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Abstract
A low-power, integrated, fully-analog classification system, appropriate for battery-dependent operation is proposed. It is

comprised of an analog feature-extraction block and an ultra-low power (112–520 nW) and area-efficient analog radial

basis function classifier and can be directly connected to an analog sensor avoiding power costly data conversion. The

classifier consists of a proposed bump circuit and the Lazzaro Winner-take-all circuit and it is evaluated using a real-world

dataset achieving 87.6% classification accuracy, which is only 1.4% less than the that of the theoretical software-based

model. The classifier was designed and post-layout simulated in a TSMC 90 nm CMOS process in the Cadence IC Suite.

Keywords Analog integrated implementation � Bump circuits � Classification system � Low-power design �
Radial basis functions

1 Introduction

Internet of Things (IoT) is a system of interrelated devices

connected to the internet to transfer and receive data over a

wireless network without human intervention [1–3]. A

typical IoT system contains multiple sensors to sense dif-

ferent physical variables. In the recent years, there is a

significant improvement in sensor manufacturing technol-

ogy which leads to sensor miniaturization and significant

cost reduction thus allowing a tighter integration with an

IoT device [4]. Except for multiple sensors an IoT system

consists of an analog front-end (amplifiers, filters and

converters), a digital back-end (digital processor, memory,

digital transmission and others) and sometimes a central

storage system (data center).

The continuing progress in technology leads to new

crucial requirements of a smart sensor IoT system. These

requirements are autonomy, area efficiency and smartness

[5]. Autonomous systems are based on low-power con-

sumption in order to mitigate the effects of limited power

supply or battery dependencies with no online re-charge-

ability. This means that they should operate autonomously

for long periods of time (long duration of the stored

energy). Area efficiency is achieved through the continuing

progress in Integrated Circuit (IC) technologies [4]. This

leads to more complex computations within the same chip

area. As a result, the implemented systems become smarter

and more efficient (increased sensor integration and com-

plex computations are achieved).

With the aim of achieving the previous requirements,

IoT is combined with Machine Learning (ML) algorithms

and new computation techniques [6, 7]. In particular, ML

algorithms and tools offer an easy and efficient solution to

process data from multiple sources (for example sensors).

In this way, real-time monitoring on raw data can easily

extract the useful information and prevent unnecessary data

transfer. This improves the response times and saves, the

usually limited, bandwidth of many different applications.
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By employing edge computing techniques and directly

integrating ML algorithms on sensor systems, the afore-

mentioned benefits are greatly increased by avoiding

transfering data to data centers [8–10]. This promising

alternative increases processing speed by bringing the

computation units near to the source.

However, existing IoT implementations rely on power

hungry digital accelerators, which are usually limited by

remote power constraints [11]. Typical all-digital inferences,

shown in Fig. 1(a), consume from several lW to a couple

mW [12, 13]. A new candidate, capable of further reducing

the power consumption is analog computing [14, 15]. By

incorporating application specific mathematical approaches

and sub-threshold region techniques [16], analog integrated

circuits can provide high speed, high accuracy and nano-

Watt power consumption processing. In classification-based

applications, there is a trend in which the digital feature

extraction (FE) blocks are replaced with analog ones, shown

in Fig. 1(b) [15, 17–21]. In these works, however, the clas-

sifier is still implemented using digital engines.

To this end, in this work we propose an ultra-low power

classification system that takes advantage of analog feature

extraction along with an analog classifier, to minimize the

system’s power consumption [22]. Such pure analog

architectures completely eliminate the need for digital

back-end and hence Analog-to-Digital converters (ADC).

The whole classification system is illustrated in Fig. 1(c).

This article extends the authors’ previous work [23], which

shares a 0.6 V, 3.3 nW, adjustable Gaussian circuit for

tunable kernel functions. Specifically, it brings updated

related work, refines the Gaussian circuit and applies the

proposed circuit to an ultra-low power (520 nW) analog

integrated Radial Basis Function (RBF)-based classifier

tested on a real-world application [24].

The remainder of this paper is organized as follows. In

Sect. 2 the necessary background for RBFs is provided.

The proposed architecture along with the utilized building

blocks are presented in Sect. 3. The proper operation of the

proposed classifier is tested on a real-world classification

dataset and the results are provided in Sect. 4. A perfor-

mance summary of existing analog and mixed-mode clas-

sifiers is discussed in Sect. 5. Section 6 concludes the

article.

2 Radial basis functions

RBFs are real and positive-valued functions that depend on

the distance between a fixed point and an input vector

[25, 26]. The closer the input is to the fixed point, the higher

the value of the RBF. Such functions are the Gaussian, the

Multiquadratic, the polyharmonic spline and others [25].

RBFs are commonly used for mathematical approximations,

for interpolations, as activation functions in Neural Net-

works (NN) or as kernels in ML algorithms [27]. A multi-

variate Gaussian RBF (GRBF) with a diagonal covariance

matrix (mutually exclusive dimensions) is given by:

N ðX j M;RÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞN � det ðRÞ
q e�

1
2
�ðx�MÞTR�1ðX�MÞ

¼
Y

N

n¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p � r2n
p e�

1
2
�ðxn�lnÞ2=r2n ;

ð1Þ

where, X is a N dimensional (N-D) input vector, M and R
are the mean value and covariance matrices, respectively

and xn, ln and rn are the n-th entry of input vector X, the

mean value and diagonal covariance matrices M and R,
respectively.

For a GRBF network (GRBFN)-based classifier [28], in

a classification problem with Ncla classes, the distance

dcðXÞ of the input X from the fixed template corresponding

to a class c is calculated as:

dcðXÞ ¼ 1�N ðX j Mc;RcÞ: ð2Þ

Here, Mc and Rc is the fixed template (mean value) and the

covariance matrix of the GRBF belonging in class c,

respectively. The output of the classifier is the class with

the smallest distance from the input vector:

y ¼ argmin
c2f1;:::;Nclag

fdcðXÞg ¼ argmin
c2f1;:::;Nclag

f1�N ðX j Mc;RcÞg:

ð3Þ

Equation (3) can be simplified to:

y ¼ argmax
c2f1;:::;Nclag

fN ðX j Mc;RcÞg: ð4Þ

(a)

(b)

(c)

Fig. 1 Classification system comparison. a All-digital inference.

b Analog feature extraction with a digital classifier. c Proposed

classification system, combining Analog feature extraction with an

Analog classifier, eliminating most digital circuitry
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3 Proposed RBF classifier

In this Section, the proposed GRBF classifier and its basic

building blocks; a circuit generating a Gaussian function and

a circuit implementing the argmax function, are thoroughly

analyzed. This classifier’s architecture, shown in Fig. 2, is

aimed for a 4 class and 7 features classification problem. By

changing the number of the RBF class cells, the architecture

can be adapted for more or less classes. The currents ½Ici�4i¼1,

generated from the RBF class cells, depict the value of the 7-

D GRBF describing each class i. The Winner-take-all

(WTA) circuit applies the argmax operator on these 4 cur-

rents, based on (4), and indicates thewinning class (largest 7-

D GRBF value) as an one-hot-vector ½I1; I2; I3; I4�. To

address battery-dependent applications (low power con-

sumption requirements), the power supply rails are set to

VDD ¼ �VSS ¼ 0:3V and all transistors operate in the sub-

threshold region for the entire classifier.

3.1 Gaussian function circuit

A typical Gaussian function circuit [23] (Bump circuit) is

shown in Fig. 3 and produces a univariate GRBF, shown in

Fig. 4. The output of the differential pair (Mn1 �Mn4)

when changing the input voltage Vin consists of 2 com-

plementary sigmoidal currents. The current correlator

(Mp1 �Mp6), correlates these currents and outputs a bell-

like (Bump) curve that resembles the Gaussian function.

The parameter voltages Vr and Vc are used to alter the

mean value and the variance of the GRBF, respectively.

The bias current Ibias controls the height of the GRBF. This

architecture can be easily expanded to generate multivari-

ate GRBFs [23, 29].

By implementing multivariate Bump circuits, a range of

applications is available [30]. In particular, Bump circuits

can be utilized in ML, neuromorphic, smart sensor and

fuzzy or neuro-fuzzy systems. In ML, there are multiple

models that require Gaussian Kernels, like Support Vector

Machines (SVMs), K-means-based models, Self Organized

Maps (SOMs) or simply as an activation function in a RBF

NN. In neuromorphic systems, Gaussian functions can be

used as a similarity metric instead of Euclidean ones, since

they have infinite derivatives. In literature, there are smart

sensor systems which also use Gaussian functions instead

of Euclidean ones, due to their high operation speed and

ease of implementation. Fuzzy and neuro-fuzzy systems,

usually prefer bell-shaped functions as membership

Fig. 2 Proposed RBF-based classifier. (left) Each RBF class cell

corresponds to a specific class. The currents ½Ici�4i¼1 depict the GRBF

values. Each class cell requires 7 Vin, Vr and Vc voltages, each one for

each feature. (right) A Lazzaro WTA composed of 4 neurons; one for

each class. The output currents ½Ii�4i¼1 indicate the winning class in the

form of an one-hot-vector current

Fig. 3 A typical bulk-controlled Gaussian function (Bump) circuit

with a non-standard differential pair and a symmetrical current

correlator. The mean value, the variance and the height of the GRBF

are controlled by the parameter voltages Vr , Vc and the bias current

Ibias, respectively

Fig. 4 The output current of a typical Bump circuit, for Ibias ¼ 5 nA,

Vc ¼ �300mV and Vr ¼ 0 V
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functions (with many applications in controllers and pat-

tern recognition).

In this work, the proposed Bump circuit, shown in

Fig. 5, is a modification of our previous work [23], shown

in Fig. 3. The PMOS diode connected transistors (Mp7,Mp8)

are replaced by NMOS ones (Mn5,Mn6) in order to shift the

variance range of the Bump circuit to smaller values.

Smaller variances are usually desired in applications with

multiple GRBFs. The simple current mirror is changed to a

cascode one to enhance mirroring even for small current

values, which is essential for multivariate Bump circuits.

Since the output current of a Bump is smaller that the input

one, the bias current of the last Bump is significantly

reduced in a multivariate Bump circuit. The aim of both the

improvements is to produce a higher quality Gaussian

function and increase the classification accuracy of the

proposed classifier. All transistors’ dimensions are sum-

marized in Table 1.

Each Bump circuit outputs a univariate Gaussian curve,

shown in Fig. 6. By connecting two or more Bump circuits

in a cascaded format, the output of the last Bump is equal

to their multiplication and therefore one can obtain a

multivariate GRBF, based on (1). In this topology only the

first Bump has a preset bias current Ibias, while the rest are

biased with the output current of the previous Bump cell.

Each Bump cell has a unique input voltage Vin and

parameter voltages Vr and Vc. A 7-D Bump circuit is

shown in Fig. 7 and a proof of concept 2-D illustration is

shown in Fig. 8. A typical 2-D Bump circuit is composed

of 2 Bump circuits which are connected in a cascaded

form, same as in Fig. 7. This topology constitutes a RBF

Class cell and can be easily scaled for higher or lower

feature dimensionality.

The three main characteristics of a univariate GRBF

(mean value, variance, height) are controlled via the cir-

cuit’s parameters [30]. In particular, the voltage parameter

Vr is equal to the mean value, and hence the maximum of

the output curve is achieved when Vin ¼ Vr. Similarly, the

bias current Ibias is equal to the height of the GRBF; a

Fig. 5 The proposed bulk-controlled Bump circuit with a modified

differential pair, a cascode current mirror and a symmetrical current

correlator. The mean value, the variance and the height of the GRBF

are controlled by the parameter voltages Vr , Vc and the bias current

Ibias, respectively

Table 1 MOS transistors’ dimensions (Fig. 5)

Differential

block

W/L

ðlm=lmÞ
Current

correlator

W/L

ðlm=lmÞ

Mn1–Mn4 1.2/0.4 Mp1,Mp2 0.8/1.6

Mn5, Mn6 4.8/0.4 Mp3-Mp6 0.4/1.6

Mn7–Mn9 0.4/1.6 – –

Mn10 1.6/1.6 – –

Fig. 6 The output current of the proposed Bump circuit, for

Ibias ¼ 5 nA, Vc ¼ �300 mV and Vr ¼ 0 V (post-layout simulation)

Fig. 7 The proposed 7-D Bump circuit composed of 7 Bump circuits

in a cascaded format. Each Bump has its own input and parameter

voltages Vin, Vr and Vc
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decrease in the bias current results in the same decrease of

the output current’s peak. The relation between the voltage

parameter Vc and the variance of the GRBF is a complex

non-linear monotonically decreasing function. The appro-

priate figures are shown in Figs. 9, 10 and 11. This

behavior is similar for multivariate Bump circuits.

The proposed circuit’s sensitivity behavior is evaluated

using the Monte-Carlo analysis tool for N ¼ 200 points. In

Fig. 12, the corresponding histograms for the three main

characteristics of the Gaussian curve are depicted. The

mean values and the standard deviations (std) for each

histogram are summarized on Table 2. For comparison

purposes the same procedure is repeated for the typical

Bump circuit [23] and the results are shown in Fig. 13.

Considering the desired values for each characteristic,

Iheight ¼ 2nA, Vmean ¼ 0V and Vstd ¼ 108mV , the proposed

circuit is consistently better than the typical one.

3.2 Winner-take-all circuit

The second building block, is the LazzaroWTA circuit [31].

In general, for an Ncla classification problem, this analog

building block has Ncla pairs of input-output ports

½Iini ; Iouti �
Ncla

i¼1 and implements the argmax function [31]. We

say that each pair (Iini ; Iouti) constitutes a neuron, with a

typical example shown in Fig. 14. In practice, given a set of

Ncla input signals and assuming that there is a single maxi-

mum among them, located at index j� Ncla, the output Ioutj
has a non-zero value (winner), whereas the rest are zero. If

there is no single maximum, theWTA circuit operates in the

linear region, where more than one winners may occur.

For the aforementioned classification problem, a WTA

circuit composed of Ncla ¼ 4 neurons, shown in Fig. 15, is

required. To better illustrate the behavior of this circuit a

random representative case, regarding the input currents

½Iini �
4
i¼1, is considered, shown in Fig. 15 (left). The output

currents, shown in Fig. 15 (right), accurately indicate the

largest input. The variable parameter Ix is used to tune the

input currents. For each neuron, the transistors’ dimensions

are equal to W=L ¼ 0:4 lm=1:6lm.

Fig. 8 The output current of a 2-D Bump circuit with bias current

Ibias ¼ 5 nA and the parameter voltages Vr1;2 ¼ 0 V and

Vc1;2 ¼ �300 mV is a 2-D Gaussian Function

Fig. 9 A parametric simulation over Vr (mean value adjustment) of

the proposed Bump circuit’s output current, for Ibias ¼ 5 nA and

Vc ¼ 300 mV (post-layout simulation)

Fig. 10 A parametric simulation over Ibias (height scaling) of the

proposed Bump circuit’s output current, for Vr ¼ 0 V and

Vc ¼ 300 mV (post-layout simulation)

Fig. 11 A parametric simulation over Vc (variance tuning) of the

proposed Bump circuit’s output current, for Ibias ¼ 5 nA and

Vr ¼ 0 V (post-layout simulation)
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4 Application example and simulation
results

In this Section, the proposed architecture is tested on a

real world protein’s cellular localization sites dataset [24],

to confirm its proper operation. In particular, the Ecoli data

set from the University of California, Irvene (UCI)

machine learning repository [32] is used. The data are

separated into a training and a test set, consisting of 234

and 102 7-D features regarding E. Coli proteins, respec-

tively. The values of the employed data can be easily

derived from an analog smart sensor system. This means

that the proposed classifier can be used as a main building

block in the classification system shown in Fig. 1(c). The

102 E. Coli proteins of the test set are classified into 4

possible classes (localization sites) by the proposed analog

integrated architecture achieving 87:6% accuracy.

The parameters of the hardware-based classifier are

copies of a software-based one trained in a software

environment. The classifier is trained only once and then,

the parameters are stored in an analog on-chip memory. On

the contrary, the input signals originate from a previous

analog feature extraction stage as rectangular pulses.

Therefore, the training is performed in software to reduce

the area and power footprint of the hardware-based training

circuitry. Hence, the analog classifier is used only for

Fig. 12 Monte-Carlo simulation of the proposed Bump circuit, for

200 points. Three histograms are provided, regarding (right) the

height, (middle) the mean value and (left) the standard deviation of

the Gaussian curve. The desired corresponding values are

Iheight ¼ 2 nA, Vmean ¼ 0 V and Vstd ¼ 108 mV, respectively

Table 2 Monte-Carlo histogram

metrics
Characteristic Proposed mean value Proposed std value Typical mean value Typical std value

Height 1.82 nA 0.15 nA 2.79 nA 0.38 nA

Mean value – 1.87 mV 1.03 mV 8.31 mV 0.71 mV

Standard variation 109.4 mV 1.8 mV 107.2 mV 1.7 mV

Fig. 13 Monte-Carlo simulation of the typical Bump circuit, for 200

points. Three histograms are provided, regarding (right) the height,

(middle) the mean value and (left) the standard deviation of the

Gaussian curve. The desired corresponding values are Iheight ¼ 2 nA,

Vmean ¼ 0 V and Vstd ¼ 108 mV, respectively

Fig. 14 A standard Lazzaro

neuron cell
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prediction and is capable of a maximum operation speed of

170K classifications
second .

For comparison purposes and to highlight the benefits of

the proposed modifications, two RBF-based classifiers are

presented. The first, called Proposed CLF I, uses the bump

circuit implemented in our previous work [23] as its basic

building block. The second, called Proposed CLF II, utilizes

the proposed bump circuit instead. Both implementations are

also compared with a software-based one in terms of clas-

sification accuracy. In particular, the classification results

over 20 separate training iterations are depicted in

Figs. 17 18 and 19. A summary of the results for the three

implementations is provided in Table 3. For this application,

the Proposed CLF II outperforms the Proposed CLF I (17–

20% increase in accuracy) and its performance is very close

to the software-based implementation (1:4% decrease in

accuracy). Additionally, the Proposed CLF II circuit’s sen-

sitivity behavior is evaluated using theMonte-Carlo analysis

Fig. 16 The decision boundaries

generated from a 4 neuron

WTA, in a random case, (left)

the input currents (right) the

output currents. Ix is a variable

controlling the input currents

Fig. 15 An example Lazzaro

WTA circuit composed of 4

neuron cells

Fig. 17 Classification accuracy histogram of a software-based

classifier over 20 iterations

Fig. 18 Classification accuracy histogram of the Proposed CLF I over

20 iterations (post-layout simulations)
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tool for N ¼ 100 points for one of the 20 previous iterations.

The corresponding histogram with a mean value of

lM ¼ 0:877, and a standard deviation of rM ¼ 0:011 is

presented in Fig. 20. Both tests confirm the proper perfor-

mance and sensitivity of the proposed architecture.

The architecture has been designed and simulated in a

TSMC 90nm CMOS process using the Cadence IC suite.

All simulation results are conducted on the layout (post-

layout simulations) presented in Fig. 21. The implemen-

tation of the layout is based on common-centroid technique

and extra dummy transistors are used in order to avoid

mismatches and manufacturing considerations [33].

5 Performance summary and discussion

In this Section, a summary of recent analog and mixed-

mode classifiers, along with this work (Proposed CLF II) is

provided. All the classifiers presented in this work incor-

porate Gaussian function circuits as their basic building

block. Nonetheless, it is worth mentioning that a fair

comparison between hardware-based ML implementations

is not possible since there are numerous aspects that need

to be considered combinatorially, such as the implemented

technology, the application, power and area specifications,

the computation speed and so forth. A performance sum-

mary for recent existing RBF-based classifiers is provided

in Tables 4 and 5. These classifiers are based on ML

algorithms or models that are suitable (provide more

advantages) for specific applications. These are RBF NNs

[34–36], RBF Vector quantizers (VQs) [22, 37, 38], SVM

[39, 40], a Deep ML (DML) engine [41] and a SOM [42].

In general, RBFs are preferred over other non-linear

functions, since they can easily model a vast variety of data

following the Normal distribution [43]. RBF-based classi-

fiers are only a small portion of the existing classifiers, for

example random forests, DNNs, RNNs, LSTMs [26, 44].

Despite being less accurate than other state-of-the-art

classifiers, their ease of implementation makes them more

desirable in analog integrated ML applications.

The aim of this work is the implementation of an ultra-

low power and area efficient RBF classifier. Since the

Bump circuit is used in a cascaded format multiple times, it

is dominant regarding the area and power efficiency of the

whole classifier. The aforementioned modifications of the

proposed Bump circuit greatly increase the accuracy of the

classifier ([ 17%) while maintaining a low power con-

sumption. In particular, the Proposed CLF I architecture

consumes from 4.3 to 14.8 nW per Bump circuit, whereas

the Proposed CLF II consumes from 4 to 17.5 nW per

Bump circuit (depending on the system’s input). Addi-

tionally, by designing a pure analog classifier the total

power consumption is reduced in comparison to power

hungry mixed-mode, shown in Tables 4, 5, or digital

implementations, for example [12, 13]. Moreover, a fully

analog classification system, shown in Fig. 1(c), provides a

digital output without the need for Analog-to-Digital

converters.

Fig. 19 Classification accuracy histogram of the Proposed CLF II

over 20 iterations (post-layout simulations)

Table 3 Classification accuracy (over 20 iterations)

Method Best Worst Mean Std.

Software 0.931 0.824 0.890 0.030

Proposed CLF I 0.755 0.637 0.691 0.032

Proposed CLF II 0.922 0.833 0.876 0.020

Fig. 20 Post-layout Monte-Carlo simulation histogram of the Pro-

posed CLF II architecture (for one of the previous 20 iterations)
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6 Conclusion

An analog integrated GRBF-based classifier was presented

to be used as an ultra-low power block for a fully analog

classification system. It utilizes the proposed Bump circuit

and a 4 neuron Lazzaro WTA circuit. The proposed clas-

sification system includes an area efficient, 112–520 nW

analog classifier which can replace a power hungry digital

engine. A real-world classification problem confirmed the

proper operation of the proposed architecture, achieving

87:6% classification accuracy. All post-layout simulation

results were extracted using the Cadence IC Suite in a

TSMC 90nm technology.

Availability of data and materials: Data used in the experiments has

been generated through publicly available simulators. Related simu-

lation files have been shared through the links given in the paper in

order to fully reproduce the presented results.

Fig. 21 Layout of the proposed

classifier

Table 4 Analog integrated ML

classifiers summary
Technology Architecture Classifier No. of dimensions

This work 90 nm Analog GRBFN 7

[34] 180 nm Mixed-mode RBF NN 1

[35] Discrete Analog RBF NN N/A

[36] 130 nm Mixed-mode RBF NN *1280� 720

[22] 0:5 lm Analog RBF VQ 2

[37] 0:6 lm Mixed-mode RBF VQ 16

[38] 2 lm Analog RBF VQ 16

[39] 180 nm Analog SVM 2

[40] 180 nm Analog SVM 64

[41] 130 nm Mixed-mode DML engine 8

[42] 180 nm Analog SOM 3

*Pixels

Table 5 Analog integrated ML

classifiers summary
Energy per classification Power consumption per bump Area

This work 0.75–3.3 pJ 4–17.5 nW 0:050mm2

[34] N/A *13.5 nW **0:013mm2

[35] N/A *4:1 lW **10 lm2

[36] N/A 10:5 lW 0:140mm2

[22] 25.2–89.6 nJ 90–160 lW 2:250mm2

[37] 60–600 nJ N/A 20:250mm2

[38] N/A N/A 4:950mm2

[39] 252.9 pJ N/A 0:060mm2

[40] N/A N/A N/A

[41] 1:37 nJ N/A 0:360mm2

[42] 352–769 nJ N/A 0:240mm2

*Minimum power consumption

**Area per bump
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Declarations

Ecoli Data Set: https://archive.ics.uci.edu/ml/datasets/ecoli
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