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Abstract—LC injection-locked frequency dividers offer supe-
rior phase noise and power efficiency performance. However,
their primary drawback lies in the locking range. This paper
presents a nonlinear analysis of the general divide-by-N op-
eration, considering the exponential non-linearity of the BJTs.
The analysis employs Harmonic Balance, Bessel functions, and
Fourier expansion. The results are applied to the specific case
of N = 2, demonstrating a close correspondence between the
proposed method and the simulated circuit in Cadence IC Suite.

Index Terms—Injection Locked Frequency Dividers, Non-
linear Analysis, Locking Range, Harmonic Balance

I. INTRODUCTION

Frequency dividers are widely used in RF communication
applications as key blocks of phase-locked loop (PLL) synthe-
sizers to divide the output frequency by a rational number [1],
[2]. Analog injection locked dividers are usually the preferable
realization of a frequency divider due to the lower power
consumption compared to the digital ones and the low phase
noise if they are implemented based on LC resonator [3].
Their main drawback, however, is the limited locking range
and further its accurate estimation.

Motivated by the this limitation, this work proposes an
analytical method to determine the locking range of a com-
plementary BJT oscillator as depicted in Fig. 1. The proposed
model makes use of harmonic balance analysis and Fourier
expansion of the exponential non-linearities that arise from
the characteristic of the BJT. First, the analysis of the general
divide-by-N case is conducted and a general expression for the
estimation of the locking range is derived. Next, this analysis
is applied to the N = 2 case. The experimental validation in
the Cadence IC Suite verifies the accuracy of the proposed
method.

The remainder of this paper is organized as follows. Section
II refers to the circuit under consideration and its mathematical
modelling. The proposed non-linear analysis is conducted
in Section III, where first the general case of divide-by-N
operation is considered and then the general result is applied
to the N = 2 case. The comparison between the proposed

model and the simulation results is described in Section IV.
Some concluding remarks are given in Section V.

II. INJECTION LOCKED FREQUENCY DIVIDER CIRCUIT
AND MODELLING

The implemented circuit is illustrated in Fig. 1. It consists of
two complementary BJT cross-coupled transistors, along with
an LC resonator. The input voltage is applied to the base of the
tail transistor, and the output is the voltage difference across
the capacitor. The mathematical model used for the analysis of
the circuit is depicted in Fig. 2, along with its corresponding
block diagram which is shown in Fig. 3. It is assumed that
the capacitor encompasses all parasitic capacitances of the
bipolar transistors, while the resistor R accounts for the ohmic
losses of the inductor. The transfer function H applies to the
RLC resonator. The non-linear element constituted by the
two cross-coupled pairs corresponds to the non-linear function
i = f(vi, vo).

To derive the expression of the function i = f(vi, vo), the
currents flowing through the bases of the BJTs are neglected
(β → ∞). By applying the exponential law for the BJTs and
Kirchhoff’s laws, we deduce that:

i = f(vi, vo) = −Iqe
vi
VT tanh

(
vo
2VT

)
=

Iqe
vi
VT

1− e
vo
VT

1 + e
vo
VT

=

Iqe
vi
VT

(
1

1 + e
vo
VT

− 1

1 + e
−vo
VT

) (1)

where Iq is the current of the tail transistor when vi = 0,
vi, vo and VT are the input, (differential) output and thermal
votlage respectively. The input voltage is described by:

vi = VTx1 cos (ωint), (2)

and assuming locking, the output voltage is given by:

vo = VTx2 cos (ωoutt+ θ). (3)979-8-3503-1884-5/24/$31.00 ©2024 IEEE

20
24

 P
an

he
lle

ni
c 

C
on

fe
re

nc
e 

on
 E

le
ct

ro
ni

cs
 &

am
p;

 T
el

ec
om

m
un

ic
at

io
ns

 (P
A

C
ET

) |
 9

79
-8

-3
50

3-
18

84
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

PA
C

ET
60

39
8.

20
24

.1
04

97
06

1

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:32:22 UTC from IEEE Xplore.  Restrictions apply. 



The input and output frequencies are generally denoted as
ωin, ωout and the fraction ωin/ωout, which is generally ra-
tional, is called rotation number. The normalized amplitudes
are described by x1, x2 (dimensionless) and θ is the phase
difference between the input and output.

For sufficiently small ∆ω = ω − ω0, where ω0 is the
resonance frequency, which is given by:

ω0 =
1√
LC

, (4)

the equation (ω2 − ω2
0)/ω can be approximated as 2∆ω

(first order) and hence the frequency responce of the filter
is expressed as:

H(jω) =
H0

1 + j2Q∆ω
ω0

. (5)

vo

Ibias

✁ ✁

VDD

VSS

✁ ✁VDD

Qn3 Qn4

Qn1 Qn2

Qp1 Qp2

C

8

L

RB

+

vi(fin)

Fig. 1: Injection Locked Divider.

Fig. 2: Mathematical Model of the circuit.
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Fig. 3: Block Diagram.

III. NON-LINEAR ANALYSIS

In this Section, the circuit based on the block diagram shown
in Fig. 3 is analysed. A general divide-by-N operation (N >
1), which implies the relationship between frequencies ωin =
Nωout, is assumed.

Using (2) and [4] we conclude:

evi/VT = ex1 cos (Nωoutt) = I0(x1)+2

∞∑
n=1

In(x1) cos (nNωoutt),

(6)
where In(x1) is the modified Bessel function of the first kind.

After substituting (3) into (1) and expanding into Fourier
series, we obtain:

1

1 + ex2 cos (ωoutt+θ)
=

b0(x2) + 2

∞∑
n=1

bn(x2) cos (n(ωoutt+ θ)),

bn(x2) =
1

2π

∫ 2π

0

cos (nϕ)

1 + ex2 cos (ϕ)
dϕ.

(7)

For the second term of (1), let γ = θ + π, then
− cos (ωoutt+ θ) = cos (ωoutt+ γ) and hence

1

1 + e−x2 cos (ωoutt+θ)
=

b0(x2) + 2

∞∑
n=1

bn(x2) cos (n(ωoutt+ γ)) =

b0(x2) + 2

∞∑
n=1

bn(x2)(−1)n cos (n(ωoutt+ θ)),

(8)

where the coefficients bn(x2) are defined in (7). Subtracting
(8) from (7) yields:

tanh

(
vo
2VT

)
= 4

∞∑
m=1

b2m−1(x2) cos [(2m− 1)ωoutt+ (2m− 1)θ)].

(9)
We note that only odd harmonics appear in the above expan-
sion.

Hence, multiplying (6) with (9), we obtain the expansion of
the non-linear function i = f(vi, vo),

− i

Iq
= 4I0(x1)

∞∑
m=1

b2m−1(x2) cos [(2m− 1)ωoutt+ (2m− 1)θ]+

4

∞∑
n=1

∞∑
m=1

In(x1)b2m−1(x2)[cos (αn,m(t)) + cos (βn,m(t))],

(10)

where

αn,m(t) =
(
nN − (2m− 1)

)
ωoutt− (2m− 1)θ, (11)

and

βn,m(t) =
(
nN + (2m− 1)

)
ωoutt+ (2m− 1)θ. (12)

Assuming that the bandpass filter H rejects all components
away from ω0 and considering that ωout lies sufficiently close
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to ω0, the indeces m,n of the terms of the double summation
in (10) that pass through the filter must satisfy:

nN − (2m− 1) = ±1 ⇒ m =
nN + 1∓ 1

2
. (13)

If, N , the rotation number, is even, then n is not contrained
and traverses all posive integers. If N is odd, then n must be
an even integer so that m is also an integer. Hence, we define
S as the set of integers in which n belongs. In the case of
even N , S is the set of the positive integers, while in the case
of odd N , S contains only the even positive integers.

Utilizing (13), the terms of (10) that pass through the filter
are given by:

4I0(x1)b1(x2) cos (ωoutt+ θ)

+ 4
∑
n∈S

[
In(x1)bnN−1(x2) cos (ωoutt− (nN − 1)θ)

+ In(x1)bnN+1(x2) cos (ωoutt+ (nN + 1)θ)

]
.

(14)

By combining (14) with (5), and using phasors, the follow-
ing complex equation is derived:

VTx2e
jθ =

H0Iq

1 + 2jQ∆ω
ω0

[
4I0(x1)b1(x2)e

jθ+

+
∑
n∈S

4In(x1)
(
bnN−1(x2)e

−j(nN−1)θ + bnN+1(x2)e
j(nN+1)θ

)]
,

(15)

where ∆ω is evaluated at ωout, namely ∆ω = ωout−ω0. Sep-
arating the real and imaginary parts and performing division
yields:

∆x =
N

D
, (16)

where the output-referred normalized locking range denoted
by ∆x is defined as,

∆x :=
2Q∆ω

ω0
, (17)

N =
∑
n∈S

In(x1) sin (nNθ)
[
bnN+1(x2)− bnN−1(x2)

]
, (18)

and
D = b1(x2)I0(x1)+∑
n∈S

In(x1) cos (nNθ)
[
bnN+1(x2) + bnN−1(x2)

]
. (19)

A. Example: Divide by two

The case N = 2 is studied as an illustrative example. Hence,
the set S includes all the positive integers. To simplify the
analysis and derive an approximate general formula, only the
zeroth and first order modified bessel functions are considered.
This approximation is reasonable, considering that In(x) is
decreasing with respect to n and that the output and input
voltages are sufficiently small. Further the terms |bnN+1 ±
bnN−1| are decreasing with respect to n.

The above observations can be verified by Fig. 4 and Fig.
5 where the first four I0, I1, I2, I3 modified bessel functions

of the first kind and the absolute values of the first four
odd indexed coefficients b1, b3, b5, b7 are shown, respectively.
Considering that (16) depends on the product of In with
bnN+1 ± bnN−1, it is clear that higher order terms have
negligible contribution. Further, it follows that as x1 (the
injecion voltage) is increased, (16) depends strongly on x1

and weakly on x2.

Fig. 4: The first four Bessel functions of the first kind I0, I1, I2, I3.

Fig. 5: The first four odd indexed coefficients b1, b3, b5, b7.

Hence, considering only the terms corresponding to n = 1
in the sums of Eq. (19) and (18), (16) becomes:

∆x =
A sin (2θ)

B + C cos (2θ)
, (20)

where

A = I1(x1)(b3(x2)− b1(x2)), C = I1(x1)(b1(x2) + b3(x2)),
(21)

and

B = I0(x1)b1(x2). (22)

The output-referred one-sided normalized locking range,∆x,
is maximized when cos (2θ) = −C/B. The corresponding
maximum one-sided input-referred locking range is:

∆ωmax =
ω0

Q

A√
B2 − C2

. (23)

Note that the input-referred locking range is twice the output-
referred locking range, given that N = 2.
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IV. SIMULATION RESULTS AND COMPARISON

The frequency divider in Fig. 1 was simulated for divide-
by-2 operation using Cadence IC Suite. The frequency of the
unforced oscillator was set to f0 = 1GHz using L = 18nH ,
C = 1pF and R = 5Ω. The quality factor Q is equal to 26.8.

Simulating the circuit for various input frequencies around
2GHz (given the divide-by-2 operation) and input voltage
amplitudes, the output voltage amplitude is extracted and
depicted in Fig. 6. As expected, for small input voltages, the
output voltage is also small and the locking range (the range
of input frequencies for which the output voltage exceeds a
threshold of 10mV) is too narrow. An increase in the input
voltage results in higher output voltages and a wider locking
range. If the input voltage is kept fixed, the output voltage
is reduced as the input frequency deviates from 2GHz. It is
worth noting the asymmetry, as the output voltage is reduced to
smaller values when fin < 2GHz compared to the case when
fin > 2GHz. Furthermore, the frequency range of operation
is wider for fin < 2GHz.

Next, Eq. (23) is used to determine the theoretical locking
range and compare it with the simulated results. Using the
output voltage extracted from the simulation at the maximum
and minimum frequencies at which locking occurs, and nu-
merically computing the coefficients b1 and b3 through Eq.
(7) in MATLAB, we find the one-sided (corresponding to
positive and negative deivations from f0) locking range for
various input voltages from Eq. (23). The sum of the one-
sided locking ranges, for a given input voltage, equals the
theoretical input-referred locking range. Fig. 7 displays both
the theoretically derived and simulated results. For small input
voltages, as observed in Fig. 7, practically no locking occurs,
while Eq. (23) predicts a small value. As the input voltage
is increased, the theoretical curve smoothly approximates the
simulated one with an error of no more than 4MHz, verifying,
further, the stronger dependence on the injection voltage.

Fig. 6: Output voltage as a function of the input voltage and
frequency.

V. CONCLUSION

A non-linear analysis of the injection-locking characteristics
exhibited by a cross-coupled BJT frequency divider operating
in the divide-by-N mode is presented. By utilizing Bessel
functions and Fourier series, a comprehensive expression

Fig. 7: Theoretical and simulated input-referred locking-range using
a thershold of 10mV to determine locking.

encompassing all frequency components generated by the
exponential non-linearity of the BJT transistor is derived. The
final expression depends on the terms corresponding to har-
monics, which provide the fundamental frequency. Applying
the analysis to the N = 2 case, although the theoretical
expression predicts locking for small input voltages, such
locking does not actually occur. However, as the input voltage
increases, the theoretical curve smoothly approximates to the
simulated one with a small error. It effectively conveys, both
qualitatively and quantitatively, the dependence of the locking
range on the injection voltage.

REFERENCES

[1] S. Daneshgar, O. De Feo, and M. P. Kennedy, “Observations concerning
the locking range in a complementary differential lc injection-locked
frequency divider—part i: Qualitative analysis,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 57, no. 1, pp. 179–188,
2010.

[2] S. Daneshgar and M. P. Kennedy, “A qualitative analysis of a com-
plementary differential lc injection-locked frequency divider based on
direct injection,” in 2010 IEEE International Symposium on Circuits
and Systems (ISCAS), 2010, pp. 1531–1534.

[3] Z. Ye, T. Xu, and M. Kennedy, “Locking range analysis for injection-
locked frequency dividers,” in 2006 IEEE International Symposium on
Circuits and Systems (ISCAS), 2006, pp. 4 pp.–.

[4] Á. Baricz, Generalized Bessel Functions of the First Kind, ser. Gener-
alized Bessel Functions of the First Kind. Springer, 2010, no. 1994.

[5] R. Adler, “A study of locking phenomena in oscillators,” Proceedings
of the IRE, vol. 34, no. 6, pp. 351–357, 1946.

[6] S. Verma, H. Rategh, and T. Lee, “A unified model for injection-locked
frequency dividers,” IEEE Journal of Solid-State Circuits, vol. 38, no. 6,
pp. 1015–1027, 2003.

[7] U. Yodprasit and C. Enz, “Nonlinear analysis of a colpitts injection-
locked frequency divider,” in Proceedings of the 2003 International
Symposium on Circuits and Systems, 2003. ISCAS ’03., vol. 1, 2003,
pp. I–I.

[8] A. Buonomo and A. Lo Schiavo, “A study of injection locking in
dual-band cmos frequency dividers,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 64, no. 5, pp. 1225–1234, 2017.

[9] ——, “A nonlinear analysis of differential lc injection-locked frequency
dividers,” in 2011 20th European Conference on Circuit Theory and
Design (ECCTD), 2011, pp. 242–245.

[10] P. Maffezzoni, D. D’Amore, S. Daneshgar, and M. P. Kennedy, “Analysis
and design of injection-locked frequency dividers by means of a phase-
domain macromodel,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 57, no. 11, pp. 2956–2966, 2010.

[11] D. O’Neill, D. Bourket, Z. Ye, and M. Kennedy, “Accurate modeling
and experimental validation of an injection-locked frequency divider,”
in Proceedings of the 2005 European Conference on Circuit Theory and
Design, 2005., vol. 3, 2005, pp. III/409–III/412 vol. 3.

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 11:32:22 UTC from IEEE Xplore.  Restrictions apply. 


