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Abstract—In this work we propose a near-optimal Bang-Bang
controller for the longitudinal motion of a quadrotor UAV which
minimizes the active flight time. The proposed controller is closed
loop, has simple cascaded structure and can be used in online
navigation since it has minimum computational requirements
compared to other approaches in the literature. It is evaluated via
numerical simulation for a standard quadrotor nonlinear model.

Index Terms—quadrotor, optimal control, least time, bang-
bang

I. INTRODUCTION

Quadrotors and UAVs (Unmanned Aerial Vehicles) are
receiving considerable interest from both the commercial
and the scientific field, in the last decade due to their cost
saving technology and the variety of possible applications.
The quadrotor unmanned aerial vehicle is a great platform
for control systems research as its nonlinear nature and under-
actuated configuration make it ideal to synthesize and analyze
control algorithms [1].

Currently, one of the main drawbacks of UAVs is the limited
flying time. Quadrotors are powered by high-performance
lithium batteries that usually last for about 20 to 30 minutes.
Environmental dynamic disturbances increase power consump-
tion and flight times are shortened. Short periods of time
matter. Therefore, time efficiency is a very important metric for
a control strategy. Considering that model is strongly coupled
and nonlinear, solving least time problem using Pontryagin’s
Minimum Principle [2] displays deterring computational cost.

In the wider category of time optimal control strategies,
optimizations are proposed in a numerical approach by min-
imizing criteria functions, like in [3]. These strategies suffer
from high computational complexity since they require heavy
optimization techniques like Non Linear Programming (NLP).
These computations are not viable for an embedded micro-
controller. D’Andrea et al [4] have solved the problem of
closed loop controller for a simplified 2D model, by finding a
priori the control’s switching times numerically. Even though
they solve the problem using analytical tools, it is stated that
results can be only regarded as benchmarks due to the high
computational cost.

In this work, we tackle the 2D planar motion time optimal
problem for rest to rest transition, developing the idea of
Cascaded Bang-Bang Control. Our control scheme is closed
loop, ensuring robustness and efficiency for a system with lim-
ited computational capabilities. Our controller’s performance
is compared to that of a traditional, yet prevalent controller.

The paper is structured as it follows. In Section II, a
mathematical model for UAVs is being presented and we
touch upon some necessary but well-known analytical results,
for Bang-Bang control for Double Integrator systems. Section
III presents the core of our control algorithm. The efficiency
of our algorithm is underlined through simulation results in
Section IV.

II. PRELIMINARIES

A. Mathematical Model

Quadrotors are modelled as symmetric 3D rigid bodies.
Propellers produce vertical thrust over the aircraft’s attitude.
Translation motion is expressed with respect to inertia frame.
Angle representation for rotational motion is done using Euler
Angles (roll φ, pitch θ, yaw ψ) and the corresponding Rotation
Matrices.

Fig. 1. Quadrotor simplified model. Propellers’ velocities Ωi are expressed
in rpm.
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The standard quadrotor model [5], [6] is

mr̈ = −mgez +RfT ez

ω̇ = (Iω)× ω + Iτ
(1)

where

m : mass of quadrotor
g : gravity acceleration

ez : 3× 1 frame vertical vector [0 0 1]T

r : 3× 1 position vector [x y z]T

ω : 3× 1 angle velocity vector [φ̇ θ̇ ψ̇]T

I : 3× 3 moment of inertia matrix
fT : vertical thrust

τ : 3× 1 torque vector [τφ τθ τψ]T

R : 3× 3 rotation matrix transforming body to inertia frame

Rotation matrix is defined as

R =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


where c(·) = cos(·), s(·) = sin(·). For a symmetric aircraft
I = diag(Ix, Iy, Iz). Thrust fT and torque τ are given in the
following way

[
fT
τ

]
=


b b b b
0 −bl 0 bl
−bl 0 bl 0
−d d −d d




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 (2)

where

b : thrust factor
d : drag factor
l : propeller’s center to quadrotor’s center of mass distance

Ωi : i− propeller’s angular velocity

Since coefficient matrix is invertible, desired generalized force
can be translated to desired propellers’ velocities.

B. Review of Bang-Bang Controller for Double Integrator

The double integrator is the simplest linear non-trivial
second order model and allows us to extract very important
analytical results.

ẋ1 = x2

ẋ2 = u
(3)

We are then faced with the challenge to find the control strat-
egy that minimizes the time needed for the system to transit
from a starting point to a final point. So the cost function is
J = tf . When input is bounded (i.e. |u| ≤M ) representation
is more realistic. The solution is called Bang-Bang control
because control switches between extreme inputs, u = ±M .
The analysis is standard and thus, can be found in books of
linear Optimal Control like Naidu’s [7] and Athans’s [2].

Fig. 2. Switching curve γ = 0 and optimal trajectories for several initial
states.

For the double integrator there might be no or one switch.
Let γ be the switching function

γ(x1(t), x2(t)) , x1 +
1

2M
x2|x2| (4)

assuming origin is the desired final state considering and M
is the input bound. The closed loop optimal control is

u = f∗(x1, x2) ,

{
−Msgn(γ) for γ 6= 0

Msgn(x1) for γ = 0
(5)

sgn denotes the sign function. Function f∗ denotes the Bang-
Bang control solution for the double integrator and will be
used repeatedly in this paper. The above closed loop control
drives the system from initial conditions to the origin. By
setting x′1 = x1 − x1d, x′2 = x2 and using the above control
for the new states, the system can be driven to any desired
point x1d at rest. The γ = 0 curve is called switching curve
because as soon as the system crosses the curve the input
should be switched.

III. PROPOSED NEAR-OPTIMAL CONTROLLER

In this section we investigate the planar motion problem
in the least time. To begin with, we assume an initial point
(x0, y0) = (0, 0) with zero starting velocity and a desired final
point (xd, yd) to be reached at rest.

Planar motion is equivalent to longitudinal motion in one
axe as soon as drone is heading towards the target. Therefore,
before translation motion begins, the drone has to adjust its
orientation to be aligned with the target point. This procedure
is quite standard. Assuming that initial yaw is zero, the desired
fixed yaw ψd can be calculated as

ψd = atan2(yd, xd) (6)

To maintain aircraft at a specific initial height z0, thrust fT
must satisfy z̈ = 0. Thus

fT =
1

cφcθ
(mg − k1(z − z0)− k2ż) , k1, k2 > 0

≈ mg

cφcθ

(7)
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In order to not lose controllability over z axe we should
ensure that |φ| ≤ φmax < π/2, |θ| ≤ θmax < π/2, which
is a common constraint for non-maneuvering, general purpose
drones. Position dynamics, after choosing applied thrust and
desired yaw, become

mẍ = (cφsθcψd
+ sφsψd

)
mg

cφcθ

mÿ = (cφsθsψd
− sφcψd

)
mg

cφcθ

mz̈ = 0

(8)

To simplify dynamics we apply the following transformation
by defining the auxiliary position state r′ = Trx′y′

z′

 =

 cosψd sinψd 0
− sinψd cosψd 0

0 0 1

xy
z

 (9)

This transformation aligns x′ direction with target point, in
a way that only longitudinal motion is required. Double
differentiating r′ gives the following simplified structure

ẍ′ = g tan θ

ÿ′ = −g tanφ

cos θ
z̈′ = 0

(10)

Since lateral motion is unnecessary we can let φ = 0.
Moreover, a constraint bound M in torque τθ arises from the
fact that propellers can produce finite angular velocity and the
internal constraint for non-negative solution in (2). We obtain
the longitudinal model of reference

ẍ′ = g tan θ |θ| ≤ θmax
θ̈ = [(Iω)× ω]2 + Iyτθ |τθ| ≤M

(11)

where [·]2 denotes second element. Apparently, [(Iω)×ω]2 =
0 due to constant angle ψ = ψd. By setting the auxiliary
variables u = g tan θ and uθ = Iyτθ we get

ẍ′ = u

|u| ≤ g tan θmax
(12)

where
u = g tan θ (13)

and

θ̈ = uθ

|uθ| ≤MI−1y
(14)

To not overload equations we will set x′ as x which is different
from initial position vector element. Considering (11) in a
back-stepping control scope, g tan(θ) is the virtual control for
(x, ẋ) system. Thus, the longitudinal subsystem is virtually
divided into a pure double integrator and a double integrator
with delayed control, like mentioned above. Dynamics (14)
simulate the dynamics of virtual control u. If we demand (θ, θ̇)
system (14) to generate only extremum angles θd = ±θmax,
so that u = ±g tan θmax, then control strategy (13) can
be considered close to Bang-Bang for (x, ẋ) subsystem. To

Fig. 3. Proposed controller block diagram structure.

accelerate achieving the desired angle θd, uθ must be selected
to be Bang-Bang as well. Considering (x, ẋ) subsystem as a
double integrator, it is expected to have, at most, one switch.
Figure 3 offers a block diagram of the strategy. All in all, a
Bang-Bang control driven double integrator (14) generates ap-
propriate Bang-Bang signal (13) for another double integrator
like system (12).

For this scheme to work we should guarantee that torque
τθ can take values ≥ 5I−1y g tan θmax so that inner loop (θ, θ̇)
is at least 5 to 10 times faster in comparison with outer loop
(x, ẋ) which is something very usual in UAVs. This is essential
because the time needed for θ = ±θmax signal to be generated
would be negligible for the slower dynamics of (x, ẋ) system.

In other words, a real Bang-Bang control generates another
virtual Bang-Bang control. Thus, it’s a cascaded Bang-Bang
control approach. So, there are two subsystems with each of
them separately working in the means of least time. However,
there is no ensuring that optimality in the subsystems entail
optimality for the full longitudinal system. Therefore, this is
a sub-optimal solution. The virtual Bang-Bang controller is
defined as

u = ux = f∗(x− xd, ẋ) (15)

and the switching function, according to (4), is as it follows

γx = x− xd +
1

2g tan θmax
ẋ|ẋ| (16)

Thus, it is necessary that the desired angle θd follows virtual
input ux as

θd = sgn(ux)θmax (17)

Inner loop Bang-Bang controller is defined as

uθ = f∗(θ − θd, θ̇) (18)

with switching function

γθ = θ − θd +
1

2MI−1y
θ̇|θ̇| (19)

Since the system is not a perfect double integrator it will
probably not stop at the desired point with zero velocity. To
avoid this imperfection, it is legitimate to switch to a slower
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TABLE I
QUADCOPTER MECHANICAL PARAMETERS

Symbol Quantity Value

m mass 1 [kg]

Ix moment of inertia about x 8.1 10−3 [kg m2]

Iy moment of inertia about y 8.1 10−3 [kg m2]

Iz moment of inertia about z 14.2 10−3 [kg m2]

l center to propeller distance 0.24 [m]

b thrust factor 54.2 10−6 [kg m]

d drag factor 1.1 10−6 [kg m2]

linear or nonlinear controller [8] near the desired point for
sufficient stabilization.

IV. SIMULATION

The proposed optimal controller is evaluated using nu-
merical simulation in MATLAB environment. For increased
accuracy, a first order model with time constant τ = 0.1
is considered for propellers’ response. Typical mechanical
parameters for a quadrotor UAV, that were assumed in the
simulation, are listed in Table I.

In order to evaluate controller’s efficiency, we compare
performance between a leading quadrotor controller [8], [9]
and our near-optimal controller. We assume (x0, y0) = (0, 0)
and (xd, yd) = (300, 0). A reasonable choice for θmax is π/4,
while it can be calculated that M = 7400. Furthermore, the
final times of the respective controllers are compared to true
optimal time [2].

As we can see in Figure 4 our algorithm’s performance
approaches ideal execution time with success. Near the end
point we notice an abnormality. This is because a nonlinear
controller is enabled for stabilization. For better insight of
the Cascaded Bang-Bang controller’s operation, angle control,
virtual control and γx function response in time are shown in
Figure 5. It can be observed that when γx = 0 virtual control
switches as desired.

At true optimal time, position error is just ∼ 0.1, while the
traditional controller needs approximately 4 more seconds to
settle. Our controller displays 20% final time improvement in
this numerical experiment.

V. CONCLUSION

In this research, a new optimal control scheme for UAVs is
proposed, the Cascaded Bang-Bang control, which supersedes
cascaded PID or similar structured nonlinear techniques as
illustrated by numerical example.
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