
Local Bayesian Optimization For Analog Circuit

Sizing

Konstantinos Touloupas, Nikos Chouridis and Paul P. Sotiriadis

National Technical University of Athens, Greece

E-mail: ktouloupas@mail.ntua.gr

Abstract—This paper proposes a Bayesian Optimization (BO)
algorithm to handle large-scale analog circuit sizing. The pro-
posed approach uses a number of separate Gaussian Process (GP)
models approximating the objective and constraint functions
locally in the search space. Unlike mainstream BO approaches,
it is able to traverse high dimensional problems with ease
and provide multiple query points for parallel evaluation. To
extend the method to large sample budgets, GP regression and
sampling are enhanced by using kernel approximations and
GPU acceleration. Experimental results demonstrate that the
proposed method finds better solutions within given budgets of
total evaluations compared to state-of-the-art approaches.

I. INTRODUCTION

While the demand for modern electronic systems with

advanced functionalities increases, reducing the design time

is becoming important. Despite the progress made in digital

Integrated Circuits (IC) design, which is facilitated by auto-

matic synthesis tools, analog design automation has not yet

fully developed. This problem is exacerbated by the continuous

scaling of transistor dimensions, since manual analog IC

design is becoming increasingly difficult. Therefore, new and

robust automation methods are needed to accelerate the design

of modern electronic systems.

Most approaches to automated analog design aim to dis-

cover optimal device sizes, given a fixed circuit topology [1].

This can be formulated as a constrained optimization problem,

where user-defined optimization goals and constraints drive

the selection of device sizing. There are two main approaches

to this optimization problem, namely equation based and

simulation based approaches. The equation based approach

requires the designer’s intervention, either by defining explicit

equations of circuit performances, or by using regression

methods to acquire them [1]. Analytic expressions however,

cannot capture the higher order effects stemming from small

channel dimensions and lead to inaccurate sizing results. Sim-

ulation based approaches, on the other hand, require excessive

computational resources, but allow for higher accuracy. In this

work, we focus on simulation-based analog sizing.

Several methods have addressed the simulation based analog

sizing, including Evolutionary Algorithms (EAs) and Simu-

lated Annealing (SA) [2]. However, their slow convergence

rate makes them unsuitable for sizing large scale analog and

RF circuits. Bayesian Optimization (BO) [3], a method that

has attracted attention in the machine learning community,

promises to alleviate this limitation. BO incrementally con-

structs a Gaussian Process (GP) regression model which is

used to select the next evaluation (query) point. This algorithm

and some of its variants have been applied to analog and RF

circuit sizing [2], [4]–[6], demonstrating promising results.

While BO has emerged as a competitive method for opti-

mizing black box functions, scalability to large sample budgets

and high-dimensional search spaces remains a major concern.

For n training samples, O(n3) time is required to compute

GP predictive means and variances [7], which are used by the

BO to determine each query point. In addition, GP regression,

relying on the Euclidean distance to define sample correlations,

becomes inefficient in high dimensions, which is a problem

known as the curse of dimensionality. When constraints apply,

such as in the case of analog IC sizing, BO should be able to

identify feasible query points, which is a non-trivial task by

itself.

This work intends to address the automatic sizing of analog

and RF building blocks, using a new variant of BO that

scales well in high-dimensional and constrained problems.

To address the aforementioned shortcomings of classic BO,

we use a local-based scheme that maintains a number of

separate GP models, each one capturing the objective and

constraint functions inside a sub-region of the whole design

space. To take full advantage of multi-core workstations, the

proposed BO variant provides a batch of query points at

each iteration, using a modified Thomson Sampling acquisition

function. GP regression is scaled to large datasets using sparse

approximations for the GP covariance matrix and Blackbox

Matrix-Matrix Gaussian Process inference [8], which allows

for GPU acceleration. Compared to BO implementations for

constrained optimization and state-of-the-art EAs, the pro-

posed method provides better results and a speedup of ×40.

The rest of this paper is organized as follows. Section II

provides an overview of the analog circuit sizing problem and

the classic BO method. Section III demonstrates the proposed

approach. Section IV provides experimental results on two

real-world circuits and Section IV concludes the paper.

II. BACKGROUND

A. Problem Formulation

Analog and RF circuit sizing can be cast to a constrained

optimization problem:

min f(x), x = [x1, x2, . . . , xd]

s.t. gj(x) ≤ 0, j = 1, . . . , l

Li ≤ xi ≤ Ui, i = 1, . . . , d

(1)

978-1-6654-3274-0/21/$31.00 ©2021 European Union 1237

20
21

 5
8t

h
AC

M
/I

EE
E

De
sig

n
Au

to
m

at
io

n
Co

nf
er

en
ce

 (D
AC

) |
 9

78
-1

-6
65

4-
32

74
-0

 /2
1/

$3
1.

00
 ©

20
21

 E
U

 |
 D

O
I:

10
.1

10
9/

DA
C1

80
74

.2
02

1.
95

86
17

2

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 10:43:18 UTC from IEEE Xplore. Restrictions apply.

where vector x contains the design variables, Li and Ui are the

lower and upper bounds of the i-th variable, S =
∏d

i=1[Li, Ui]
is the variable space, f is the objective (fitness) function and

gj is the j-th constraint. For a given parameter vector x, its

degree of constraint violation is defined as

CV (x) =
∑

j

max[0, gj(x)].

In the context of simulation-based sizing, parametrized test-

benches are simulated in iterations using a commercial sim-

ulator and software platforms that automate the procedure of

data processing and simulation automation.

B. Gaussian Processes

Assume a dataset D comprised of n d-dimensional pa-

rameter vectors X = {xi}ni=1 and their corresponding 1-

dimensional observation value set y = {yi}ni=1, generated by

an unknown function, f and an uncorrelated additive noise

ǫi ∼ N (0, σ2
n), as yi = f(xi) + ǫi. A Gaussian Process (GP)

is a stochastic process of infinitely many random variables,

any finite set of which jointly follows a Gaussian distribution.

A GP can be used to provide a probability distribution over

functions that approximate f , such that any collection of

function values f(X) are random variables that have a joint

Gaussian distribution

f(X) = [f(x1), . . . , f(xn)]
T
∼ N (µ,K). (2)

Here, vector µ is the GP mean, defined by a mean function

m(x), and K is the covariance matrix, constructed by a

kernel function k(x,x′), such that Kij = k(xi,xj) + σ2
nδij ,

where δij is the Kronecker delta. In cases when no prior

information about f is available, the mean function is set to

a constant µ. Therefore, the expressive capabilities of the GP

model are determined by the kernel function. Popular kernel

functions include the RBF and Matèrn kernel families [7].

In this work, we use the Matèrn 5/2 kernel with automatic

relevance determination,

k(xi,xj) = σ2

(

1 +
√
5r +

5

3
r2
)

e−
√
5r (3)

where

r =

(

d
∑

k=1

(xi,k − xj,k)
2

λ2
k

)1/2

. (4)

Parameters σ, the lengthscales λk, the constant mean µ and

the noise variance σn are called the hyperparemeters of the

GP model. For the following, we adopt the common approach

[7] and fix µ = 0.

To predict f at a point x⋆ 6∈ D, one uses the predictive

distribution p (f(x⋆)|X,y). This is a Gaussian distribution

with mean and variance

µf |D(x⋆) = kTK−1y

σ2
f |D(x⋆) = c− kTK−1k

. (5)

Here, kT is a (1 × n) vector with values k(xi,x
⋆) for

i = 1, . . . , n and c = k(x⋆,x⋆). The predictive distribution

provides estimates not only for point-wise query points, but

for multiple inputs X⋆ as well. In the case of m query points,

equations in (5) provide the mean and the diagonal elements of

the covariance matrix of a multivariate Gaussian distribution

p ([f(x⋆
1), . . . , f(x

⋆
m)] |X,y). The covariance between two

points x⋆,x⋆′ is given by

Cov(x⋆,x⋆′) = k(x⋆,x⋆′)− kT
X,x⋆K−1kX,x⋆′ , (6)

where kT
X,x⋆ = k(xi,x

⋆) for i = 1, . . . , n. Sampling from

this joint distribution allows for sampling functions from the

GP model [7].

To adapt a GP model to D, its hyperparameters must be

learned from the data. This is done by minimizing the negative

log marginal likelihood

L(θ) =
1

2
yTK−1y +

1

2
log (|K|) + n

2
log(2π). (7)

This expression is used to learn parameters θ, using gradient

based optimization. The derivatives with respect to each θi are

given by

dL

dθi
=

1

2
Tr

(

K−1 dK

dθi

)

− 1

2
yTK−1 dK

dθi
K−1y. (8)

C. Bayesian Optimization

Bayesian Optimization (BO) [3] is a sample efficient

method to solve global optimization problems, particularly

aiming expensive-to-evaluate cost functions. In the uncon-

strained regime, a real valued, unknown function f is pro-

vided, and BO learns a fast to evaluate surrogate model from

past evaluations. It selects next query points for evaluation

sequentially, by balancing exploration and exploitation to find

the global optimum.

The BO framework consists of two main components;

the probabilistic surrogate model that aims to approximate

function f and an acquisition function that provides a score

of utility for evaluating a candidate query point, based on

the probabilistic model. In most approaches, the surrogate

model is a GP, which is trained and used for predictive point

evaluations as discussed in the previous subsection. Popular

acquisition functions include the expected improvement (EI),

probability of improvement (PI), entropy search (ES) and

Thompson sampling (TS) [3].

Starting from an initial set of evaluations, BO incrementally

builds a GP model based on historic data, and selects a new

query point, as the point x that optimizes the acquisition

function. This is an auxiliary optimization problem, but since

the acquisition function is fast to evaluate, off-the-shelf opti-

mization methods such as CMA-ES [3] can be used.

In the constrained optimization case, such as (1), the most

prominent approach is to construct l additional GP models,

each approximating a single constraint function. The query

points are selected in a similar manner, but the acquisition

functions are different. In [2], a weighted expected improve-

ment acquisition function was used, which is an EI function

weighted by the probability of feasibility for each query point.

This is computed using the additional GP models.

1238

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 10:43:18 UTC from IEEE Xplore. Restrictions apply.

III. PROPOSED APPROACH

In this section, the proposed approach for local BO based

analog circuit sizing is presented, along with implementation

details for computational efficiency.

A. Local Bayesian Optimization

Local based approaches for global optimization are ex-

tensively studied in the context of EAs. A surrogate within

a restricted (trust) region is trained and used to suggest

query points. A similar approach is proposed in [9], where

a sequential model building optimization algorithm uses GP

models inside a trust region to model the objective function,

and defines an acquisition function to select future query

points. This BO variant alleviates the problem of heterogeneity

of objective functions, since query points are selected based

on only the local dynamics of the problem at hand.

To achieve global optimization using local-based GP mod-

els, however, multiple trust regions are employed in parallel. In

the case of k trust regions, k × (1 + l) GP models (objective

and constraints) must be maintained and trained throughout

the procedure. Starting from an initial sampling of the design

space using Latin Hypercube Sampling, each trust region is

assigned a number of observations to build and initial set of

GP models. While they are allowed to overlap, they maintain

separate historic data archives used for training their respective

GP models.

Each trust region is a hyper-rectangle and its center is cho-

sen to be the maximum utility point in their respective historic

data archive, meaning either minimum objective function value

or constraint violation, if no feasible solution is yet to be

found. The centre, as well as the length of each trust region

are updated in each iteration. In particular, the length of each

hyper-rectangle is denoted by L and is updated according to

the trust region progress. To quantify this progress, we borrow

an approach from EAs [10]. Given pi as the current centre

of the i-th hyper-rectangle and qi,best as the best query point

probed in it in a particular iteration, quantities

Iopt =
f(pi)− f(qi,best)

f̂(pi)− f̂(qi,best)
, Iinf =

CV (pi)− CV (qi,best)

ĈV (pi)− ĈV (qi,best)
(9)

define the optimization progress, where (ˆ) denotes values

predicted using GP models and CV is the constraint violation

function from Eq. (1). Parameters, c1, c2 and the boundary

values for L, Lmax and Lmin control its adaptation, with 0 <

c1 < 1 < c2. The indicator for the i-th trust region is given

by

Ii =

Iopt for pi, qi,best feasible

Iinf for pi, qi,best infeasible

c1 for pi feasible, qi,best infeasible

c2 for pi infeasible, qi,best feasible

. (10)

At the end of each iteration, Li is updated by following rule:

Li =

max(c1 × Li,Lmin) for Ii ≤ c1

min(c2 × Li,Lmax) for Ii ≥ c2

Li otherwise

.

Fig. 1. Top: A GP model’s pointwise predictions on a test function (mean
and 95% confidence bounds shown). Bottom: 3 functions sampled from the
GP model, along with the selected query points for next evaluation.

The algorithm operates in a transformed variable space, where

the upper and lower bounds for each variable lie within the

unit cube, therefore it holds Lmax < 2 and Lmin > 0.

To select the next query points for evaluation, a modified

Thomson Sampling [3] acquisition function is employed.

Consider the case when a single trust region is used. Thomson

sampling uses a Sobol sequence [9] to select r candidate query

points {xi}ri=1 residing in the trust region. For each one of the

l+1 (objective and constraints) GP models employed, a sample

is taken from their respective joint posterior distributions.

This results in vectors
[

f̂(xi), ĝ1(xi), . . . , ĝl(xi))
]

used to

compute
[

f̂(xi), ĈV (xi)
]

for every xi produced by the Sobol

sequence. The xi of maximum utility is chosen using the

feasibility rule [11], which compares all candidates in pairs

and selects the best as follows:

• Feasible candidate solutions are preferred than infeasible

ones

• amongst feasible solutions, the ones with better fitness

function are preferred and,

• amongst infeasible solutions, the ones with the least

constraint violation are preferred.

In the case of more than one trust regions, the sampling

procedure is repeated for each one of them, and the maximum

utility point is selected from the pool of all candidate query

points and all trust regions.

The above procedure extends naturally to batched query

point selection; from the joint GP posterior on all candidate

points, one can have multiple samples. Sequentially, the afore-

mentioned selection scheme picks the maximum utility point,

corresponding to a single posterior sample, and makes sure

not to pick the same candidate point again. A demonstration

(no constraints apply) is given in Fig. 1, where 3 samples

are drawn from the GP posterior, and the next batch of query

points are given as the minimum of each sample.

B. Sparse Kernel Approximation

In practice, GP training and prediction become intractable

for large data sets [12]. This has motivated the research

for approximate GP inference. Perhaps the most widespread

1239

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 10:43:18 UTC from IEEE Xplore. Restrictions apply.

approach includes the inducing point methods [6], [7], [12],

which employ a set of m ≪ n inputs Z = {z1, . . . , zm} to

form a Nystrom approximation of the covariance matrix,

K ≈ KNystrom = KxzK
−1
zz Kzx, (11)

where Kxz = KT
zx is a (n × m) covariance matrix between

training and inducing points, evaluated using the exact kernel

k. By adding a diagonal correction term,

K ≈ KNystrom + Λ,

where Λ(i,i) = k(xi,xi) − kzxi
K−1

zz kzxi
, the approximate

covariance matrix is ensured to be full rank [13]. Using this

approximation, GP inference time complexity is reduced to

O(nm2). A comprehensive review of inducing point methods

is provided in [12].

The selection of inducing points determines the predictive

performance of the approximate GP. A naive approach would

be to select a subset of the training samples to construct

the covariance matrix either in random, or by means of an

expensive combinatorial optimization [7]. A more elegant

approach regards the inducing point locations as additional

(m × d) GP hyperparameters, and provides solutions during

the gradient based likelihood optimization of Eq. (7). We use

the latter approach and modify it to fit the local-based BO

scheme better.

In the context of local-based BO, trust region sizes and

locations alter during the optimization, resulting in GP models

trained with archived samples that do not reside in the current

trust region. The reader is reminded that the acquisition func-

tion is restricted to select query points strictly within the trust

regions. Thus, one should select inducing point locations that

provide higher predictive accuracies within the trust regions.

It has been noted that GPs with sparse kernels provide good

accuracy in regions where the inducing points are densely

concentrated [6]. We therefore restrict the inducing points to

lie within each trust region.

Using the Adam [8] optimizer for gradient based optimiza-

tion, we empirically found that the optimized locations of

inducing points depend on two factors; the initial locations

used and the optimizer’s learning rate. We therefore impose

the starting locations to be within or in proximity of the

trust regions, and select their learning rate to be an order of

magnitude less than that of the kernel function hyperparame-

ters. Algorithm 1 explains the initial location selection for the

inducing points.

C. Scalable Gaussian Process Regression

While using approximate kernels provide a remedy to the

sample budget bottleneck of GPs, further performance gains

can be achieved in terms of matrix computations. Inference

and training for GPs require the evaluating terms K−1y,

log|K| and Tr
(

K−1 dK
dθi

)

in expressions (5), (7) and (8). The

straightforward approach for this is Cholesky decomposition,

which scales cubically with sample size [7]. The Black-

box matrix multiplication method [8] is a recently proposed

Algorithm 1: Inducing Point Initial Location Selection

Input: Li (trust region length), X (trust region archive), pi
(trust region center), m (inducing point count)

Output: loc (inducing point locations)
A← X ∈ Hyper-rectangle(Li, pi) // Subset of

training vectors lying inside the TR

hyper-rectangle;
if len(A) > m then

loc ← KMeans(A, m clusters) // m centroids;
else

loc ← arg min
i=1,...,m

||pi −X|| // m training

vectors closest to pi;
end
Return loc

TABLE I
GP TRAINING AND SAMPLING RUNTIMES FOR ROSENBROCK FUNCTION

Operation
Exact GP SGP (m=200) SGP (m=100)

CPU GPU CPU GPU CPU GPU
Training (s) 18.54 5.26 10.53 5.08 7.9 4.79
Sampling (s) 27.29 0.33 23.06 0.257 17.07 0.23

Sampling (LOVE)(s) 1.59 0.17 0.41 0.153 0.34 0.158

alternative that reduces the asymptotic complexity of GP

inference to O(n2). This is a modified conjugate gradient

algorithm that allows for GPU acceleration. The software

package GPytorch implements this method and it is used in

our implementation. Moreover, to scale GP sampling, which

is required in the acquisition function of the proposed BO, we

use the LanczOs Variance Estimates (LOVE) [14] method.

The gains of the aforementioned practices are demonstrated

empirically using a toy experiment; one exact and 2 sparse

GP models approximate a 20D Rosenbrock function. For a

training dataset of 3000 samples, and 5000 candidate points

to jointly sample from, the times required for training and

sampling are given in Table I. For all GP models, 100
gradient descent iterations were used. Both LOVE and GPU

acceleration provide a combined speedup of ×8 for exact GPs

and ×6 for approximate ones.

IV. EXPERIMENTAL RESULTS

To test the performance of the proposed approach on large-

scale problems, we perform experiments on two circuits, each

one having more than 20 parameters. For comparison, we use

the popular Differential Evolution (DE) algorithm with the

feasibility rule for constrained optimization [15], and the BO

variant WEIBO [2] proposed for automated analog design. For

each experiment, a set of trial and error attempts were made to

find the most suitable hyperparameters for DE. All algorithms

are implemented in Python, and all GP regression models were

set using GPytorch, using the same set of kernel and mean

functions. For the proposed method, the number of inducing

points is m = 150. The optimization runs are repeated 5 times

to account for random effects. An in-house tool was used

to automate simulations and result processing from Cadence

Spectre. All circuits were implemented using a TSMC 90nm

PDK, on a 8 core machine with a Quadro P5000 GPU.

1240

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 10:43:18 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THREE STAGE AMPLIFIER SPECIFICATIONS

Performance Description Specification

Load CL (nF) Capacitive Load 15

PM (o) Phase Margin ≥ 52.3
DC Gain (dB) Voltage Gain ≥ 100

GM (dB) Gain Margin ≥ 18.1
Average SR (V/µs) Average Slew Rate ≥ 0.22

UGF (MHz) Unity Gain Frequency ≥ 0.95
Pdc (µW) Total Power @ 2V Vdd minimize

A. Three-Stage Amplifier

A Three-Stage Amplifier shown in Fig. 2 [16] is sized in this

example. This circuit was originally implemented in a .35um

process, offering good driveability for large capacitive loads.

For this circuit, the search variables include transistor

widths, the lengths for the devices in each stage of the

amplifier and for the biasing transistors, resistors R1, R2, Rz ,

capacitors Cm and Cz and two biasing currents, based on the

original sizing flow [16]. Note that symmetry restrictions are

taken into account, resulting in a 23-dimensional optimization

problem. We use a 2V power supply and a 15nF capacitive

load.

Fig. 2. Three stage amplifier proposed in [16].

To make fair comparisons, each algorithm is restricted to

search within the same variable space, which consists of the

minimum and maximum ranges for device sizes imposed by

the PDK, while resistors are restricted to be less than 200kΩ,

capacitors less than 2pF and biasing currents less than 15uA.

For specifications, we use the ones provided in the original

implementation in the case of 15nF load capacitor, which are

shown in Table II. The sizing goal is to minimize the total

power dissipation, Pdc. DE population and generations are

100, the maximum number of evaluations for the other two

approaches is 1500 and the initial sampling size is 100.

To examine the effect of the trust-region count, two separate

experiments were executed with a single and three trust

regions, all of which have batch size of 15. The sizing

results are shown in Table III, where best solution refers

to lowest Pdc acquired with constraints met (averages and

standard deviations shown). The proposed method consistently

outperforms WEIBO and DE in terms of acquired solutions,

with DE finding feasible solutions only 3 out of 5 times.

Using 3 trust regions provides slightly better results, with an

TABLE III
OPTIMIZATION RESULTS FOR THE THREE STAGE AMPLIFIER

Method Best Solution Time Success

DE 131.63± 3.94 µW 27.7± 0.2min 3/5
WEIBO 114.98± 0.96 µW 350.3± 1.94min 5/5

TR-1 112.42± 0.7 µW 24.33± 0.31 min 5/5
TR-3 112.50± 0.95 µW 27.25± 0.24 min 5/5

TR-1 (GPU) 111.76± 1.19 µW 8.71± 0.39 min 5/5
TR-3 (GPU) 110.54± 1.33 µW 9.43± 0.41 min 5/5

overhead on runtime, as training and sampling may occur for

multiple GP models in certain iterations.

Special notice must be given on the runtimes; circuit evalu-

ations are done in parallel, using 8 instances of the simulator

each one running batched simulations. For this example, which

includes two separate testbenches (small signal analysis, slew

rate measurement), the averaged runtimes over 5 evaluations

for a batch of 100, 15 and a single simulation are 16.3sec,

3.8sec and 1.3sec respectively. Therefore, batched parallel

evaluation, provides significant runtime gains compared to

sequential evaluations, which is the main reason for WEIBO to

be so slow. Besides this, GPU acceleration provides an overall

speedup of ×2.8 for the proposed method (over total runtime),

and achieves a ×40 overall speedup compared to WEIBO.

B. High Linearity LNA

An LNA shown in Fig. 3 [17] is sized in this example. This

circuit uses a complementary transconductance input stage

and a set of axillary devices to achieve good linearity. Power

supply is set to 1.2V. Following an initial manual design,

the specifications for this circuit are based on the original

implementation, with the exception of the working frequency,

which is 2.4GHz instead of 1GHz, and they are given in Table

IV. Maximum IIP3 is the optimization goal.

Fig. 3. High Linearity LNA proposed in [17].

Design variables include device widths, capacitances, induc-

tances, resistances and bias voltages. Two separate variables

correspond to pmos and nmos device lengths. This amounts to

a total of 33 design variables. Their ranges are the maximum

and minimum allowed by the PDK for device geometries,

while the others are set by an initial rough design.

The batch size of the proposed approach is 15 and its

simulation budget is 2000, same with WEIBO. Both methods

1241

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 10:43:18 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
HIGH LINEARITY LNA SPECIFICATIONS

Performance Description Specification

S11 (dB) Input Matching @ 2.4GHz ≤ −10

S22 (dB) Output Return Loss @ 2.4GHz ≤ −10

Gain (dB) Voltage Gain @ 2.4GHz ≥ 15

NF (dB) Noise Figure ≤ 1

Pdc (mW) Power dissipation ≤ 50

IIP3 (dBm) Third-order intercept point maximize

TABLE V
OPTIMIZATION RESULTS FOR THE HIGH LINEARITY LNA

Method Best Solution Time Success

DE 3.12 dBm 58min 1/5
WEIBO 10.87± 1.63 dBm 623± 4.2min 5/5

TR-1 19.81± 0.97 dBm 37± 1.3 min 5/5
TR-3 21.41± 0.44 dBm 41± 1.9 min 5/5

TR-1(GPU) 19.06± 0.69 dBm 14.78± 0.9 min 5/5
TR-3(GPU) 22.34± 0.553 dBm 15.97± 1.1 min 5/5

sample initially a batch of 100 candidate vectors. DE pop-

ulation and generations are 100 and 200. The experimental

results are shown in Table V. In this demanding problem, the

proposed approach clearly outperforms the other methods in

terms of feasible IIP3 outcomes. While WEIBO is able to

find feasible solutions all times, it provides close to 10dBm

less IIP3 compared to the proposed approach, within the same

sample budget. This highlights the performance advantage of

the proposed method in high-dimensional problems, especially

against DE which finds feasible solutions only once.

In terms of runtime, execution and results processing for a

batch of 100, 15 and a single simulation take 17.2, 4.9 and 1.4
seconds respectively. Therefore, batched parallel simulation

favours both the proposed approach and DE against WEIBO

again. GPU acceleration provides remarkable optimization

speedup once more; compared to the cpu implementation, it

is ×2.6 faster and provides a total runtime speedup of ×42
compared to WEIBO, for the same number of simulations.

In this experiment, employing multiple trust regions leads

to better results. This can be explained as follows. Multiple

trust regions traverse the variable space finding multiple paths

into feasible sub-regions. By exploring different parts of the

feasible variable space, the search for global optimum becomes

more efficient. This however, comes with a cost in runtime,

since more GP models need to be trained and sampled to

provide with query points.

V. CONCLUSION

An approach for the automated sizing of analog circuits

using local-based BO was presented. The proposed approach

can handle high-dimensional problems by focusing on promis-

ing sub-regions of the design space. By using kernel func-

tion approximations and GPU accelerated GP inference, the

proposed approach scales efficiently to large sample budgets.

Experiments on two real-world circuits verify its effectiveness.

ACKNOWLEDGMENT

This research is co-financed by Greece and the European

Union (European Social Fund- ESF) through the Operational

Programme ”Human Resources Development, Education and

Lifelong Learning” in the context of the project ”Strengthening

Human Resources Research Potential via Doctorate Research”

(MIS-5000432), implemented by the State Scholarships Foun-

dation (IKY).

REFERENCES

[1] Y. Wang, M. Orshansky, and C. Caramanis, “Enabling efficient analog
synthesis by coupling sparse regression and polynomial optimization,”
in Proceedings of the 51st Annual Design Automation Conference, 2014,
pp. 1–6.

[2] W. Lyu, P. Xue, F. Yang, C. Yan, Z. Hong, X. Zeng, and D. Zhou, “An
efficient bayesian optimization approach for automated optimization of
analog circuits,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 65, no. 6, pp. 1954–1967, 2017.
[3] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,

“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[4] S. Zhang, W. Lyu, F. Yang, C. Yan, D. Zhou, X. Zeng, and X. Hu, “An
efficient multi-fidelity bayesian optimization approach for analog circuit
synthesis,” in 2019 56th ACM/IEEE Design Automation Conference

(DAC), 2019, pp. 1–6.
[5] W. Lyu, F. Yang, C. Yan, D. Zhou, and X. Zeng, “Multi-objective

bayesian optimization for analog/rf circuit synthesis,” in Proceedings of

the 55th Annual Design Automation Conference, ser. DAC ’18. New
York, NY, USA: Association for Computing Machinery, 2018.

[6] B. He, S. Zhang, F. Yang, C. Yan, D. Zhou, and X. Zeng, “An efficient
bayesian optimization approach for analog circuit synthesis via sparse
gaussian process modeling,” in 2020 Design, Automation & Test in

Europe Conference & Exhibition (DATE). IEEE, 2020, pp. 67–72.
[7] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine

learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.
[8] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson,

“Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu
acceleration,” in Advances in Neural Information Processing Systems,
2018, pp. 7576–7586.

[9] D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek,
“Scalable global optimization via local bayesian optimization,” in Ad-

vances in Neural Information Processing Systems, 2019, pp. 5496–5507.
[10] P. C. Roy, R. Hussein, J. Blank, and K. Deb, Trust-Region Based Multi-

objective Optimization for Low Budget Scenarios: 10th International

Conference, EMO 2019, East Lansing, MI, USA, March 10-13, 2019,

Proceedings, 01 2019, pp. 373–385.
[11] K. Deb, “An efficient constraint handling method for genetic algorithms,”

Computer methods in applied mechanics and engineering, vol. 186, no.
2-4, pp. 311–338, 2000.

[12] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When gaussian process meets
big data: A review of scalable gps,” IEEE Transactions on Neural

Networks and Learning Systems, 2020.
[13] A. Wilson and H. Nickisch, “Kernel interpolation for scalable structured

gaussian processes (kiss-gp),” in International Conference on Machine

Learning, 2015, pp. 1775–1784.
[14] G. Pleiss, J. Gardner, K. Weinberger, and A. G. Wilson, “Constant-

time predictive distributions for Gaussian processes,” ser. Proceedings
of Machine Learning Research, vol. 80. PMLR, 2018, pp. 4114–4123.

[15] B. Liu, F. V. Fernandez, and G. G. E. Gielen, “Efficient and accurate
statistical analog yield optimization and variation-aware circuit sizing
based on computational intelligence techniques,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 6, pp. 793–805, 2011.

[16] Z. Yan, P. Mak, M. Law, and R. P. Martins, “A 0.016-mm2 144-µ w
three-stage amplifier capable of driving 1-to-15 nf capacitive load with
>0.95-mhz gbw,” IEEE Journal of Solid-State Circuits, vol. 48, no. 2,
pp. 527–540, 2013.

[17] B.-K. Kim, D. Im, J. Choi, and K. Lee, “A highly linear 1 ghz 1.3
db nf cmos low-noise amplifier with complementary transconductance
linearization,” IEEE Journal of Solid-State Circuits, vol. 49, no. 6, pp.
1286–1302, 2014.

1242

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 10:43:18 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

