
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 13, NO. 1, MARCH 2023 285

A Stochastic Computing Sigma-Delta Adder
Architecture for Efficient Neural Network Design

Nikos Temenos , Member, IEEE, and Paul P. Sotiriadis , Fellow, IEEE

Abstract— A stochastic computing (SC) adder architecture,
based on sigma-delta modulation is introduced. The operation
principle of the stochastic computing sigma-delta (SCSD) adder
is presented and the adder is modeled using Markov Chains
resulting in the derivation of output’s first-moment statistics and
the demonstration of its fast-convergence. The SCSD’s single-bit
output enables the connection to existing Stochastic Finite-State
Machines realizing non-linear functions and the formation of cas-
cade processing structures appropriate for efficient realizations
of SC artificial neurons. To demonstrate the proposed adder’s
efficacy, a SCSD adder-based neuron was designed and used as
a building block of a SCSD Multi-Layer Perceptron (MLP). The
computational accuracy of the SCSD MLP and the hardware
resources it requires are compared to those of the Fixed-Point
arithmetic implementation, highlighting the effectiveness and
significant area savings of the proposed SC approach. Further-
more, the accuracy and hardware requirements of the proposed
SCSD MLP are also compared to those of corresponding SC
architectures in the literature.

Index Terms— Stochastic computing sigma-delta adder,
stochastic computing neural network, stochastic computing
multi-layer perceptron.

I. INTRODUCTION

THE prominent field of Artificial Intelligence (AI) has
made the presence of Machine Learning (ML) algorithms

and Neural Network (NN) architectures important in modern
digital signal processing cores (DSP) [1], [2], [3]. Conven-
tional computing methods used for the hardware realizations
of AI-related tasks, struggle to simultaneously fulfill size,
low-power consumption, high-computational performance and
massive parallelism constraints [3], [4]. To overcome such
design limitations, unconventional computing paradigms are
employed with Stochastic Computing (SC) being an effective
approach [1], [3], [4], [5].

Deviating from the binary arithmetic’s processing, SC oper-
ates on sequences of logic 1s and 0s [6]. The bit-serial
processing enables the realization of arithmetic operations
and highly-complex functions using logic gates and standard
cells. Further, the SC’s probabilistic nature makes it robust to
bit-flips and soft errors [4]. These advantages of SC have been
exploited in hardware realizations of ML algorithms and NN

Manuscript received 21 October 2022; revised 23 December 2022 and
6 February 2023; accepted 7 February 2023. Date of publication 10 February
2023; date of current version 20 March 2023. This article was recommended
by Guest Editor J. Han. (Corresponding author: Nikos Temenos.)

The authors are with the Department of Electrical and Computer Engineer-
ing, National Technical University of Athens, 15780 Athens, Greece (e-mail:
ntemenos@gmail.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JETCAS.2023.3243950.

Digital Object Identifier 10.1109/JETCAS.2023.3243950

architectures given their massive parallelism needs along with
their small error tolerance [1], [3], [7], [8].

Within the SC-based DSP cores, the multiply-and-add oper-
ation is the most important one. Each multiplication between
two sequences is realized using an AND or an XNOR gate
according to the SC number representation used [6]. The
addition part is typically realized using two-input adder-tree
structures or multi-input adders. Typical two-input SC adders
scale the addition’s result by a factor of two, reducing also
the output sequence’s resolution by the same factor [9].
This forces each subsequent layer within the adder-tree to
increase the addition’s scaling in increasing powers of two.
To compensate for the resolution drop, the sequence length
should be increased in powers of two according to the number
of layers within the adder-tree, resulting in increased latency
and total energy consumption [10]. Moreover, the adder-tree’s
scaled output cannot be applied directly to non-linear functions
as it has to be properly re-scaled fist, requiring additional
resources [11].

To address the adder-tree’s scaling challenges, multi-input
adders were considered for use in SC, with the accumulative
parallel counter (APC) [12] being the most popular one
[1], [13], [14], [15]. The APC accumulates deterministi-
cally all input sequences in parallel, producing the result in
binary format. In SC-based cascaded computations however,
the APC’s binary output introduces the following design
challenges; 1) It limits the applicability of existing single-
bit input/output Stochastic Finite-State Machines (SFSMs)
realizing highly-complex functions including non-linear ones
[16], [17] and 2) It requires the conversion of the APC’s
binary output to a stochastic sequence if other SC arithmetic
operations, e.g. multiplications, follow [18]. Another promis-
ing approach addressing the adder-tree’s scaling challenges
was proposed in [10] and was successfully applied in the
realization of cascaded multiply-and-add operations [5], [10].
It offers improved accuracy with short input sequence lengths,
at the cost of additional registry elements per adder used,
which may potentially impact the hardware resources when
designing large adder-trees.

Both adder-tree and multi-input adder design strategies have
been explored within the context of SC for the realization
of Multi-Layer Perceptrons (MLP), which is a class of NNs,
[15], [19], [20]. In [15], each neuron forming the MLP is
realized using an APC followed by a multi-bit input single-
bit output FSM approximating the tanh (BTanh) non-linear
activation function, implemented as a binary up/down counter.
However, in the BTanh’s design the FSM’s number of states
affecting the tanh’s approximation is derived using numerical

2156-3357 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:50:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1763-9930
https://orcid.org/0000-0001-6030-4645

286 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 13, NO. 1, MARCH 2023

experiments. In [19], a hybrid SC MLP is realized using an
adder-tree structure composed of extended stochastic logic
(ESL) adders [21] in the input layer and APCs in the remaining
layers. This hybrid format encoding enables the on-line update
of weights. On the other hand, the ESL adders require an addi-
tional binary-to-stochastic number converter for multiplexer’s
select signal, taxing the hardware resources [10], [21], while
the adder-tree requires a triple modular redundant (TMR)
binary search divider, resulting in large sequence lengths for
its computation and stabilization phases [1], [19]. With respect
to the activation functions, the same approach as in [15] was
followed, but, a multi-input single-bit output FSM realizing the
rectifier linear unit (ReLU) was used. Similar to [19], in [20]
a gradient-based updating scheme was applied to a MLP,
showing the effectiveness of the gradients’ and the weights’
on-line learning. Yet, in [19] no emphasis in the multiply-and-
add operations is given.

Motivated by the limitations of existing SC adder design
strategies, this work introduces a SC adder architecture that
utilizes a first-order sigma-delta modulator (SDM). The pro-
posed Stochastic Computing Sigma-Delta (SCSD) adder sums
the weighted input sequences into a single-data bus and then
employs an internal range conversion scheme. It offers the fol-
lowing advantages: 1) it operates on independent inputs, 2) the
addition is done deterministically without additional random
sources, 3) it is fast converging with small sequence lengths,
4) it enables cascaded operations to be realized efficiently with
existing SC arithmetic circuits and 5) it allows the use of any
single-bit input/output SFSM, thereby expanding the SC-based
NN design space.

The proposed SCSD adder’s operation principle is verified
with mathematical analysis, supported by Markov Chain (MC)
modeling, resulting in a deeper understanding of its stochastic
dynamics and in the derivation of its first order statistics.
To demonstrate its efficacy, the proposed SCSD adder is
used for the realization of a SC artificial neuron, setting the
foundation for the formation of a SC-based MLP.

The remainder of the proposed work is organized as follows.
In Section II the essential notation of the stochastic numbers is
provided. In Section III the proposed SCSD adder is analyzed
in detailed and modeled as a MC. Section IV introduces the
SC-based artificial neuron realized using the proposed SCSD
adder, as well as a MLP formed of SCSD adder-based neurons.
In Section V experimental results for two MLP architectures
are shown in terms of computational accuracy, while the
hardware efficiency is compared to that of the Fixed-Point
(FxP) arithmetic. Moreover, the computational accuracy and
the hardware efficiency of other SC MLP approaches com-
pared to the proposed one are discussed. Finally, Section VI
concludes the present work.

II. STOCHASTIC NUMBER REPRESENTATION

A b-bit length binary number B is converted into a stochas-
tic number (SN), i.e. a sequence of logic 1s and 0s, using
a stochastic number generator (SNG). The SNG utilizes a
random number source of b-bit length and on every clock
cycle compares its value to the binary number B, for a total
of N = 2b clock cycles, corresponding to the sequence length.
The generated sequence {Xn}

N
n=1 is assumed to be formed of

independent and identically distributed (i.i.d.) random vari-
ables (r.v.), where n = 1, . . . , N is the time index. The SN
has probability pX ≜ Pr (Xn = 1) = B/2b and time-average
value defined as

X̃ N =
1
N

N∑
n=1

Xn . (1)

The b-bit length binary number B can be used to represent
a negative-signed number. To avoid confusion, we use the
notation X̂ = pX to represent the value of B and consequently
that of the SN when it belongs in [0, 1], known as unipolar
format. On the other hand, when the value of B is a negative-
signed number, we use the following equation

X̂ = 2pX − 1. (2)

to extend the SN’s range to [−1, 1], known as bipolar format.
To convert a SN back into its binary form, an accumulator of
b-bits is used [6].

III. STOCHASTIC COMPUTING SIGMA-DELTA ADDER

This section introduces the architecture of the proposed
SCSD adder along with the corresponding analysis of the
operation principle, the modeling using MCs, the error charac-
teristics and a comparison of the hardware resources to those
of existing approaches.

A. Architecture

The proposed multi-input single-bit output SCSD adder
architecture is shown in Fig. 1. The input sequences {X j

n}
N
n=1,

{W j
n }

N
n=1 with j = 1, . . . , k are assumed to be i.i.d. and inde-

pendent to each other, while {Zn}
N
n=1 is the output sequence.

The XNOR gates are used to multiply the input sequences
pairwise in bipolar format [6] resulting in k intermediate
sequences {U j

n }
N
n=1. Sequences {U j

n }
N
n=1 are added determin-

istically using conventional binary arithmetic as shown in
Fig. 1, without additional randomizing sources. This implies
that the stochastic precision of sequence {Yn}

N
n=1 is exclusively

determined by the length, N , of the input sequences.
Assuming sequences {X j

n}
N
n=1, {W j

n }
N
n=1 carry signed num-

ber information, we do the conversion for all of them just
once. Since Yn is the weighted sum of k inputs, the range
of Yn is extended from {0, . . . , k} to {−k, . . . , k} using the
transformation Vn = 2Yn − k. Note that the multiplication
operation is realized using only a left shift operation.

The bit-width c of Yn is determined according to the number
of inputs, k, and should be such that it can capture all incoming
bits, namely c = ⌊log2 k⌋ + 1, where ⌊·⌋ is the floor function.
On the other hand, the bit-width after the range conversion
should be c′

= c + 1, accounting for the signed value of Vn .
The first-order digital SDM (DSDM) within the SCSD adder

architecture of Fig. 1, consists of an adder and an m-bit register
with m ≥ c′

+ 1 so as to capture the accumulation process
of the first-order DSDM, followed by a most significant bit
(MSB) selection block. The MSB block, replaces the quantizer
in the system level model of a typical first order SDM shown
in Fig. 2, which is a simplification of the comparison between

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:50:08 UTC from IEEE Xplore. Restrictions apply.

TEMENOS AND SOTIRIADIS: SCSD ADDER ARCHITECTURE FOR EFFICIENT NN DESIGN 287

Fig. 1. Architecture of the proposed Stochastic Computing Sigma-Delta (SCSD) adder. The XNOR gates multiply pairwise the input sequences
{X j

n }
N
n=1, {W j

n }
N
n=1 in bipolar format. The multiplication results are added to a single bus with the range of its represented value converted from [0, k]

to [−k, k]. The first-order digital SDM converts a high-bit-resolution signal into a single-bit one whose time-average approximates the sum-of-products. The
architecture can be further simplified by pushing the range conversion into the SDM.

Fig. 2. Top: system level model of a first-order Sigma-Delta Modulator.
Bottom: realization of the first-order Digital Sigma-Delta Modulator. The
quantizer block, is replaced by the selection of the most significant bit.

the register’s current value and zero [22], [23]. Therefore, con-
sidering the signed representation of Tn , the MSB’s operation
implements a function Q(·) as

Q(Tn) =

{
1, MSB(Tn) = 1
0, MSB(Tn) = 0

. (3)

Note that in the DSDM shown in Fig. 1, the sign extension
operation feeds back Zn−1 = 1 when Q(Tn) = 1 and Zn−1 =

−1 when Q(Tn) = 0.
The register’s initial value T0 can be any one within T =

{0, 1, . . . , M −1}, where M = 2m is the number of states, and
the DSDM’s current state Tn is updated as

Tn = max
{

0, min
{
Tn−1 + Vn − Zn−1, M−1

}}
. (4)

The max(·) and min(·) functions are used here to denote the
register’s natural saturation to states 0 and M − 1, given that
they cannot be exceeded. The SDM’s output and consequently
that of the SDSC adder is

Zn = Q(Tn). (5)

If the register of the DSDM does not saturate, the time-average
of the output E

[
Z j

n

]
≊ Z̃ j

N equals (or approximates in finite

time lengths) the range-converted time-average of the sum of
the weighted inputs E

[
W j

n

]
E
[

X j
n

]
≊ W̃ j

N X̃ j
N .

B. Markov Chain Modeling
The proposed SCSD adder’s long-term stochastic dynamics

can be analyzed by describing the operation of the first-order
SDM as a Stochastic Finite-State Machine (SFSM) and con-
sequently modeling it using a Markov Chain (MC) [24].
To proceed, it is important to explain first 1) the MC’s state
space and 2) the MC’s transition probabilities.

The quantizer’s operation, according to (3), expresses the
behavior of the SFSM as a Moore FSM, given the relation
of the current output Zn to the state Tn . The MC’s states are
S = {0, 1, . . . , M − 1} corresponding bijectively to those of
the register, T . The MC’s current state in S is denoted by Sn .

The MC’s transition probabilities of the MC are determined
by the probability distribution of Yn within Y = {0, 1, . . . , k}.
Since Yn is a sum of binary random variables with potentially
different probability distributions, to derive the probability
distribution of Yn we use the probability generating function
(P.G.F.) of it GYn (s) ≜ E(sYn), s ∈ R, calculated as

GYn (s) = E
(

sU 1
n +···+U k

n
)

= E
(

sU 1
n
)

. . . E
(

sU k
n
)

=

k∏
j=1

(
(1 − pU j) + pU j s

)
, (6)

where in the second step we have used the fact that U j
n are

independent with respect to j and i.i.d. with respect to n.
From (6) and for r = 0, 1, . . . , k it is

Pr (Yn = r) =

(
1
r !

)
dr

dsr

(
GYn (s)

) ∣∣∣∣
s=0

. (7)

The MC’s state update is similar to that of the register’s one
in (4), since it is determined by the previous state Sn−1, the
current input Vn and the previous output Zn−1 = Q(Tn−1),

Sn = max
{

0, min
{

Sn−1 − Q(Sn−1) + Vn, M−1
}}

. (8)

Note that Sn depends on both Sn−1 and Zn−1, which is the
quantized version of Sn−1. This makes the analysis a little

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:50:08 UTC from IEEE Xplore. Restrictions apply.

288 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 13, NO. 1, MARCH 2023

more involved. We have that Vn ∈ {−k, . . . , k} and Zn−1 =

Q(Tn−1) ∈ {±1}. The value of Zn partitions the state set S
into two (disjoint) subsets Sa = {0, 1, . . . , M/2−1} and Sb =

{M/2, . . . , M − 1}, such that Sn ∈ Sa ⇔ Zn = −1 and Sn ∈

Sb ⇔ Zn = 1. The transition probabilities are used to build the
M×M transition probability matrix H ≜ [Pr (Sn = σ j |Sn−1 =

σi)] = [pσi ,σ j], σi , σ j ∈ S, which is also partitioned based on
Sa and Sb.

The following example, with k = 3 inputs and M =

8 states, illustrates the use of the above definitions. Random
variable Yn takes values within {0, 1, 2, 3} and Vn = 2Yn − k
belongs to {−3, −1, 1, 3}. Equation (7) is used to calculate the
probabilities pr

Y ≜ Pr (Yn = r), which are associated to the
state transition from Sn−1 to Sn :

• If Sn−1 ∈ Sa = {0, 1, . . . , M/2 − 1}

– If Yn = 0, then Sn = max{0, Sn−1 − 2}

– If Yn = 1, then Sn = Sn−1,
– If Yn = 2, then Sn = Sn−1 + 2,
– If Yn = 3, then Sn = Sn−1 + 4.

• If Sn−1 ∈ Sb = {M/2, . . . , M − 1}

– If Yn = 0, then Sn = Sn−1 − 4,
– If Yn = 1, then Sn = Sn−1 − 2,
– If Yn = 2, then Sn = Sn−1,
– If Yn = 3, then Sn = min{M − 1, Sn−1 + 2}.

The above result in

H =

p0
Y +p1

Y 0 p2
Y 0 p3

Y 0 0 0
p0

Y p1
Y 0 p2

Y 0 p3
Y 0 0

p0
Y 0 p1

Y 0 p2
Y 0 p3

Y 0
0 p0

Y 0 p1
Y 0 p2

Y 0 p3
Y

p0
Y 0 p1

Y 0 p2
Y 0 p3

Y 0
0 p0

Y 0 p1
Y 0 p2

Y 0 p3
Y

0 0 p0
Y 0 p1

Y 0 p2
Y p3

Y
0 0 0 p0

Y 0 p1
Y 0 p2

Y + p3
Y

. (9)

The probability state vector is defined accordingly as

πn = [Pr (Sn =0), Pr (Sn =1), . . . , Pr (Sn = M − 1)] . (10)

Assuming that the MC’s starting state S0 can be any one within
S, then the initial distribution vector is

π0 =
1
M

1T
∈ [0, 1]

M (11)

where 1 is the column vector of M ones. It can be used along
with the transition probability matrix H from (9) to calculate
the states’ probability distribution vector as

πn = π0 Hn
∈ [0, 1]

M . (12)

The states’ probability distribution vector enables the deriva-
tion of the output’s first-moment statistics. The expected value
of Zn is

E[Zn] =

∑
z∈{±1}

z Pr (Zn = z) = (−1)πneT
a + πneT

b , (13)

where ea =
∑M/2

i=1 ei ∈ RM and eb =
∑M

i=M/2+1 ei ∈ RM ,
with ei =

[
0, . . . 0, 1, 0, . . . , 0

]
∈ RM being the i-th standard

Fig. 3. Expected value of the output’s time-average, E[Z̃ N], calculated
using (14), estimating the sums of three inputs with probability values
p1

U = 0.1, p2
U = 0.2, p3

U = 0.3, as the sequence length increases
N = 1, . . . , 1000, for three different number of states M = 32, 64, 128.

vector. The result of (12) along with (13) can be used to derive
the expected value of the time-average as

E[Z̃ N] =
1
N

N∑
n=1

E[Zn] =
1
N

N∑
n=1

(
(−1)πneT

a + πneT
b

)

=
1
N

π0

(N∑
n=1

Hn

)(
(−1)eT

a + eT
b

)
. (14)

In Fig. 3, the expected value of the time-average, E[Z̃ N],
is plotted using (14), for sequence length N = 1, 2, . . . , 1000,
number of states M = 32, 64, 128 and input probability values
p1

U = 0.1, p2
U = 0.2, p3

U = 0.3. As the number of states M
increase, E[Z̃ N] approaches the input probability value 0.6 for
sufficiently large N .

C. Error Characteristics

To evaluate the SCSD adder’s computational performance,
we use the Mean Absolute Error (MAE) defined as

ZError = E
∣∣∣Z̃ N − Ẑ

∣∣∣ , (15)

where Ẑ ∈ [−1, 1] is defined as Ẑ = Û 1
+ . . . Û k , following

the definitions in Section II. We proceed with estimating
the MAE numerically for k = 2 as follows; input values
Û 1, Û 2 are randomly selected such that −1 ≤ Û 1

+ Û 2
≤

1 and the simulation is conducted for 104 i.i.d. runs with inde-
pendent sequences {U 1

}
N
n=1, {U

2
}

N
n=1. Note that here Sobol

sequences [25] are considered. For input sequence length N =

64-bit and register size of m = 4-bits the MAE’s distribution is
shown in Fig. 4. The mean and standard deviation are 3.1·10−2

and 1.2 · 10−2 respectively.
To further investigate the SCSD adder’s error char-

acteristics, we calculate the MAE for different number
of inputs. For this reason, we consider a number of
inputs k = 2, 4, 8, 10, 12, 14, 16 and calculate the MAE
using (15) as above, for increasing sequence lengths N =

64, 128, 256, 512, 1024. The results are illustrated in Fig. 5.
It can be seen that when the number of inputs is relatively

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:50:08 UTC from IEEE Xplore. Restrictions apply.

TEMENOS AND SOTIRIADIS: SCSD ADDER ARCHITECTURE FOR EFFICIENT NN DESIGN 289

Fig. 4. MAE distribution for k = 2 inputs calculated using (15), for 104 i.i.d.
runs, parametrized with sequence length N = 64-bit and a register size of
m = 4-bits.

Fig. 5. MAE calculated using (15) for increasing number of inputs k and
sequence lengths N . For each k, N , 104 i.i.d. runs are considered.

small, namely k = 2, 4, 6, the maximum MAE value is
1.1 · 10−1 for N = 64-bit sequences and it is further reduced
to 10−2 values when N ≥ 128. On the other hand, when the
number of inputs is increased to k = 8, 10, 12, 14, 16, the
input sequence length should be N ≥ 256 to result in MAE
values with order of magnitude 10−2.

D. Hardware Resources

The hardware resources of the proposed SCSD adder are
compared to existing ones from the SC literature. All adder
architectures are described using Verilog HDL and then their
designs are fed to the Synopsys Design Compiler so as for their
hardware resources to be extracted using the FreePDK CMOS
library at 45nm [26]. The following estimates are provided:
1) the total area in µm2, 2) the average power consumption
for the maximum operating frequency in mW , 3) the delay
(critical path) in ns and 4) the energy defined as the power ×

delay product in pJ . In Table I the results per clock cycle are
cited. Note that in the comparisons, only two-input adders are
considered.

From Table I it can be seen that compared to the MUX
adder utilizing a Sobol sequence generator and the ESL one

TABLE I
STOCHASTIC ADDERS HARDWARE RESOURCES COMPARISON

in [21], the SCSD adder results in reduced area, power and
energy consumption due to the additional b-bit SNG that the
former ones use. Compared to the adder in [11], the SCSD
adder results in similar hardware resources with slightly higher
energy due to its higher critical path. Compared to the adder
in [10] with internal register size m = 4, 5-bits, the proposed
SCSD adder occupies reduced resources. However, in the
design of adders trees, the adder in [10] will occupy more
resources than the proposed SCSD adder, as the register cost
is proportional to 2−5-bits multiplied by the number of adders
used in the realization of the adder tree. Compared to the
adders in [27], [28], the proposed SCSD results in increased
hardware resources, but, from a design perspective the adders
in [27], [28] are subject to the weaknesses introduced by
scaling adders when forming adder trees, including resolution
drop, constraining cascaded operations etc. [10]. Moreover, the
adders in [11] and [21] extend the design challenges of adder
trees as they operate on different SC number representations
impacting on the hardware resources [10]. On the other hand,
the proposed SCSD adder’s advantages, eliminates the design
challenges introduced by the above adders in the design of SC
adder-trees and multiply-and-add operations.

IV. SCSD ADDER & NEURAL NETWORK DESIGN

In this section we show how the proposed SCSD adder can
be used as a basic building block to realize a SC neuron and
to form a SC MLP.

A. SCSD Adder Artificial Neuron

The proposed SCSD adder’s binary output allows for further
processing using SC-based logic gates and/or SFSMs. The

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:50:08 UTC from IEEE Xplore. Restrictions apply.

290 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 13, NO. 1, MARCH 2023

Fig. 6. SC neuron realized using the proposed SCSD adder architecture
shown in Fig. 1. The non-linear activation function is realized using a
single-bit input/output Stochastic Finite-State Machine.

Fig. 7. Stochastic MAX architecture proposed in [32] realizing the clipped
ReLU function according to (16).

SFSMs can approximate non-linear functions, within the con-
text of SC, including activation ones [16]. They have a set of
states, and the current state is updated according to the current
bit-value of the input sequence. Their are realized efficiently
using saturating up/down counters, outputting a logic 0 or 1
which is a function of the current state [16]. Therefore, placing
a SFSM after the proposed SCSD adder allows us to build an
artificial neuron, as shown in Fig. 6. Note that the sequence
{Bn}

N
n=1 refers to the bias that can be optionally used, which

is added along with {U j
n }

N
n=1 in the architecture of Fig. 1.

The SCSD is designed so that the expected value of its
output Ĝ is given by Ĝ = φ(Ẑ) where φ is the desirable neu-
ron activation function. Approximately it is also the case that
G̃ N ≊ φ

(
Z̃ N
)
. Among the widely used activation functions

in SC, including the hyperbolic tangent (tanh), the exponential
and the rectifier linear unit (ReLU) [16], [17], the ReLU is the
most popular one in NNs [1].

For an input sequence {Xn}
N
n=1 with time-average value

X̃ N , the non-linear activation function ReLU is defined as
ReLU(X̃ N) ≊ max(0, X̃ N). However, since the SC’s range is
constrained in [−1, 1], the clipped ReLU below is preferred
which is a variation of the ReLU, i.e.

Clipped ReLU
(
X̃ N
)

≊ min
(

max
(
0, X̃ N

)
, 1
)

. (16)

It is apparent that architectures realizing the max function
are of high importance, with several architectures being
explored in SC [17], [29], [30], [31], [32], [33]. Among them,
we choose the one proposed in [32], due to its property of
combining short-sequence lengths with high computational
accuracy. The max architecture from [32] is shown in Fig. 7.

To proceed with a brief explanation of the max architec-
ture’s operation principle, we assume that its two sequences
{Y 1

n }
N
n=1, {Y

2
n }

N
n=1 are i.i.d., while {An}

N
n=1 is the output

Fig. 8. Approximating the clipped ReLU of (16) using the Stochastic MAX
architecture of Fig. 7, for input values X̂ ∈ [−1, 1], with 103 i.i.d. runs on
each input value, sequence length N = 256 and register size m′

= 4-bits.

sequence. The m′-bit register’s purpose is to count the
signed-bit differences between the current bits of the two
inputs; the register’s current value is increased by 1-bit if
Y 1

n > Y 2
n , decreased by 1-bit if Y 1

n < Y 2
n and maintained

otherwise.
With initial state T0 = 0, the register’s current

state Tn is up and down counted within TM =

{0, 1, . . . , M ′
−1}, where M ′

= 2m′

is the number of states.
Hence, the state update process is described as Tn =

max
{

min
{

Tn−1 + Y
1
nYn−Y 1

n Y
2
n, M ′

−1
}
, 0
}

, where Y
j
n =

1 − Y j
n , j = 1, 2. Moreover, using Jn ≜ Tn > 0 and by

inspecting the architecture of Fig. 7, the output is determined
as An = OR(Y 2

n , AND(Y 1
n , Jn−1)). For further analysis of the

stochastic MAX architecture the reader is referred to [32].
To showcase the effectiveness of MAX architecture of

Fig. 7 in approximating the clipped ReLU function of (16),
we proceed as follows; we select 2 · 102 uniformly distributed
input values X̂ ∈ [−1, 1] and for 103 i.i.d. runs on each input
value we calculate the mean of the output’s time-average ÃN .
For input sequence length N = 256-bits and a register size of
m′

= 4-bits, the results are illustrated in Fig. 8. It is observed
the MAX’s output yields satisfactory results, with a small error
for small absolute values of X̂ .

B. Forming a SC Multi-Layer Perceptron
The SCSD neuron in Fig. 6 can be used as a basic building

block to form a SC-based MLP, which is referred to as SCSD
MLP. The MLP belongs to a class of feed-forward NNs, with
the network’s architecture consisting mainly of three types of
layers; input, hidden and output. In each layer, every unit
is connected to every other one in the next layer, meaning
that the MLP is fully connected. The layers within the MLP’s
architecture are shown in Fig. 9 and are discussed bellow.

• Input Layer: The units of the input layer are the values of
the input features, which in our case have been converted
into sequences {X j

n}
N
n=1, j = 1, 2, . . . , k by SNGs. The

same applies to the values of the weights existing in
all layers. For the sequence generation, Sobol number
generators are considered as they require shorter sequence
lengths when compared to the LFSR number generators

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:50:08 UTC from IEEE Xplore. Restrictions apply.

TEMENOS AND SOTIRIADIS: SCSD ADDER ARCHITECTURE FOR EFFICIENT NN DESIGN 291

Fig. 9. Multi-Layer Perceptron network architecture. Each hidden layer is
realized using the proposed SC neuron of Fig. 6 containing the proposed
SCSD adder architecture of Fig. 1.

Fig. 10. Example of sequence generation in the input layer, with
X̂ j , Ŵ j,1, j = 1, . . . , k corresponding to the values of the inputs and the
weights of a single neuron respectively. The Sobol number generators are
shared among the inputs and the weights respectively.

when approximating a binary number with a stochastic
one [25]. Moreover, they can be shared among the inputs
and the weights respectively. An example of the sequence
generation for a single neuron in the input layer is shown
in Fig. 10.

• Hidden Layers: Each hidden layer is formed by stacking
lh neurons in parallel and the number of layers can be
of any depth h. As such, considering the SCSD-based
neuron of Fig. 6 the time-average output of each neuron
in the MLP of Fig. 9 is described as

G̃
λη,η

N ≊φ
(

Z̃
λη,η

N

)
≊ min

(
max

(
0, Z̃

λη,η

N

)
, 1
)

, (17)

where the clipped ReLU from (16) is used, λη =

1, 2, . . . , lη and η = 1, 2, . . . , h denote the current unit
in each layer and the current hidden layer respectively.

Fig. 11. A multiply-and-accumulate processing block realizing each unit
Oco

n existing in the output layer. The result is obtained after N clock cycles.

• Output Layer: The MLP’s output layer, obtains the
desired predictions and is of length c, corresponding to
the number of classes being learned. The output layer is
the last processing stage within the MLP, so the output
of each neuron is realized in SC using a multiply-and-
accumulate unit as shown in Fig. 11, with the result
obtained after N clock cycles. In addition, the following
should be noted: 1) the bit-width b′ of the multiply-and-
accumulate unit is determined by the number of the inputs
to each unit in the output layer, lh , and 2) the register size
should be such that N = 2b, according to the definitions
in Section II.

V. SCSD MLP PERFORMANCE

The performance of the SCSD MLP is demonstrated with
multiclass classification using the MNIST dataset [34]. It con-
sists of 60, 000 training samples and 10, 000 testing samples
of grayscale images with pixel size 28 × 28. Each image
represents handwritten digits with values ranging from 0 to 9,
resulting in 10 classes in total. In the experiments, two network
architectures are considered, set to 784 − 100/200 − 10; a
784 input layer, a hidden layer of 100/200 neurons and an
output layer with 10 neurons corresponding to the dataset’s
classes.

With respect to the training procedure, in the hidden layers
neurons employ the clipped ReLU defined in (16), whereas in
the output layer the softmax activation function is used for the
classification. The values of the inputs and the weights in all
layers are constrained to range [−1, 1] so as to be processed in
the SC domain during the inference phase. Moreover, the use
of bias in all layers is not considered as it would further tax
on the hardware resources due to sequence generation. The
training procedure for the weights’ extraction is conducted
using Python and the keras library.

Once the values of the weights are extracted from the
training phase, they are used in the MLP for the inference
(testing) procedure. For the evaluation of the MLP’s infer-
ence along with the SCSD-based realization using different
sequence lengths N = 256, 512, 1024, fixed point (FxP) using
6, 8, 16 bits and Floating Point (FP) using 32 bits number
representations are considered. The inference procedure of all
MLPs is done using MATLAB.

A. Inference Accuracy

The classification performance of the MLP is evaluated
using the accuracy metric, which is the ratio of the number of
correct predictions to the total number of predictions. In the
MNIST case, the total number of predictions corresponds to
the number of testing samples, equal to 10, 000. To derive the

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:50:08 UTC from IEEE Xplore. Restrictions apply.

292 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 13, NO. 1, MARCH 2023

TABLE II
INFERENCE ACCURACY IN PERCENTAGES (%) OF

THE PROPOSED SCSD, FXP AND FP MLP REALIZATIONS

accuracy of the SCSD MLP, the mean and standard deviation
(std) of 10 independent runs over the testing samples are con-
sidered. This is due to the presence of the LFSR-based SNG
existing in the MAX architecture where the input is compared
to the value 0.5 (bipolar format of the value 0) so as to
realize the clipped ReLU from (16). Sobol SNGs are reported
to reduce the approximation accuracy of SFSMs over LFSR
SNGs and therefore the latter ones are preferred [25]. The
accuracy results of the proposed SCSD MLP accompanied by
the FxP and FP realizations in percentages are cited in Table II.

From the results shown in Table II, it is observed that for the
proposed SCSD MLP, when the sequence length N increases
from 256-bit to 1024-bit length the std decreases, which is
due to the improvement of the sequences’ convergence in both
network architectures. In addition, when the number of hidden
layers is increased from 100 to 200, the percentage accuracy
is improved by 0.79, 0.82 and by 0.74 for sequence lengths
N = 256, 512 and 1024-bits respectively. It should be noted
that experiments using N <= 128-bit sequence lengths were
also considered, but, resulted in accuracy values < 90%.

Compared to the FxP 6-bit realization, the SCSD MLP
results in better percentage accuracy results when the sequence
length N = 512, 1024, with values corresponding to an
increase by 0.23 and 0.76 for the network 784−100−10 and
by 0.34 and 0.79 for the network 784−200−10 respectively.
Compared to the FxP 8-bit realization it can be seen that
the SCSD MLP with sequence length N = 512-bit achieves
similar percentage accuracy results, but, when the sequence
length increases to N = 1024, the percentage accuracy of the
SCSD MLP is increased by 0.49 and 0.44 for the networks
784−100−10 and 784−200−10 respectively. Compared to the
FxP 16-bit realization, the percentage accuracy of the SCSD
MLP for the networks 784 − 100 − 10 and 784 − 200 − 10 is
increased by 0.27 and 0.33 respectively using sequence length
N = 1024-bits, but, it is decreased by 0.26 and 0.12 respec-
tively using sequence length N = 512-bits. On the other hand,
compared to the FP MLP realization, an expected reduction
of approximately 1% in the percentage accuracy is observed
for the SCSD realizations, which is slightly higher for the FxP
realizations.

B. Hardware Resources
The largest computational block within the MLP is the

input layer considering its 784 inputs, making reasonable to
investigate on its hardware resources. To this end, the SCSD
and FxP neurons are described first using Verilog HDL and

TABLE III
HARDWARE RESOURCES REQUIRED FOR

THE REALIZATION OF A 784-INPUT NEURON

then they are fed into the Synopsys Design Compiler so
as to extract their hardware resources using the FreePDK
CMOS library at 45nm [26]. The following estimates are
provided: 1) the total area in µm2, 2) the average power
consumption for the maximum operating frequency in mW ,
3) the delay (critical path) in ns, 4) the energy per clock cycle
in pJ , defined as the average power × delay product, 5) the
area-delay product (ADP) in µm2

×ns and 6) the energy-delay
product (EDP) in pJ × ns. The results for the hardware
resources are cited in Table III. It should be noted that the
energy, the ADP and the EDP results for the proposed SCSD
neuron presented in Table III refer to a single clock cycle.

According to Table III it can be seen that the SCSD
neuron reduces the area by 88.20%, 94.32% and 98.31% of
the 6-bit, 8-bit and 16-bit FxP ones respectively, resulting
to ×8.48 ×17.60 and ×59.23 smaller area respectively. The
ADP results follow the same direction as the area ones given
that the delay between the SCSD and FxP neurons is similar,
meaning that the SCSD neuron reduces by 88.76%, 94.59%
and 98.40% the ADP of the 6-bit, 8-bit and 16-bit FxP neurons
respectively. With respect to the energy per operation, the
SCSD reduces the energy by 3.09%, 37.43% and 69.06% of
the of the 6-bit, 8-bit and 16-bit FxP realizations respectively,
whereas the EDP follows similarly with values corresponding
to a reduction by 7.70%, 40.41% and 70.53% of the 6-bit, 8-
bit and 16-bit FxP realizations respectively. It should be noted
that the FP number representation introduces large hardware
overhead when compared to the FxP number representation
due to the presence of the FP multipliers [1], [19], making
it less attractive for massive multiply-and-add operations.
Similar large hardware overhead is reported when comparing
the FP multipliers to the SC multipliers when the SNG sharing
scheme is included [19]. Therefore, despite the FP MLP’s
accuracy improvement of approximately 1%, the hardware
resources required to realize a FP neuron are not considered
in Table III.

C. Related Work

For a fair comparison with the related work in SC in terms
of classification performance, it is reasonable to consider the
relative error of the inference accuracy given that the network
architectures differ. It is defined as

ϵ =

∣∣∣∣AccuracyF P − AccuracySC

AccuracyF P

∣∣∣∣ , (18)

where AccuracyF P and AccuracySC are the classification
accuracies using FP and SC number representations
respectively. In terms of hardware efficiency, the area

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:50:08 UTC from IEEE Xplore. Restrictions apply.

TEMENOS AND SOTIRIADIS: SCSD ADDER ARCHITECTURE FOR EFFICIENT NN DESIGN 293

TABLE IV
PERFORMANCE COMPARISON OF SC-BASED MLPS IN INFERENCE ACCURACY AND

HARDWARE RESOURCES EFFICIENCY FOR THE REALIZATION OF THE COMPUTATIONAL UNITS

occupation and energy consumption in percentages over that
of the FxP arithmetic are reported. The performance results
are cited in Table IV.

In [15], a stochastic neuron is realized using an APC,
followed by a FSM operating as the non-linear function
tanh (BTanh) and implemented as binary up/down counter.
The design of the BTanh is fixed, in the sense that the
FSM’s number of states affecting the tanh’s approximation
are derived using numerical experiments for specific input
sequence lengths. Moreover, the input sequence’s bit-length
driving the FSM affecting the number of the FSM’s states is
not considered.

According to Table IV, the relative accuracy error of the
MLP in [15] is small, but, note that only the best score is
reported, whereas in the proposed work and the rest ones,
the average accuracy over independent runs is considered. For
the hardware resources, in [15] a 200-input neuron is reported,
utilizing 50% area and 30% energy of the FxP 9-bit realization
On the other hand, the proposed 784-input neuron occupies
only the 5.6%/1.6% of the 8/16-bit FxP’s area respectively,
while the energy is 62.56%/30.93% of the 8/16-bit FxP
respectively. Moreover, the proposed SCSD adder opens the
SC design space as it allows the use of single-bit output
SFSMs, which consequently enables the realization of mul-
tiplications using AND/XNOR gates according to the SC
number format used.

In [19], stochastic neurons in the input layer are realized by
adopting the extended stochastic logic (ESL) [21], whereas
in the rest layers they are realized using APCs. Combining
two different multiply-and-add processing methods allows the
use of ESL-based backpropagation circuits, enabling online
training. The ESL adder tree, however, requires a TMR binary
search divider, resulting in large sequence lengths for its
computation and stabilization phases [1], [19].

From the results in Table IV, the relative accuracy error
of the MLP in [19] using N = 4096-bit sequence lengths is
similar to that of the proposed SCSD one when N = 512-bit
sequence lengths are used, resulting in a ×8 faster convergence
for the proposed approach. Comparing the area efficiencies,
it can be seen that the proposed approach results in significant
savings of the FxP 8/16-bit realization, but, energy-wise the
approach in [19] is better when 8-bits FxP are considered.
From a design perspective, the proposed SCSD adder uses the
standard SC encodings, whereas in [19] the use of ESL logic
for the realization of the multiply-and-add units introduces
design challenges [10].

Deviating from the previous approaches targeting multiply-
and-add computational units, in [20], a signed SC gradient
descent (SCGD) circuit capable of updating the value of the
gradient and the weights was used in the training process of
a MLP. From the computational accuracy results in [20], this
method achieves significant training accuracy when compared
to the FxP arithmetic with step size 2−10. Note that in [20],
only the FxP arithmetic is reported as an accuracy metric,
hence for fair comparisons among the works cited, we con-
sider FP arithmetic using a 784 − 128 − 128 − 10 network,
yielding 98.8% accuracy after 20 training epochs. Regarding
the hardware resources, the SCGD circuits result in reduced
area and energy compared to their FxP counterparts according
to Table IV, but accuracy-wise the proposed approach results
in smaller relative error.

VI. CONCLUSION

A stochastic computing sigma-delta adder was introduced.
Its operation principle was analysed in detail, while its MC
modeling resulted in the derivation of its first-moment statis-
tics, used to demonstrate its fast convergence. The proposed
SCSD adder enables the efficient realization of SC neurons
as its single-bit output allows for the use of any SFSM based
non-linear function. This was demonstrated with two com-
pact MLPs comprised of SCSD-based neurons. Experimental
results showed that the proposed SCSD neuron results in
significant area savings, corresponding to a 94.32%/98.32%
reduction with respect to 8/16-bit FxP arithmetic, achieving
also acceptable computational accuracy compared to the 32-bit
FP arithmetic. Finally, comparison of the proposed approach
to existing ones in the SC literature showcased the advantages
of the first one in terms of applicability in the SC design space.

REFERENCES

[1] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A survey of stochastic
computing neural networks for machine learning applications,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 2809–2824,
Jul. 2021.

[2] H. Abdellatef, M. Khalil-Hani, N. Shaikh-Husin, and S. O. Ayat,
“Accurate and compact convolutional neural network based on stochastic
computing,” Neurocomputing, vol. 471, pp. 31–47, Jan. 2022.

[3] C. F. Frasser et al., “Fully parallel stochastic computing hardware
implementation of convolutional neural networks for edge computing
applications,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Apr. 22, 2022, doi: 10.1109/TNNLS.2022.3166799.

[4] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge
of stochastic computing,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 37, no. 8, pp. 1515–1531, Aug. 2018.

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:50:08 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2022.3166799

294 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 13, NO. 1, MARCH 2023

[5] N. Temenos and P. P. Sotiriadis, “Modeling a stochastic computing
nonscaling adder and its application in image sharpening,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 69, no. 5, pp. 2543–2547, May 2022.

[6] B. R. Gaines, “Stochastic computing systems,” in Proc. Adv. Inf. Syst.
Sci., 1969, pp. 37–172.

[7] Y. Liu, L. Liu, F. Lombardi, and J. Han, “An energy-efficient and
noise-tolerant recurrent neural network using stochastic computing,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 9,
pp. 2213–2221, Sep. 2019.

[8] A. Morro et al., “A stochastic spiking neural network for virtual
screening,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 4,
pp. 1371–1375, Apr. 2018.

[9] M. H. Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel, “Performing
stochastic computation deterministically,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 27, no. 12, pp. 2925–2938, Dec. 2019.

[10] N. Temenos and P. P. Sotiriadis, “Nonscaling adders and subtracters for
stochastic computing using Markov chains,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 29, no. 9, pp. 1612–1623, Sep. 2021.

[11] A. Ren et al., “SC-DCNN: Highly-scalable deep convolutional neural
network using stochastic computing,” ACM SIGPLAN Notices, vol. 52,
no. 4, pp. 405–418, 2016.

[12] B. Parhami and C.-H. Yeh, “Accumulative parallel counters,” in
Proc. Conf. Rec. 29h Asilomar Conf. Signals, Syst. Comput., 1995,
pp. 966–970.

[13] S. R. Faraji, M. H. Najafi, B. Li, D. J. Lilja, and K. Bazargan, “Energy-
efficient convolutional neural networks with deterministic bit-stream
processing,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2019, pp. 1757–1762.

[14] P.-S. Ting and J. P. Hayes, “Stochastic logic realization of matrix oper-
ations,” in Proc. 17th Euromicro Conf. Digit. Syst. Design, Aug. 2014,
pp. 356–364.

[15] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-
accuracy trade-off using stochastic computing in deep neural networks,”
in Proc. 53rd Annu. Design Autom. Conf., Jun. 2016, pp. 1–6.

[16] B. D. Brown and H. C. Card, “Stochastic neural computation. I. Com-
putational elements,” IEEE Trans. Comput., vol. 50, no. 9, pp. 891–905,
Sep. 2001.

[17] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams digital image processing case studies,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 3, pp. 449–462,
Mar. 2014.

[18] Y. Liu, Y. Wang, F. Lombardi, and J. Han, “An energy-efficient online-
learning stochastic computational deep belief network,” IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 8, no. 3, pp. 454–465, Sep. 2018.

[19] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A stochastic
computational multi-layer perceptron with backward propagation,” IEEE
Trans. Comput., vol. 67, no. 9, pp. 1273–1286, Sep. 2018.

[20] S. Liu, H. Jiang, L. Liu, and J. Han, “Gradient descent using
stochastic circuits for efficient training of learning machines,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 11,
pp. 2530–2541, Nov. 2018.

[21] V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rossellè,
“A new stochastic computing methodology for efficient neural network
implementation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 3,
pp. 551–564, Mar. 2016.

[22] P. P. Chu, FPGA Prototyping by VHDL Examples: Xilinx MicroBlaze
MCS SoC. Hoboken, NJ, USA: Wiley, 2017.

[23] K. Hosseini and M. P. Kennedy, Minimizing Spurious Tones in Digital
Delta-Sigma Modulators. Cham, Switzerland: Springer, 2011.

[24] N. Temenos and P. P. Sotiriadis, “A Markov chain framework for
modeling the statistical properties of stochastic computing finite-state
machines,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
early access, Oct. 3, 2022, doi: 10.1109/TCAD.2022.3211487.

[25] S. Liu and J. Han, “Toward energy-efficient stochastic circuits using
parallel Sobol sequences,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 26, no. 7, pp. 1326–1339, Jul. 2018.

[26] J. E. Stine et al., “FreePDK: An open-source variation-aware design kit,”
in Proc. IEEE Int. Conf. Microelectron. Syst. Educ. (MSE), Jun. 2007,
pp. 173–174.

[27] V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-efficient
hybrid stochastic-binary neural networks for near-sensor computing,”
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2017,
pp. 13–18.

[28] P. Ting and J. P. Hayes, “Eliminating a hidden error source in stochastic
circuits,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Nan-
otechnol. Syst. (DFT), Oct. 2017, pp. 1–6.

[29] V. T. Lee, A. Alaghi, and L. Ceze, “Correlation manipulating circuits for
stochastic computing,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2018, pp. 1417–1422.

[30] J. Yu, K. Kim, J. Lee, and K. Choi, “Accurate and efficient stochastic
computing hardware for convolutional neural networks,” in Proc. IEEE
Int. Conf. Comput. Design (ICCD), Nov. 2017, pp. 105–112.

[31] M. Lunglmayr, D. Wiesinger, and W. Haselmayr, “Design and analysis
of efficient maximum/minimum circuits for stochastic computing,” IEEE
Trans. Comput., vol. 69, no. 3, pp. 402–409, Mar. 2020.

[32] N. Temenos and P. P. Sotiriadis, “Stochastic computing max min archi-
tectures using Markov chains: Design, analysis, and implementation,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 11,
pp. 1813–1823, Nov. 2021.

[33] P. P. Sotiriadis and N. Temenos, “Compact MAX and MIN stochastic
computing architectures,” Integration, vol. 87, pp. 194–204, Nov. 2022.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

Nikos Temenos (Member, IEEE) received the B.Sc.
degree in computer and systems engineering from
the Piraeus University of Applied Sciences, Greece,
in 2015, the M.Sc. degree in microelectronics from
the National and Kapodistrian University of Athens,
Greece, in 2017, and the Ph.D. degree in electrical
and computer engineering from the National Tech-
nical University of Athens, Greece, in 2022.

He has authored several IEEE conferences. His
main research interests include digital VLSI design,
computer arithmetic, and algorithms and architec-

tures for stochastic computing targeting FPGA and ASIC technologies. He is
a regular reviewer for many IEEE TRANSACTIONS and conferences.

Paul P. Sotiriadis (Fellow, IEEE) received the
Diploma degree in electrical and computer engi-
neering from the National Technical University of
Athens (NTUA), Greece, in 1994, the M.S. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, in 1996, and the Ph.D. degree in
electrical engineering and computer science from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2002.

In 2002, he joined as a Faculty Member with the
Department of Electrical and Computer Engineering,

Johns Hopkins University. In 2012, he joined as a Faculty Member with the
Department of Electrical and Computer Engineering, NTUA. He is currently
a Professor of electrical and computer engineering and the Director of the
Electronics Laboratory at NTUA. He has authored and coauthored more than
200 research publications, most of them in IEEE journals and conferences, and
holds one patent. He has contributed several chapters to technical books. His
research interests include design, optimization, and mathematical modeling
of analog, mixed-signal, and RF integrated and discrete circuits, sensor and
instrumentation architectures with emphasis in biomedical instrumentation,
advanced RF frequency synthesis, and the application of machine learning
and general AI in the operation and design of electronic circuits. He has been
a member of technical committees of many conferences. He is a Governing
Board Member of the Hellenic (National) Space Center, Greece. He has
received several awards, including the prestigious Guillemin-Cauer Award
from the IEEE Circuits and Systems Society in 2012 and the Best Paper
Award from the IEEE International Symposium on Circuits and Systems in
2007, the IEEE International Frequency Control Symposium in 2012, the
IEEE International Conference on Modern Circuits and Systems Technologies
in 2019, the IEEE International Conference on Microelectronics (ICM) in
2020, the IEEE International Conference on Microelectronics (ICM) in 2021,
the IEEE Symposium on Integrated Circuits and Systems Design (SBCCI)
in 2021, and the IEEE Circuits and Systems Society (CASS) Outstanding
Technical Committee Recognition in 2022. He is an Associate Editor of the
IEEE SENSORS JOURNAL. He has served as an Associate Editor for the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS
from 2016 to 2020 and the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS—II: EXPRESS BRIEFS from 2005 to 2010. He regularly reviews for
many IEEE TRANSACTIONS and conferences and serves on proposal review
panels.

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:50:08 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCAD.2022.3211487

