test vectors respectively.

To highlight the gains of the proposed GMM-based classifier, two
separate tests are conducted. The first one, compares, in terms of
classification accuracy, the proposed, the baseline and the software-
based implementation. To account for random effects induced by the
training algorithm, 20 separate software-based training iterations are
conducted to extract the necessary parameters of the GMM. In each
iteration, all three implementations use the same parameters to ensure
a fair comparison. The second test evaluates the proposed architecture’s
7

Table 4
Extracted features [1].

Statistic Equation Statistic Equation

Root mean
square

RMS =
√

1
𝑁

∑𝑁
𝑖=1 𝑥

2
𝑖

Crest factor CF = max(𝑥𝑖 )
RMS

Square root of
amplitude

SRA =
(

1
𝑁

∑𝑁
𝑖=1

√

|𝑥𝑖|
)2

Impulse factor IF = 𝑁 ⋅max(𝑥𝑖 )
∑𝑁

𝑖=1 |𝑥𝑖 |

Kurtosis value KV =
1
𝑁

∑𝑁
𝑖=1

(

𝑥𝑖−𝜇𝑥

𝜎𝑥

)4
Margin factor MF = max(𝑥𝑖 )

SRA

Skewness value SV =
1
𝑁

∑𝑁
𝑖=1

(

𝑥𝑖−𝜇𝑥

𝜎𝑥

)3
Frequency center FC = 1

𝑁

∑𝑁
𝑖=1 𝑓𝑖

Peak-to-peak
value

PPV =
max(𝑥𝑖) − min(𝑥𝑖)

Root-mean-
square
frequency

RMSF =
√

1
𝑁

∑𝑁
𝑖=1 𝑓

2
𝑖

Shape factor SF = max(𝑥𝑖 )
SV

Root variance
frequency

RVF =
√

1
𝑁

∑𝑁
𝑖=1(𝑓𝑖 − 𝐹𝐶)2

Kurtosis factor KF = 𝐾𝑉
RMS4

– –

sensitivity behavior using the Monte-Carlo analysis tool for 𝑁 = 100
points. In this case, the GMM parameters are chosen to be one of the
20 candidates of the previous test.

The results in terms of classification accuracy are given in Table 5
for all three discussed implementations. It is observed that the proposed
classifier circuit outperforms the baseline one and its accuracy is very
close to the software-based implementation. In particular, the results of
the proposed architecture have 8% increased mean accuracy and have
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Fig. 11. Classification results, on the CWRU dataset for 20 iterations, of the (left) software implementation (middle) proposed (right) Baseline.
Fig. 12. Post-layout Monte-Carlo simulation results of the proposed architecture on
the CWRU dataset (for one of the previous 20 iterations).

Table 5
Accuracy Results on the CWRU dataset (over 20 iterations).

Method Best (%) Worst (%) Mean (%) Std. (%)

Software 98.28 93.10 96.32 1.12
Proposed 96.55 90.23 93.08 1.64
Baseline 90.23 78.16 85.12 3.40

much less standard deviation (Std.) compared to the baseline GMM-
based classifier. A more detailed comparison can be done by examining
the classification accuracy histograms of Fig. 11. The Monte-Carlo
analysis histogram for the proposed circuit’s classification accuracy is
shown in Fig. 12. The mean value is 𝜇𝑀 = 93.3%, and the standard
deviation is 𝜎𝑀 = 0.5%. This confirms the correct performance and
accuracy of the proposed methodology.

5.3. Bearing vibration data under time-varying rotational speed conditions
dataset

The second bearing fault management dataset considered is the
Bearing Vibration Data under Time-varying Rotational Speed Condi-
tions (VSBD [26]) dataset from the Mendeley Data [27]. It contains
vibration signals from bearings that are either operating correctly or are
damaged on the inner or the outer raceway. It is used to classify motors
into three conditions; operating correctly, faulty with inner raceway
defect and faulty with outer raceway defect.

The feature extraction and the testing process is similar to the
CWRU dataset. In this case, the time series entries are 10-seconds long
and sampled at 200 ⋅103 samples per second. Both training and test sets
are also balanced, since all three classes have 82 training and 36 test
vectors. The two tests that were used evaluate the analog classifier for
the CWRU dataset, are also used here.
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Table 6
Accuracy Results on the VSBD dataset (over 20 iterations).

Method Best (%) Worst (%) Mean (%) Std. (%)

Software 95.37 87.96 92.41 1.98
Proposed 92.59 80.56 87.04 3.07
Baseline 90.74 78.70 85.19 2.85

The results in terms of classification accuracy are given in Table 6
for the proposed, the baseline and the software-based GMM implemen-
tations. In this problem, the proposed classifier is consistently better
than the baseline, having 2% better mean accuracy. Its performance
is very close to the software base implementation. The classification
accuracy histograms in this case are given in Fig. 13. It is seen that
most of the baseline accuracies are below 87% whereas a significant
portion of the proposed one’s accuracies lie above 89%. Fig. 14 depicts
the Monte-Carlo analysis results in terms of classification accuracy for
the proposed circuit. The average accuracy is 𝜇𝑀 = 88.1%, and the
standard deviation is 𝜎𝑀 = 1.3%. Both conducted tests confirm the
correct operation of the proposed circuit and its superiority over the
baseline one.

6. Discussion

A categorization of analog integrated, mixed-mode ML architectures
and the proposed GMM-based classifier is provided in this Section
and summarized in Table 7. It is worth noting that the aim of this
work is not a comparison between hardware ML implementations, since
there are numerous aspects that need to be considered combinatorially,
such as the application, power and area specifications, operation speed
and so forth. Concerning the proposed architecture, the characteristics
listed in Table 7 are extracted from the designed layout, which was
tested on the CWRU dataset. In this case more classes and clusters are
active and therefore the overall power consumption is higher compared
to the other test cases examined in Section 5. Despite that, the proposed
classifier’s energy per classification is still the lowest in Table 7.

The majority of analog and mixed-mode classifier implementations
are based on SVM or RBF models, as shown in Table 7. Crucial design
parameters such as the number of dimensions or the processing speed
are imposed by the application, with the processing speed of most
implementations presented in Table 7 to far exceed the application’s re-
quired processing speed. The applications considered in the literature,
include object recognition [28,34,35], image classification [29,38],
scene classification [33] and biometric signature verification [37]. In
addition, there are cases where only toy datasets are used [30–32].
By examining Table 7, it is evident that mixed-mode implementations
have higher power consumption compared to analog ones, but can
easily implement more complex systems (for example higher number
of dimensions). With the exception of [38], this work and other analog
implementations usually utilize inputs with less than 16 dimensions.

The aim of this work is to introduce an architecture capable of
creating both complex and adaptable or simple and efficient classifiers.
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Table 7
Analog ML Algorithm summary.

Technology Architecture Classifier No. of
dimensions

Power
Consumption

Processing speed Energy per
classification

Area

This work 90 nm Analog GMM *16 12.0 μW 125𝐾 classif ications
s

96 pJ
classif ication

0.451 mm2

[28] 0.5 μm Mixed-mode SVM N/A 5.9 mW 12.8𝑀 samples
s

460 pJ
sample

9.000 mm2

[29] 0.18 μm Mixed-mode SVM 64 N/A 1𝑀 vectors
s

N/A 0.125 mm2

[30] 0.18 μm Analog SVM 2 220.0 μW 870𝐾 vectors
s

252 pJ
vector

0.060 mm2

[31] 0.5 μm Analog RBF NN (VQ) 2 N/A 20𝐾–40𝐾 classif ications
s

N/A 2.250 mm2

[32] 0.18 μm Analog SVDD 2 N/A 26.7𝑀 vectors
s

N/A N/A

[33] 0.13 μm Mixed-mode RBF NN 1280 × 720
pixels

2.2 mW N/A N/A 0.140 mm2

[34] 0.13 μm Mixed-mode Object
Recognition
Processor

640 × 480 pixels 496.0 mW N/A N/A 49.000 mm2

[35] 0.13 μm Mixed-mode Neuro Fuzzy
Processor

N/A 57.0 mW N/A N/A 13.500 mm2

[36] 0.18 μm Mixed-mode LSTM 16 × 16 matrix 460.3 mW N/A N/A 9.990 mm2

[37] 0.5 μm Analog SVM 14 840.0 nW 40 classif ications
s

21 nJ
classif ication

9.000 mm2

[38] 0.18 μm Analog K-means 164 N/A 10𝑀 vectors
s

N/A N/A

* No. of dimensions designed on the layout.
Fig. 13. Classification results, on the VSBD dataset for 20 iterations, of the (left) software implementation (middle) proposed (right) baseline.
Fig. 14. Post-layout Monte-Carlo simulation results of the proposed architecture on
the VSBD dataset (for one of the previous 20 iterations).

The proposed training procedure and the proposed post-layout tunabil-
ity capabilities are tested through 3 different datasets achieving only
3% − 5% decrease in the classifier’s accuracy, in relation to a software
implementation. This is also achieved because of the utilized building
blocks. The aforementioned modifications on the Bump and the WTA
circuits are justified since they result in a (> 2% − 8%) increase to the
classifier’s accuracy, with minimal increase in the circuit’s area and the
power consumption. In particular, the Bump circuit of the proposed
architecture consumes 3.8nW, whereas the Bump circuit of the baseline
9

consumes 3.9nW (for 1 nA bias current). Similarly, the WTA circuit of
the proposed architecture consumes 10.4nW, whereas the WTA circuit
of the baseline consumes 4.5nW (for 4 nA bias current). It is worth
mentioning that the scope of this work is the minimization of the power
consumption while maintaining a highly accurate and area efficient
classifier.

7. Conclusion

In this work, a novel architecture for tunable analog integrated
GMM-based classifiers was introduced. By modifying and using Gaus-
sian function and WTA circuits, GMM-based classifiers targeting prob-
lems with various numbers of classes, clusters and data dimensionalities
can be implemented. The proposed architecture is applied on a simple
toy and 2 real-world datasets targeting bearing fault diagnosis. Its
parameters were generated through offline training of a GMM classifier
in software. Extensive analysis and comparisons of the classification re-
sults, on these problems, highlight the proper operation of the proposed
architecture and justify the applied modifications.
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