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Abstract—Bayesian Optimization (BO) has recently gained
popularity within the context of automatic sizing of analog
and Radio-Frequency (RF) Integrated Circuits (ICs). However,
its reliance on Gaussian Process models, which operate only
on continuous-valued spaces, reduces its applicability in real-
world scenarios, where multiple discrete-valued variables often
exist. In this paper, we propose an approach to mitigate this
issue by using a Deep Learning scheme to transform devices
parametrizations to continuous ones, where classic BO can be
applied. Specifically, a composite architecture that consists of a
Convolutional Variational Autoencoder (VAE) and a dense Neural
Network is built to define a continuous representation of inte-
grated inductors in a TSMC 90nm process. By optimizing using
these representations, we overcome the limitation of discrete-
valued variables. Experimental results on a Low Noise Amplifier
highlight the efficiency of the proposed approach.

Index Terms—sizing, optimization, analog, deep learning

I. INTRODUCTION

Methods for automatic sizing of analog and Radio Fre-

quency (RF) circuits constitute an important challenge for the

semiconductor industry. Due to the continuous integration of

Integrated Circuits (ICs), designers have to extensively verify

their circuits while accounting for short-channel effects as well

as process, voltage and temperature (PVT) variations. This

renders the design cycle time consuming or leads to inefficient

and error prone designs [1]. Therefore, the development of

EDA tools that automate the design of complex systems has

merit and is an active research topic [1]–[3].

In the context of automatic analog circuit design, the state

of the art approaches are simulation-based optimization ones

[1], [4]–[6]. They formulate the circuit sizing problem as an

optimization one, where parametrized testbenches are simu-

lated using commercial simulators, to yield the device sizes

that satisfy user-provided constraints. By relying on simulators

and foundry-provided models, these approaches typically yield

accurate results. The optimization is carried out by a black

box optimization algorithm, such as Evolutionary Algorithms

(EAs) [1]. While EAs have been successfully applied for

analog circuit sizing, they typically require a large number

of evaluations, which may be time-consuming in the case of

analog circuit simulations. Bayesian Optimization (BO) [7] has

recently gained popularity as an alternative, since it typically

requires fewer evaluations to reach optimal solutions, with

some of its variants successfully applied to automated analog

circuit sizing [4]–[6].

BO is an iterative surrogate modelling procedure that uses

Gaussian Processes (GPs) [8]. GPs, however, operate only on

continuous spaces [8] and subsequently hinder the application

of BO in problems that include discrete variables. In practice,

many real-world circuits include devices such as integrated

inductors, which are parametrized by both discrete and con-

tinuous variables.

Motivated by the above, we present an approach to pa-

rameterize IC devices using continuous representations and

demonstrate it on integrated inductors. We build a deep

learning architecture that is comprised of a Convolutional

Variational Autoencoder (VAE) [9] and a fully connected

Neural Network (FCNN). By training the VAE on the values

of Quality Factor and Inductance over a set of frequencies,

a data-driven representation of inductors is defined on a

continuous space. The FCNN is trained to map the continuous

representation back to the geometric sizes of the inductors.

Given the above architecture, we formulate the automatic

sizing of circuits using the continuous representations and

solve it using BO. As a proof of concept, a Low Noise

Amplifier (LNA) is automatically sized using the continuous

inductor representations.

The paper is organized as follows. In Section II, the

employed BO algorithm is discussed. The proposed Deep

Learning architecture for the continuous parametrization of

inductors is presented in Section III. Finally, Section IV

presents an application example on a variation-aware BO

optimization of an LNA and Section V concludes the paper.

II. EMPLOYED BAYESIAN OPTIMIZATION

Consider the case of a Single-Objective (SO) optimization

problem with constraints

min f(x), x = [x1, x2, . . . , xd]

s.t. gj(x) ≤ 0, j = 1, . . . , l, x ∈ S
(1)

where the objective function f(·) and the constraint functions

[gj(·)]
l

j=1 are time-consuming to evaluate. BO is a sample-

efficient approach to solve the above problem, by using sur-

rogate models to balance the exploration-exploitation tradeoff

of the loss landscape [7].

BO consists of two main components; the GP surrogate

models, which approximate the objective and constraint func-

tions of Eq. (1), and an acquisition function a : S → R.

This uses the GPs’ probabilistic information to assign a score

of utility to each point in S, i.e. it predicts the goodness of
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each point in the variable space. BO works in iterations by

repeating the steps of function(s) evaluation, GP model update

and acquisition function optimization. By maximizing a, the

maximum utility point is derived and it is chosen as the query

point for evaluation in the next iteration.

The GP models employed within BO are stochastic pro-

cesses of infinitely many random variables and are defined by

their mean function m : S → R and their kernel function

k : S × S → R [8]. Any finite set of these random variables

is jointly Gaussian. After training on a set on input-outputs

D = {xi, yi}
N
i=1 of the function to-be-minimized, they provide

a L-dimensional Gaussian posterior distribution over L ≥ 1
vectors {x⋆

i ∈ S}Li=1 with mean µ = [µi]
L
i=1 and a L × L

covariance matrix [Cov(i, j)]
L

i,j=1 such that [8]

µi = kT
iK

−1y

Cov(i, j) = k(x⋆
i ,x

⋆
j )− kT

iK
−1kj .

. (2)

Here, kT
i is a (1 × N ) vector [k(xj ,x

⋆
i )]

N
j=1 and Kij =

k(xi,xj) + σ2
nδij , where σ2

n is a GP hyperparameter [8] and

δ the Kronecker delta. This equation is utilized by a to define

the utility of each point in S.

While vanilla BO acquisition functions assume L = 1 in

Eq. (2) and provide with a single query point at each iteration,

recent works [5], [6] proposed techniques to acquire a batch

of query points, in order to exploit any infrastructure that can

run multiple simulations at the same time. In [5], a Thompson

sampling [7] method was used to build analytic approxima-

tions to function samples from the distribution in Eq. (1), in

the case of multi-objective constrained optimization. Here, the

aforementioned method is adapted for SO optimization with

constraints; For each of the GP models approximating the

functions in Eq. (1), NS ≥ 1 analytical samples are drawn.

These are fast-to-evaluate [5] and are used in NS separate SO

optimization problems solved by a Genetic Algorithm (GA)

[10], which is coupled with the feasibility rule to account for

constraints [10]. When all of the auxiliary optimizations are

finished, NS query points are derived and fed to the simulator

for parallel evaluation. The reader is referred to [5], [11], for

more information on the Thompson sampling procedure.

III. PROPOSED DEEP LEARNING ARCHITECTURE

In this section the proposed architecture for inductor con-

tinuous representation is discussed and implementation details

are provided.

A. Variational Autoencoders

A VAE [9] is a graphical model that, when trained on a real-

world dataset {xi ∈ X}Ni=1, can produce synthetic samples that

follow approximately the distribution of the inputs {xi}
N
i=1. In

probabilistic terms, the data generation is a two-step process

wherein a continuous latent variable z ∈ Z, that follows a

prior distribution p(z), is sampled, and the synthetic data

are generated by sampling from the conditional distribution

p(x|z). In the VAE case, the dataset inputs x are mapped to

values z, which are the latent variables used to generate data

using the aforementioned procedure.

A VAE consists of two parts; an probabilistic encoder which

maps the inputs to Z and learns an approximate posterior

distribution qθ(z|x) and a probabilistic decoder which takes

the latent variable values as inputs and learns an approximate

likelihood pφ(x|z). The decoder is the generative part of VAE

that produces the synthetic samples once fed with a latent

variable. The encoder enforces a conditional distribution on

the latent variables, given the inputs x. Both of the encoder

and decoder are implemented as neural networks, with their

weights and biases denoted as θ, φ respectively.

Training a VAE to produce both good reconstructions and

good approximation of the true density p(x) requires the

maximization of the Evidence Lower Bound [9] defined as

L(φ, θ) = Eqθ(z|x)

[

logpφ(x|z)
]

− DKL

(

qθ(z|x) ‖ p(z)
)

,

(3)

where the regularization term DKL(·, ·) is the KL-divergence

[9] and penalizes the the distance between the approximate

posterior pθ(z|x) and p(z). The first term is a reconstruction

loss that penalizes decoder outputs that do not resemble

the inputs to the encoder. In order to take advantage of an

analytical derivation for the KL-divergence term, p(z) is set as

a zero-mean and unit-variance isotropic Gaussian distribution,

whereas p(z|x) is parametrized as an isotropic Gaussian [9].

B. Latent Space Optimization

A recently proposed method to handle high-dimensional

optimization problems involves substituting the original vari-

able space with the latent space of a deep generative model

[12], [13]. This requires training a generative model that maps

latent space vectors back to original input space, such as the

VAE. In the case of a mixed-variable input variable space, this

technique maps input-vectors to a continuous representation in

the latent space Z. Therefore, an optimization algorithm such

as BO can be used to search over Z for optimal variables,

which are then reconstructed by the decoder network and

eventually fed to the simulator for evaluation.

In this setting, the structure of the latent is space is important

for the formulation of the optimization problem and to attain

good results. Taking into account that p(z) is a zero-mean,

unit variance isotropic Gaussian, pθ(z|x) shall also resemble

to this and therefore the vast majority of mapped input vertices

(99.7%) will reside in the [−3, 3]d region, where d is the latent

space dimension, die to the Gaussian’s properties. This serves

as bounds for the latent variable space. Another benefit of

VAEs in the latent space optimization scheme is that their

loss function induces an ordering of the latent space, such that

input vectors that are close in the data manifold are mapped

to close locations in the latent space, whereas dissimilar ones

are spread out [12]. The latter is important for GPs, which

use euclidean distance in the latent space to measure the

correlations of potential query points.

C. Architecture

In the case of integrated inductors, we wish to build a

continuous representation that both maps latent space vectors
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Fig. 1: A depiction of the proposed architecture. 1D vectors of inductors’ Quality Factor and Inductance frequency behavior are inputs to
the 1D convolutional filters of the architecture. The filter sizes are shown as well. The predictor FCNN gets as input the latent representation
of the inductor’s frequency characteristics and yields its geometric sizes.

to inductor geometric variables and, ensures that inductors

with similar frequency behaviors are mapped to nearby vectors

in the latent space. The latter is important to ensure accurate

results of the optimization algorithm. To this end we proposed

a composite architecture shown in Fig. 1. We consider the case

of spiral inductors in a TSMC 90nm process and execute para-

metric sp simulations in the frequency range [0.1, 100]GHz to

obtain the s-parameters of 6000 inductor shapes, which are

then transformed to inductances and quality factors by [14]

L(f) =
imag(Z11)

2π · f
, Q(f) =

imag(Z11)

real(Z11)
, (4)

where Z11 is computed from the s-parameters of each simula-

tion [14]. These data are processed to have length 250 and are

fed as inputs to a VAE model. This learns to map frequency

vectors to a 3D latent space and ensures that inductors with

similar L(f), Q(f) are mapped nearby. Note that the same

would not apply in the case where inductor geometric sizes

were used as inputs to the VAE, since for instance adding

another turn in a spiral inductor may significantly affect its

behavior. To retrieve the geometric sizes of inductors (inner

radius, inductor width, number of turns) from the continuous

space, we train a FCNN as a predictor jointly with the VAE.

Since the VAE’s inputs are 1D vectors of frequency behav-

iors, we adopt a convolutional architecture to benefit from the

spatial relations between different data points. Note that this

would not hold if a fully connected architecture was utilized

instead. The encoder network consists of 3 1D convolutional

layers with 16, 32, and 64 filters each, while all of them have

kernel size 4, stride 2 and padding 1. The ReLU activation

function was used. As shown in Fig. 1, the mean µ and

variance σ2 of the Gaussian p(z|x) are produced by two linear

layers as shown, while the decoder has a similar structure as

the encoder. The loss function for the VAE part is

LV AE =‖ x−x̂ ‖2 +DKL

[

N (µ(x), σ2(x)) ‖ N (0, I)
]

, (5)

where I the identity matrix and x̂ is the decoder’s output.

Details on the KL-divergence derivation can be found in [9].

The FCNN, shown in yellow in Fig. 1, has three layers

with 3, 50 and 25 neurons each and uses ReLU activations.

To predict the number of turns out of 20 possible options

in the range [0.5, 0.75, 1, . . . , 5.25], we use a classification

formulation and define a cross entropy loss LNoT to train

the associated weights. A separate cross entropy loss LIW

applies for the four separate inductor widths that the employed

technology provides for spiral inductors, {3, 6, 9, 15}µm and

correspond to 4 outputs of the FCNN. Finally, the inductor’s

inner radius is a continuous variable in the range [15, 90]µm

and its loss is a Mean Square Error (MSE) one, denoted by

LIR. The overall loss function for the composite network is:

LTOTAL = LV AE + LNoT + LIW + LIR. (6)

The model was trained using the Adam optimizer for 1000

epochs and a 80%-20% training-test split. After training, the

test data were mapped to their latent representations and

predictor’s accuracy for number of turns and width is 94%
and 96% respectively. For the inner radius, the MSE score

is 0.11, where the values are normalized in the [0, 1] range.

Fig 2 depicts a reconstructed inductance curve, along with

the predicted geometry for a real spiral inductor using the

proposed scheme.

Fig. 2: A reconstruction of inductor’s inductance across the fre-
quency range of interest.

IV. EXAMPLE OPTIMIZATION

To test the proposed Deep Learning scheme in an op-

timization setting, we consider the LNA shown in Fig. 3.

There are three inductors which are parametrized by the latent

variables described in the previous section, while transistors

are paremetrized by their lengths and widths, capacitors Cg ,
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Fig. 3: The LNA considered as a case study.

Cd are crtmom devices parametrized by their fingers widths

and spacings and the rppolywo resistor Rb2 is parametrized

by its width and length. The supply is 1.2V and the operating

frequency 2.4GHz. The rest of the sizes are constants and in

total there are 17 variables.

We wish to minimize static power consumption Pdc in

the nominal operating conditions, while enforcing IP3 ≥
−5dBm, NF ≤ 2.5dB, S11 ≤ −8dB, S22 ≤ −8dB at the

operating frequency at the following corners: ss, sf, fs, and ff

and at the working temperatures of −50, 27 and 125 Celcius.

Also for the nominal conditions we enforce S21 ≥ 21dB.

This amounts to a total of 13 testbenches. For comparison

we consider the BO discussed in Section II with NS=5 and

1000 total evaluations, operating on the latent space as well

as a variant that relaxes discrete variables to continuous, as

used in [5]. In addition, we use a GA with mixed real and

discrete crossover and mutation operators, 100 population and

50 generations. The experiments were repeated 5 times to

account for random fluctuations.

The results of the optimizations are given in Table I, in

terms of the objective Pdc and the constraints, where the

worst attained performances out of all corners and successful

repetitions are depicted. There are two takeaways from this

table; first, the BO using the proposed parametrization for

inductors is successful and produces better results than the

simple rounding method of the relaxation transform BO. Sec-

ond, both of the BO approaches yield better results compared

to the population-based GA in the provided simulation budget,

which finds feasible solution only 2 out of 5 times. Therefore,

it makes sense to for BO in cases were one cannot afford many

circuit simulation due to time restrictions.

V. CONCLUSION

A Deep Learning Framework was proposed to parametrize

integrated spiral inductors with continuous variables, using

a convolutional VAE and a FCNN as predictor for inductor

sizes. By mapping inductor frequency responses in the VAE’s

latent space and training the FCNN to reproduce its geometric

sizes, we were able to render the sizing problem of a LNA

a continuous one and benefit from BO’s efficiency to solve a

variation-aware sizing problem. The parametrization scheme

was shown to enhance the search capabilities of BO, compared

to other approaches.

TABLE I: LNA Optimization Results: Mean ± STD

Method Pdc S21 S11 S22 IP3 NF Success

[mW] [dB] [dB] [dB] [dBm] [dB]

BO 11.24 ± 1.1 21.35 -8.32 -9 -2.9 2.45 5/5

BO-Relaxation 14.36 ± 2 21.12 -8.4 -9.2 -3.4 2.44 5/5

GA 14.6±0.6 21.05 -9.1 -8.2 -2.7 2.48 2/5
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[2] G. İslamoğlu, T. O. Çakici, E. Afacan, and G. Dündar, “Artificial neural
network assisted analog ic sizing tool,” in 2019 16th International

Conference on Synthesis, Modeling, Analysis and Simulation Methods

and Applications to Circuit Design (SMACD), 2019, pp. 9–12.
[3] J. P. Rosa, D. J. Guerra, N. C. Horta, R. M. Martins, N. C. Lourenço

et al., Using artificial neural networks for analog integrated circuit

design automation. Springer, 2020, vol. 1.
[4] W. Lyu, P. Xue, F. Yang, C. Yan, Z. Hong, X. Zeng, and D. Zhou, “An

efficient bayesian optimization approach for automated optimization of
analog circuits,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 65, no. 6, pp. 1954–1967, 2017.
[5] K. Touloupas and P. P. Sotiriadis, “Locomobo: A local constrained

multi-objective bayesian optimization for analog circuit sizing,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 2021.
[6] K. Touloupas, N. Chouridis, and P. P. Sotiriadis, “Local bayesian

optimization for analog circuit sizing,” in 2021 58th ACM/IEEE Design

Automation Conference (DAC), 2021, pp. 1237–1242.
[7] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,

“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[8] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine

learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.
[9] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in

2nd International Conference on Learning Representations, ICLR 2014,

Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014.

[10] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Computer methods in applied mechanics and engineering, vol. 186, no.
2-4, pp. 311–338, 2000.

[11] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” Advances in neural information processing systems, vol. 20,
2007.
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