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Abstract— An inertial measurement unit (IMU) architecture
estimating angular velocity is introduced. It expands the concept
of multiaccelerometers gyroscope-free IMUs (GF-IMUs), taking
the advantage of their excellent noise performance and resolving
their inability to compensate for accelerometers’ bias and their
requirement for specific accelerometers placement, which makes
GF-IMUs inappropriate for real-world applications. It does so
by embedding the accelerometers in a low-bandwidth closed-loop
configuration with a three-axis gyroscope and by addressing the
complete nonlinear dynamics. An extensive theoretical analysis
provides a complete framework for designing low-noise IMUs,
including sufficient stability criteria for the nonlinear system’s
dynamics. Simulation and experimental results support the the-
oretical analysis and indicate that even a minimal system using
the proposed architecture can outperform the gyroscope in noise
performance by at most 15 dB in some frequency range.

Index Terms— Accelerometer, gyroscope, inertial measurement
unit (IMU), low noise.

I. INTRODUCTION

THE rapid advancement of the microelectromechanical
(MEM) accelerometers and gyroscopes over the past

decades made inertial sensors a key part of several electronic
devices. Nowadays, MEM inertial sensors are used in a
wide range of applications, from commercial devices to high-
end, industrial and military ones. Despite their size and cost
characteristics, which make MEM inertial sensors suitable for
many applications, their big measurement error [1] must be
compensated when accuracy is required.

A big part of the measurement error of an inertial sensor
is static and caused by imperfections of the mechanical
and electronic structures of the sensor. The static error is
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most commonly modeled as a linear combination of differ-
ent error terms (bias, nonorthogonality, cross-axis sensitivity,
and so on) and can be compensated by using the proper
calibration techniques [2], [3], [4], [5], [6], [7], [8], [9].
In addition, a high-performance sensor is commonly calibrated
for the dynamic nonlinear temperature dependence of its
measurement [10], [11].

On the other hand, compensating for the dynamic measure-
ment errors, such as bias drift and nondeterministic noise, is a
more difficult task. To this end, most authors use extra sensors
or filtering and estimation techniques to reduce the effect of
these errors. As an example, in inertial navigation, it is com-
mon to use a magnetometer [12], [13] along with a Kalman
filter [1], [14] to compensate for the cumulative attitude error
introduced by the gyroscope’s measurement errors [15].

Gyroscope-free inertial measurements units (GF-IMUs) esti-
mate the angular velocity of a rigid body using the mea-
surements of multiple accelerometers. A great advantage of
GF-IMUs is that as the distance between the accelerometers
increases, the noise of the angular velocity estimation becomes
lower. Thus, placing the accelerometers in a sufficient distance
(see Section IV), a GF-IMU can outperform a gyroscope of
the same grade1 in terms of noise performance.

However, as shown in Section II-B, GF-IMUs have a big
disadvantage; they cannot compensate for the accelerometers’
bias. More specifically, their open-loop structure translates
even a small bias into a cumulative angular velocity error.
This is an important restriction for real-world applications,
especially when low-cost sensors are considered where the
bias drifts significantly over time.

In our previous works [17], [18], we demonstrated
how using certain GF-IMU architectures and introducing a
three-axis gyroscope in a feedback loop, we overcome the bias
drifting problem of GF-IMUs, while we still take advantage
of their low-noise characteristics. However, the analysis in
[17] and [18] is limited to the cases of specific GF-IMU
architectures, such as [19] and [20], where the angular velocity
is obtained as the solution of a linear system of differential
equations.

In this work, we expand the analysis of [17] and [18] and
consider the general case where several accelerometers are

1Inertial sensors are grouped into four categories (grades) based on their
performance characteristics: navigation grade, tactical grade, industrial grade,
and automotive grade [16].
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placed on a rigid body in arbitrary positions, and the angular
velocity is derived as the solution of a nonlinear system
of differential equations. Similar to [17] and [18], a three-
axis gyroscope is used in a feedback loop to dynamically
compensate for the accelerometers’ bias. The stability of the
proposed closed-loop system is examined analytically, and
closed-form conditions are provided. Finally, extensive simula-
tions and experimental measurements reveal the superior noise
performance of the proposed system; its angular velocity noise
in a 100-Hz bandwidth is about 15 dB lower compared with
the one of the gyroscopes making the proposed architecture
ideal for applications where higher bandwidth is needed.

The rest of this work is structured as follows. In Section II,
the operation principles of GF-IMUs are briefly intro-
duced, and their performance limitations are highlighted.
In Section III, the proposed closed-loop, nonlinear architecture
is introduced. A detailed theoretical analysis is presented, and
stability conditions are provided. In Section IV, the system’s
performance is tested, and some important design consider-
ations are expressed. Finally, the conclusions are drawn in
Section V.

II. GYROSCOPE-FREE IMUS

This section introduces the basic operation principles of
GF-IMUs and highlights their performance limitations.

A. Principle of Operation for GF-IMUs

Consider N single-axis accelerometers, placed at arbitrary
positions on a rigid body, denoted by ri , i = 1, 2, . . . , N . Their
input axes and measurements are denoted as η̂i ∈ R3 and
fi ∈ R, respectively. With respect to the well-used formulation
of [20], the specific force ( f ∈ R3) and the angular velocity
(ω ∈ R3) are given as follows:

F = J x + P (1)

where

x =

[
ω̇

f

]
, J =

[
J⊤

1 J⊤

2

]

F =


f1
f2
...

fN

, P =


η̂1

T �2r1
η̂2

T �2r2
...

η̂N
T �2rN

 (2)

with the auxiliary variables J1 and J2

J1 =
[(

r1 × η̂1
) (

r2 × η̂2
)

. . .
(
rN × η̂N

)]
J2 =

[
η̂1 η̂2 . . . η̂N

]
(3)

and � is the cross-product matrix of the vector ω ≜
[ωx ωy ωz]

T

� =

 0 − ωz ωy

ωz 0 − ωx

−ωy ωx 0

. (4)

Using measurements from a sufficient number of properly
placed accelerometers, one can solve (1) with respect to x in
a least-squares sense as follows:

x =
(
J⊤ J

)−1
J⊤(F − P). (5)

For notation ease, we define J̄ =
(
J⊤ J

)−1 J⊤, and then, (5)
can be written compactly as follows:

x = J̄ F − J̄ P (6)

in which the solution is only meaningful for nonsingular J⊤ J .
For GF-IMUs, the interest is to derive the angular velocity,

ω. Denoting the i th row of J̄ as J̄ i , we write

ω̇ = Ĵ F − Ĵ P (7)

in which

Ĵ =

[
J̄ 1

⊤ J̄ 2
⊤ J̄ 3

⊤
]⊤

. (8)

B. Existing Art and Performance Limitations

Over the years, different architectures using six [20],
nine [19], [21], [22], ten [23], or 12 [24], [25] (single-axis)
accelerometers have been proposed, reaching to a feasible
solution for (7). However, in the existing works, only very
specific geometries for the accelerometers’ placement were
considered in an effort simplifying the original nonlinear
angular velocity estimation problem (7) to a linear one.
In those specific configurations, the nonlinear terms of (7) are
eliminated (i.e., Ĵ P = 0⃗), and thus, the angular velocity is
estimated by ω̇l = Ĵ F. As demonstrated in [17] and [18],
the presence of arbitrarily small static bias in accelerometers’
measurements (1) yields a cumulative estimation error, which
eventually diverges. Note that, this applies even for calibrated
instruments, since a small bias drift is expected over time.

III. PROPOSED SYSTEM

This section introduces the proposed inertial measurement
architecture and provides the detailed dynamics analysis. Easy-
to-check conditions to ensure the stability of the proposed
system under the effects of the gyroscopes’ and accelerom-
eters’ biases are provided.

A. System Architecture

To mitigate the arising issues of existing architectures,
as underlined in Section II-B, the proposed architecture
combines multiple single-axis accelerometers with a single
three-axis gyroscope in a closed-loop configuration. The top-
level architecture of the proposed system is shown in Fig. 1.

In Fig. 1, we consider the general case of an arbitrary
configuration of N > 6 single-axis accelerometers, and thus,
the nonlinear feedback term Ĵ P of (6) is also included. A sec-
ond feedback loop compares the angular velocity calculated
using the accelerometers’ measurements and the GF-IMU
theory with the measurement of the gyroscope and forces
the lower-frequency part of the system’s estimation (ω) to
follow the gyroscope’s measurement. In higher frequencies,
the error-based feedback signal coming from the upper loop
structure is attenuated, and the system outputs the angular
velocity estimated using the accelerometers’ measurements.
By doing so, the proposed system ensures that the constant
accelerometers’ bias does not affect the system’s output,
whereas in the higher-frequency range, the system outputs
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Fig. 1. Top-level architecture of the proposed system.

Fig. 2. Block diagram representation of the proposed system for specific
accelerometers’ configurations eliminating the nonlinear terms of (7).

the low-noise angular velocity estimation derived using the
accelerometers’ measurements. Note that using the architec-
ture of Fig. 1, a small bias is expected on the angular
velocity estimation, caused by the gyroscope’s bias. However,
considering a calibrated gyroscope, this bias is typically small,
and most importantly, it is constant over time.

B. Linear Case

Before analyzing the general case, described by (7),
in which the estimation system is nonlinear, it is insightful to
first consider the application of the architecture on the existing
GF-IMU configurations, as discussed in our prior works [17],
[18]. In this particular case, the proposed system is described
by the block diagram of Fig. 2, and the angular velocity is
obtained by a set of linear differential equations.

At this point, since both the accelerometers input (F ∈ RN

in Fig. 2) and the gyroscope input (ωg ∈ R3 in Fig. 2) are
in vector form, we define the following:

G = I3 ⊗ g, Pp = I3 ⊗ p (9)

where g and p denote the feedback filter’s gain and pole
frequency according to Fig. 2, I3 is the 3 × 3 identity matrix,
and ⊗ denotes the Kronecker product [26].

According to Fig. 2, the system is governed by the following
dynamics:

ω̇l(F, ωg) ≜ Ĵ F−Gω f (10)

in which ω f denotes the output of the low-pass filter. For the
detailed analysis of the linear case under nonideal measure-
ments, the reader is referred to our previous works [17], [18],
as here only a few important results are presented below. The
total dynamics corresponding to Fig. 2 are described by the
following state-space system representation:[

˙δωl

ω̇ f

]
︸ ︷︷ ︸

ẋl

=

[
03×3 − G
Pp − Pp

]
︸ ︷︷ ︸

Al

[
δωl

ω f

]
︸ ︷︷ ︸

xl

+

[
Ĵ 03×3

03×6 − Pp

]
︸ ︷︷ ︸

Bl

[
δF
δωg

]
︸ ︷︷ ︸

ul

(11)

where δωl denotes the error between the estimated angular
velocity and the ground-truth value, and δF and δωg denote
the bias terms of accelerometers and gyroscopes, respectively.
The characteristic polynomial of Al is pAl (λ) = (λ2

+

pλ + gp)3, and its roots (which are the eigenvalues of Al)
are negative for positive g and p. Thus, Al is Hurwitz,
and the extended-estimation system of (11) is bounded-input,
bounded-output (BIBO) stable. This is a rather important
result, as it indicates that the output error of the proposed
system, δωl , does not explode for bounded bias terms (δF and
δωg), which was not the case in previous works. According to
further analysis in [17], given that the biases can be modeled
as step inputs, the system reaches a steady state. In the case
of no bias, the error δω converges to zero, as Al is Hurwitz.
Otherwise, there is a small offset in the estimation, which is
comparable to gyroscope’s one.

C. General, Nonlinear Case

To expand the results derived in Section III-B to the general
case, when the proposed system is nonlinear, it is useful to
write (7) in a more convenient form. To do so, we begin by
denoting the nth row of matrix P as Pn , n = 1, 2, . . . , N

Pn = −ω2
xαn − ω2

yβn − ω2
z γn + ωxωyδn + ωxωzϵn + ωyωzζn

(12)

where

αn = ηy
nr y

n + ηz
nr z

n

βn = ηx
nr x

n + ηz
nr z

n

γn = ηx
nr x

n + ηy
nr y

n

δn = ηx
nr y

n + ηy
nr x

n

ϵn = ηx
nr z

n + ηz
nr x

n

ζn = ηy
nr z

n + ηz
nr y

n . (13)

The product Ĵ P in (7) is written as follows:

Ĵ P =

− − J̄ 1 − −

− − J̄ 2 − −

− − J̄ 3 − −




P1
P2
...

PN

 (14)

which, by replacing P1, P2, . . . , Pn from (12) and after some
algebraic manipulation, becomes

Ĵ P =

 J̄ 1 A J̄ 1 B J̄ 10 J̄ 11 J̄ 1 E J̄ 1 Z
J̄ 2 A J̄ 2 B J̄ 20 J̄ 21 J̄ 2 E J̄ 2 Z
J̄ 3 A J̄ 3 B J̄ 30 J̄ 31 J̄ 3 E J̄ 3 Z


︸ ︷︷ ︸

M


−ω2

x
−ω2

y
−ω2

z
+ωxωy

+ωxωz

+ωyωz


︸ ︷︷ ︸

L(ω)

(15)

where

A =


a1
a2
...

aN

, B =


β1
β2
...

βN

, 0 =


γ1
γ2
...

γN


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1 =


δ1
δ2
...

δN

, E =


ϵ1
ϵ2
...

ϵN

, Z =


ζ1
ζ2
...

ζN

. (16)

Now, considering the proposed system of Fig. 1 and replac-
ing (15) into (7), we write

ω̇ = Ĵ F − ML(ω)−Gω f (17)

where the filter’s dynamics, similar to (11), are described by

ω̇ f = −Pp ω f + Pp(δω − δωg) (18)

and the ground truth angular velocity is given by

ω̇gi = Ĵ F − M L(ωgi). (19)

We formulate the output error’s dynamics as in the linear case.
Considering δω = ω − ωgi, we have

˙δω = −M(L(ω) − L(ωgi)) + ĴδF−Gω f . (20)

By substituting ω = δω + ωgi, we get

L(ω) − L(ωgi) = K (ωgi)δω + L(δω)

= K (ωgi)δω + O
(
∥δω∥

2) (21)

where

K (ωgi) =



−2ωx
gi 0 0

0 − 2ω
y
gi 0

0 0 2ωx
gi

ω
y
gi ωx

gi 0
ωz

gi 0 ωx
gi

0 ωz
gi ω

y
gi

. (22)

Neglecting the higher order terms in (21), we rewrite (20) as
follows:

˙δω = −M K (ωgi)δω + ĴδF−Gω f . (23)

Using (23) and (18), we write the following state-space
system representation for the proposed system:[

˙δω

ω̇ f

]
︸ ︷︷ ︸

ẋ

=

[
−M K (ωgi) − G

Pp − Pp

]
︸ ︷︷ ︸

A

[
δω

ω f

]
︸ ︷︷ ︸

x

+

[
Ĵ 03×3

03×6 − Pp

]
︸ ︷︷ ︸

B

[
δF
δωg

]
︸ ︷︷ ︸

u

.

(24)

Comparing (24) with (11), we notice that the only difference
is the North–West block in matrix A. This block depends on
the actual angular velocity vector ωgi and is of course time-
varying. As a result, we have to further investigate the stability
of the autonomous part of the system (i.e., ẋ = Ax), which
is strongly related to BIBO stability [27], [28]. To this end,
and since the system of (24) can be seen as quasi-linear [29],
[30], we touch upon on some well-established results in linear
parameter-varying (LPV) system’s theory [31], [32], [33].

To start with, we define the time-varying parameters δi ≜
ωi

gi for i = 1, 2, 3 and so as A is a parameter-varying matrix
(i.e., A ≜ A(δ1, δ2, δ3)). These parameters appear in an affine
way in A, i.e.,

A = A0 + A1δ1 + A2δ2 + A3δ3. (25)

Considering that the angular velocity of the object is bounded,
the parameters δi , i = 1, 2, 3 are also considered to be
bounded, i.e., |δi | ≤ δmax. Hence, the parameter vector δ =

[δ1 δ2 δ3]⊤ ∈ D = co(δ1, δ2, . . . , δ8), with δ j
∈ R3 for j =

1, 2, . . . , 8, where co(·) denotes the convex hull of vertices
δ j [34]. In our case, D composes a cube centered at zero with
vertices {±δmax, ±δmax, ±δmax}. Furthermore, we define the set
of vertices Dl = {δ1, δ2, . . . , δ8

}.
The parametric-varying system ẋ = A(δ)x with δ ∈ D is

exponentially stable if [31] ∃ X ∈ R6 × 6, X ≻ 02

A⊤(δ)X + X A(δ) < 0 ∀δ ∈ D. (26)

Using (26), one can in theory prove the stability of the
proposed system by solving an infinite number of linear
matrix inequalities (LMIs). In our case, however, the stability
conditions can be relaxed, and use only a finite amount of
LMIs [31], [33]. Considering that A(δ) is affine on parameter
vector δ, the parametric-varying system ẋ = A(δ)x with δ ∈ D
is exponentially stable if ∃ X ∈ R6 × 6, X ≻ 0

A⊤(δ)X + X A(δ) < 0 ∀δ ∈ Dl . (27)

The origin is an exponentially stable equilibrium point for
the nonlinear system (20) if it is an exponentially stable
equilibrium point for the linear system ẋ = Ax [27]. Thus,
exponential stability for the nonlinear dynamic is also ensured
in a local sense.

The stability condition derived in (27) implies an arbitrary
time-varying parameter δ. If the rate of variation of δ is
bounded, the aforementioned stability test is conservative.
In our system, δ corresponds to the angular velocity of an
object, and its rate of change can, in most cases, be considered
to be bounded.

Similarly, we define δ̇ ≜ [δ̇1 δ̇2 δ̇3]
⊤

∈ D′
=

co(δ̇1, δ̇2, . . . , δ̇8), where δ̇ j denotes the vertices of a cube
centered at zero (i.e., δ̇ j ∈ {±δ̇max, ±δ̇max, ±δ̇max}). We con-
sider δ̇ to be bounded, i.e., |δ̇i | ≤ δ̇max, and we define the
set of vertices D′

l = {δ̇1, δ̇2, . . . , δ̇8
}. The autonomous part of

(24), ẋ = Ax , is exponentially stable in the large, if there exist
X0, X1, . . . , X p with A⊤

ν Xν+Xν Aν ⪰ 0, ν = 1, 2, . . . , m [33],
such that

m∑
k=0

Xkδk ≻ 0 (28)

and
m∑

k=1

Xk δ̇k +

m∑
ν=0

m∑
µ=0

δνδµ

(
A⊤

ν Xµ + Xµ Aν

)
≺ 0 (29)

∀ δ ∈ Dl and ∀ δ̇ ∈ D′

l and δ0 = 1. In this case, m = 3 (25).
The set of LMIs described in (27)–(29) can be solved

using any semidefinite programming suite (e.g., SeDuMi [35])
in standard computational platforms, such as Python (e.g.,
cvxpy [36]), MATLAB (e.g., Yalmip [37]), and so on.

In summary, in the linear case (11), which corresponds to
particular configurations of the accelerometers, the stability
of the proposed system is easily ensured (see Section III-B),

2
≻ 0 denote a positive-definite matrix.
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Fig. 3. IMU configuration composed of nine single-axis accelerometers
(grouped in three three-axis ones) and a single three-axis gyroscope.

and only small attention is required on the design of the
feedback’s filter. However, for an arbitrary configurations of
the accelerometers, we notice that there is a nonlinear feedback
term (6), which introduces a time-varying block, as shown in
(24). This implies that the stability of the system relies on
the sensors’ configuration. On the one hand, there is more
freedom for the sensor structure to be selected, but, on the
other hand, one has to be careful to guarantee stability for the
custom configuration.

IV. PERFORMANCE EVALUATION

In this section, the performance of the proposed architecture
is evaluated using both simulations and experimental measure-
ments. In addition, the restrictions imposed by the previously
derived stability conditions to the sensors’ placement and the
design of the feedback filter are highlighted.

A. Noise Performance

To evaluate the noise characteristics of the proposed archi-
tecture, we consider the system configuration of Fig. 3. The
feedback’s gain is set to g = 10, while the cutoff frequency
of the low-pass filter is set to p = 6π rads/s (3 Hz).

Using MATLAB’s Simulink, we simulated the described
configuration assuming white noise sequences for both the
accelerometers’ and the gyroscope’s inputs. The power spec-
tral density (PSD) of the output noise for all accelerometers
is set to be equal to SA = −50 dB/Hz, while the PSD of all
gyroscope’s axes is SG = −65 dB/Hz.

We use the noise model introduced in [17] to derive the
PSD of the estimated angular velocity noise, which is shown
in Fig. 4, for two different values of the parameter l in
Fig. 3. In Fig. 4, it is shown that greater distance between the
accelerometers (l) leads to significantly lower angular velocity
noise in the higher frequencies where the output is dominated
by the accelerometers’ measurements.

B. Experimental Results

The performance of the proposed system in real-world con-
ditions is tested using the experimental setup, shown in Fig. 5.
The experimental setup is composed of four low-cost inertial
sensors (LSM9DS1 system-in-package (SiP) by STMicroelec-
tronics) mounted on a laser-cut steel frame. In Table I, the

Fig. 4. PSD of the proposed system’s output noise (X -axis) compared
with the PSD of the gyroscope’s output noise (X -axis) for (a) l = 1 m and
(b) l = 4 m.

TABLE I
PERFORMANCE CHARACTERISTICS OF THE ACCELEROMETER (A) AND

THE GYROSCOPE (G) EMBEDDED IN THE LSM9DS1 SIP

most important performance characteristics of the LSM9DS1
SiP are presented.

The effect of sensors’ bias and noise is first examined by
capturing the output of the accelerometers and the gyroscope
of the designed IMU, while the IMU is still. In Fig. 6, the
output angular velocity of the standard gyroscope-free, open-
loop approach, without using the gyroscope at the origin,
is compared with the output of the proposed closed-loop
system. The output of the proposed closed-loop architec-
ture exhibits a small, constant over time bias in contrast
to the output of the open-loop system, which rises over
time.

The noise performance of the proposed architecture is
also evaluated using the experimental setup of Fig. 5. More
specifically, accelerometers’ and gyroscope’s measurements
were captured, while the platform was still to derive the PSD
of the estimated angular velocity noise, which is shown in
Fig. 7, and compared with the PSD of the gyroscope’s output
noise. As shown in Fig. 7, the noise PSD of the estimated
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Fig. 5. Experimental setup composed of 12 (single-axis) accelerometers—-
grouped in four three-axis ones with lx = ly = lz = 0.5 m.

angular velocity is significantly lower compared with the
one of the gyroscope’s outputs, confirming the simulation
results.

Finally, the dynamic response of the system is evaluated.
To this end, we rotated the setup of Fig. 5 by hand and
captured the aceelerometers’ and gyroscope’s measurements.
Using them, we estimated the angular velocity of the sensors’
platform and compared it with the gyroscope’s measurements,
as shown in Fig. 8. The output of the proposed system success-
fully tracks the gyroscope’s measurements in low frequencies,
while, zooming into the data, the noise suppression in the
higher frequencies is revealed.

C. System Design and Stability Considerations

In Section IV-A, we demonstrated that the angular veloc-
ity noise of the proposed IMU becomes lower when the
accelerometers are spread over a wider distance. In this
section, we will examine the effect of the feedback filter’s
design on the output noise, and furthermore, we will demon-
strate how improper design of the filter may lead to an unstable
system.

Fig. 6. (a) Output angular velocity of the proposed system compared with
(b) output angular velocity of the standard gyroscope-free, open-loop system
under the effects of measurement noise and bias.

Fig. 7. PSD of the proposed system’s output noise (X -axis) compared with
the PSD of the gyroscope’s output noise using the experimental setup of
Fig. 5.

We assume the configuration of Fig. 3, and we consider
the sensors’ distance to be equal to l = 2 m. The power of
the system’s angular velocity noise in a 100-Hz bandwidth is
presented in Tables II–V for different values of the maximum
angular velocity (ωmax) and the feedback filter’s pole ( f p =

p/2π ) and gain (g) parameters. The configurations for which
the stability cannot be guaranteed using (27) are denoted with
“X” in Tables II–V.

In Table II, for ωmax = 1 rad/s, the system is stable for every
pair ( f p, g), and the filter’s design only affects the output noise
power, which varies from −61.9 up to −53.3 dB. Note the
lowest noise power of −61.9 dB is more than 15 dB lower
than the output noise of the gyroscope in the same bandwidth.
While the value of ωmax gets higher, the stability of the system
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TABLE II
ANGULAR VELOCITY NOISE WITHIN [0, 100] Hz FOR ωMAX = 1 rad/s AND

DIFFERENT VALUES OF f p AND g

TABLE III
ANGULAR VELOCITY NOISE WITHIN [0, 100] Hz FOR ωMAX = 5 rad/s AND

DIFFERENT VALUES OF f p AND g

TABLE IV
ANGULAR VELOCITY NOISE WITHIN [0, 100] Hz FOR ωMAX = 7 rad/s AND

DIFFERENT VALUES OF f p AND g

TABLE V
ANGULAR VELOCITY NOISE WITHIN [0, 100] Hz FOR ωMAX = 10 rad/s AND

DIFFERENT VALUES OF f p AND g

depends more on the design of the feedback’s filter. However,
even in the case of ωmax = 10 rad/s (Table V), proper design
of the feedback filter leads to a stable configuration with only
1.4-dB more noise power (−60.5 dB), which is still about
15 dB lower than the output noise of the gyroscope in the
same bandwidth.

As expected from classical control, picking a high gain
“facilitates” the stability condition [27] but deteriorates noise
performance, as shown in Tables II–V. In this article, two
approaches for matching (g, p) parameters are suggested; one
computation-based and one tuning-based. For the former, one
has to create a grid of (g, p) values, as the one illustrated
in Tables II–V, using simulations, which are cheap in the
sense of time and processing. This procedure can be further
automatized and optimized using an optimization algorithm,
such as particle swarm optimization (PSO) [38], to find the
best matching. For a less computational approach, one can
select a high gain value and tune the p value manually to
improve the noise performance. From this point onward, p

Fig. 8. Output angular velocity of the proposed system (x-axis) compared
with the output angular velocity of the gyroscope (x-axis), while the platform
is rotated by hand.

is fixed. Afterward, the user decreases the gain up to the
point that stability is not guaranteed. The last value of gain g
ensuring stability suits. This method is easily applicable to all
the tables presented.

V. CONCLUSION

An IMU architecture using several accelerometers and a
single three-axis gyroscope was introduced. The proposed
architecture combines the low-noise characteristic of GF-IMUs
and ensures the systems stability and immunity to the
accelerometers’ bias by using the gyroscope in a closed-loop
configuration. The extensive theoretical analysis as well as
simulation and experimental results indicated that the proposed
system is capable of providing up to 15 dB less angular
velocity noise in its output compared with a gyroscope of
the same grade, while its stability can be guaranteed when it
is carefully designed. The GF-IMUs were extensively studied
over the past years, but their inherent disadvantage to com-
pensate for the accelerometers’ bias made the inappropriate
for real-world applications despite their very good noise per-
formance. The proposed architecture provides a solution to
this problem and enables the development of low-noise, high-
performance IMUs.
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