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Abstract—A method to calculate the transfer functions of
Multi-Step Look-Ahead (MSLA) ΣΔ modulators is presented.
MSLA ΣΔ modulators exhibit better noise shaping characteristics
and stability than conventional ones. They are comprised of a
number of conventional ΣΔ modulators in parallel, sharing a
multi-input 1-bit output quantizer. MSLA modulators are highly
nonlinear systems due to the multi-input quantizer. Modeling
of the quantizer using conventional linearization methods does
not give satisfactory results. Therefore, this work applies system
identification methods to derive the linearized MSLA modulator
system transfer functions. More specifically the Vector Fitting
algorithm is used for the linearization of a number of MSLA
modulators. The obtained transfer functions are in very good
agreement with simulation results, showcasing the effectiveness
of the applied methods.

Index Terms—Sigma-delta, noise shaping, 1-bit quantization,
modulator, all-digital, optimization algorithm, look-ahead, system
identification, nonlinear system, Vector Fitting algorithm

I. INTRODUCTION

Many electronic systems have a ΣΔ modulator as an integral
component. These systems range from data converters to
fractional-N PLLs, all-digital transmitters, class-D power am-
plifiers and digital bitstream encoders. ΣΔ modulators exploit
oversampling, i.e. sampling at a much higher rate than the
Nyquist rate, in order to accurately represent a signal using
just 1 or few bits per sample [1]. The higher the oversampling
ratio (OSR), the better the accuracy. The system of a ΣΔ is
comprised of a feedback loop and a loop filter as shown in
Fig. 1.

In most designs there is only a single-input filter L, i.e. not
a two-input one as shown in Fig. 1, and the difference of x
and y, x− y, is fed to the loop filter. The loop filter may be
low-pass, band-pass or high-pass depending on the application
and defines the frequency range in which the quantization
error between the input and the output is minimized. The loop
bandwidth and the out-of-band gain are limited by stability
considerations [1]. Furthermore, stability requirements also
pose restrictions to the allowable input signal range.

The quantizer resolution of ΣΔ modulators also affects
their stability. Single-bit modulators are more susceptible to
instability than multi-bit ones. However, multi-bit quantizers

L0

L1

U Y
X

Loop
filter

Quantizer

Fig. 1. System diagram of a ΣΔ modulator.

require multi-bit DACs for the reconstruction of the analog
signals. Multi-bit DACs exhibit nonlinear behavior due to
device mismatches, whereas 1-bit ones are inherently linear
since there are only two signal levels and therefore only gain
and offset errors. These errors do not degrade the output
signal spectrum and can be easily eliminated using calibra-
tion methods. Moreover, many applications such as class-D
power amplifiers and 1-bit bitstream encoders require 1-bit
quantization.

Many works have dealt with the stability analysis of ΣΔ

modulators. Parallel decomposition of high-order modulators,
limit cycle analysis [2] and quasi-linear modeling using the
describing function method [3] are some of the proposed
techniques.

Multi-Step Look-Ahead (MSLA) ΣΔ modulators [4] have
been proposed to improve upon the stability and noise shaping
characteristics of conventional 1-bit ΣΔ modulators. They are
highly nonlinear systems and thus their analysis using linear
techniques like the ones used for conventional ΣΔ modulators
is not straightforward. This work proposes a system identifi-
cation approach using the Vector Fitting algorithm [5] for the
derivation of a linearized MSLA modulator system description.
This linearized system can then be used to analyze MSLA
modulators using techniques applicable to conventional ΣΔ

modulators.

The next section presents the basic system description of
MSLA modulators. In section III the proposed method for
the derivation of the MSLA modulator linearized transfer
functions is presented, followed by supporting simulation
results. Finally, section IV concludes the discussion.
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Fig. 2. The MSLA modulator as an optimization algorithm.

II. THE MSLA MODULATOR SYSTEM DESCRIPTION

MSLA modulators are a variation of conventional 1-bit ΣΔ
modulators. Their main difference is that MSLA modulators
take into account the current and k future output samples
for the minimization of the quantization error in the pass-
band of the loop filter, whereas conventional ΣΔ modulators
only consider the current output. This results in better noise
shaping characteristics, i.e. higher SNDR (signal to noise and
distortion ratio), and improved stability over conventional ΣΔ
modulators. For detailed simulation results and explanation of
the underlying algorithms please see [4]. Only the key ideas
required for the analysis presented in this work are covered
here.

A. The MSLA Modulator as an Optimization Algorithm

In [4] it is shown that the output of the MSLA modulator
is given by the optimization algorithm

yn = arg min
v0∈{±1}

 min
v1,v2,...,vk∈
{±1}

k∑
j=k−r

|xn+j + en+j − vj |p
 .

(1)
This is illustrated in Fig. 2, where D =∑k

j=k−r |xn+j + en+j − vj |p. Filter G is known as the
comparison filter and it plays the same role as the loop filter
of conventional ΣΔ modulators. It is related to the noise
transfer function (NTF) of a conventional ΣΔ modulator by
the equation

G(z) =
1−NTF (z)

NTF (z)
=

∑`
i=1 biz

−i

1 +
∑m

i=1 aiz
−i . (2)

The output of the comparison filter at discrete time instant
n is denoted en. The number of future output samples taken
into account for the minimization of the quantization error,
from now on look-ahead steps, is k and r + 1 is the number
of partial costs Sj,n(v0, v1, . . . , vj) ≡ |xn+j + en+j − vj |p
used for the minimization. Parameter p denotes that the cost
function is the p-norm distance of the optimizing variables
vector v = (vk−r, vk−r+1, . . . , vk) from the vector incor-
porating the input and the comparison filter output samples
(xn+k−r+en+k−r, xn+k−r+1+en+k−r+1, . . . , xn+k+en+k).
The most common choice is p = 2 as it minimizes the total
quantization error power yielding the best SNDR. However, a
value of p = 1 leads to a more efficient hardware implemen-
tation [4] with a low SNDR cost.
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Fig. 3. The MSLA modulator efficient form system diagram.

B. MSLA Modulator Efficient Form

An equivalent system description of the MSLA modulator,
avoiding the exponential algorithmic complexity associated
with (1), is shown in Fig. 3 [4]. In this description the
modulator is comprised of r+1 two-input filters and a (r+1)-
input 1-bit output quantizer.

The transfer functions of the filters in Fig. 3 are given by

L0
j (z) =

j+`−1∑
i=0

cj,iz
j−i +G(z)

m−1∑
i=0

dj,iz
−i (3)

L1
j (z) = −

j+`−1∑
i=j+1

cj,iz
j−i −G(z)

m−1∑
i=0

dj,iz
−i (4)

with k − r ≤ j ≤ k. Coefficients cj,i and dj,i are de-
rived from the comparison filter G coefficients bi and ai.
The equations defining their values are thoroughly discussed
in [4]. The filter outputs uj,n, k − r ≤ j ≤ k are
given by the difference equation uj,n =

∑j
i=0 cj,ixn+j−i +∑j+`−1

i=j+1 cj,i (xn+j−i − yn+j−i) +
∑m−1

i=0 dj,ien−i. The filter
output vector u = (uk−r,n, uk−r+1,n, . . . , uk,n) is then fed to
the (r + 1)-input 1-bit quantizer.

The quantizer mapping function f(·) depends on the com-
parison filter G, the number of look-ahead steps k and the
number of partial costs r + 1. It is a time-invariant function,
i.e. it does not depend on n. In [4] it is shown that

f(u) = arg min
v0∈{±1}

 min
v1,v2,...,vk∈
{±1}

k∑
j=k−r

∣∣∣∣∣uj,n −
j∑

i=0

cj,ivj−i

∣∣∣∣∣
p
 .

(5)
Therefore, the MSLA modulator output is equivalently given
by yn = f(uk−r,n, uk−r+1,n, . . . , uk,n). Consequently yn is
determined by the least p-norm distance of the quantizer input
vector u from a set of points with coordinates

∑j
i=0 cj,ivj−i

in uj axes, k−r ≤ j ≤ k. There is one point for each possible
sequence {v} = (v0, v1, . . . , vk), vi ∈ {±1}, resulting in a
total of 2k+1 points in (r + 1)-dimensional space.

For a more thorough analysis the reader is referred to [4].
Therein it is also shown that MSLA modulators achieve the
same or better performance than other look-ahead techniques
with comparable algorithmic complexity.
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III. THE LINEARIZED MSLA MODULATOR SYSTEM

A simple and approximate approach to the linearization
of the MSLA modulator system in Fig. 3 is to replace the
multi-input quantizer with a gain Kj and a noise source
Nj for each of its inputs. This has been done in [4] where
the noise (NTF) and signal transfer functions (STF) are
derived as NTFMSLA ≡ Y/Nk|X=0 = 1/

(
1−KkL

1
k

)
and STFMSLA ≡ Y/X|Ni=0 =

(
KkL

0
k

)
/
(
1−KkL

1
k

)
respectively. Furthermore, Kk is calculated by minimizing the
average power of the quantizer linear model error yn−Kkuk,n,
i.e. Kk = 〈y, uk〉/〈uk, uk〉 = 〈f(u), uk〉/σ2

uk
, where 〈a, b〉 is

defined either stochastically as E[ab] or deterministically as
the time average limN→∞

1
N

∑N
n=0 anbn of the sequences an

and bn. The value of Kk can be derived via simulation.
Notice that only a single filter, i.e. (L0

k, L
1
k), is considered in

order to derive the whole system transfer functions. This is an
indication that this analysis fails to capture all the dynamics of
the MSLA modulator. Next, a system identification approach
is used to derive the NTF of the MSLA modulator. To avoid
confusion, the term NTFMSLA will be used when referring to
the NTF of the MSLA modulator.

A. The Vector Fitting Algorithm

The Vector Fitting algorithm [5] is a numerical technique
that uses a rational model approximation to match the observed
frequency response of a system (dataset). For the linearization
of the MSLA modulator system in Fig. 3, it is convenient to
model its behavior based exclusively on frequency response
magnitude data derived from simulation. Our linearization
method relies on deriving a magnitude-equivalent, minimum-
phase system to the NTF of the MSLA modulator and then
fitting the equivalnet system with a LTI model, using the
Vector Fitting algorithm.

1) The Minimum-Phase Magnitude-Equivalent System: Let
|X(ejω)| denote the magnitude of NTFMSLA. Let us define
x[n] so that X(ejω) = F(x[n]). For a LTI system it holds that
[6]

Sy = |H(ejω)|2Sx (6)

where Sy , Sx are the power spectral densities of the output
and input signals respectively. Assuming the input to the noise
transfer function to be a white, uniformly distributed and
with unity power spectral density over the frequency range of
interest random process, it follows from (6) that the magnitude
of NTFMSLA is |X(ejω)| =

√
Sy .

The derivation of the minimum-phase equivalent system
is based on the minimum-phase and all-pass deconvolution
method described in [6]. X(ejω) is a real-valued function
of ω and consequently the complex cepstrum of x[n] exists.
This is the only condition on which the sequence x[n] can be
expressed as a minimum-phase and an all-pass component, i.e.

x[n] = xmin[n] ∗ xap[n]. (7)

Noting that |Xap(ejω)| = 1, and taking the Fourier trans-
form of (7), the minimum-phase component is equivalent to

Fig. 4. Derivation of the minimum-phase equivalent system.

the NTFMSLA magnitude dataset since it exhibits the same
magnitude, with a non-zero phase function, i.e.

|Xap(ejω)| = |X(ejω)|
|Xmin(ejω)|

= 1 (8)

∠Xmin(ejω) = Im
{
X̂min(ejω)

}
. (9)

The procedure for the derivation of the equivalent dataset is
summarized in Fig. 4, where `min[n] ≡ 2u[n]− δ[n]. So, the
initial dataset that contained magnitude-only measurements,(
ejωk , |fk|

)
, has been transformed to the equivalent dataset(

ejωk , fk = |fk|∠Xmin(k)
)
.

2) Vector Fitting Algorithm Details: The Vector Fitting
algorithm attempts to fit a rational model to a set of calculated
frequency responses f(s), s = jωk, k = 1, 2, . . . , Ns, i.e.

N∑
n=1

cn
s− an

+ d ≈ f(s). (10)

The coefficients cn, an are real or complex conjugate pairs,
while d is real. The frequency responses f(s) are the ones cal-
culated for the minimum-phase magnitude-equivalent system
in the previous subsection. The approximation procedure is
formulated as the least squares problem of solving iteratively
the pole relocation system

N∑
n=1

cn

s− a(i)n

+ d =

[
N∑

n=1

c̄n

s− a(i)n

+ 1

]
f(s) (11)

where i is the iteration index. Considering the parameters cn,
d and c̄n, the system is linear and is solved by evaluating (11)
at the Ns frequency data points.

Equation (11) can be solved with iterative numerical meth-
ods, replacing the initial poles with the relocated ones at each
iteration. Τhe relocated poles are calculated as the eigenvalues
of matrix A, i.e.

{
a
(i+1)
n

}
= eig

{
A− bcT

}
, where A is an

N ×N , real-valued, block diagonal matrix holding the poles
of the previous iteration, b is a column vector of ones and cT

is a row vector holding the residues c̄n. Special attention is
needed in the case of complex conjugate poles [5].

Stability is ensured by flipping the poles to the left half-
plane, i.e. a

(i+1)
n = −a(i+1)

n , if they are unstable, i.e.
Re
{
a
(i+1)
n

}
> 0. After convergence, the computed values

for the poles are used to compute the residues of the rational
model, as well as d, by solving (10) in the least squares sense.
This is an overdetermined linear system, solved in the same
manner as the pole relocation system. The resulting continuous
time model is transformed into a discrete time one via the
pole-zero matching technique [7].
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Fig. 5. Output power spectrum of a low-pass MSLA modulator and its
linearized model.
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Fig. 6. RMS fit error vs. VF algorithm linearized system order.

B. Simulation Results

The effectiveness of the Vector Fitting (VF) algorithm
described previously is showcased in the following simulation
results. First, let us assume a low-pass MSLA modulator with
r = k = 10 and p = 2. The input to the modulator is chosen to
be a sinusoidal signal of amplitude 0.43. The 7-th order NTF
is obtained by the Delta Sigma Toolbox [8] with parameters
OSR = 16, ||NTF ||∞ = 2 and use of optimized zeros.
It should be noted that the identification procedure requires
averaging of the spectrum data to achieve proper results and
fast convergence with relatively small data sets. The simulated
output spectrum of the modulator along with its averaged
version and the VF linearized model are shown in Fig. 5.
The linearized model is obtained from the VF algorithm using
model order N = 15 and 200 iterations. The dataset length
is 700 points. There is a nearly perfect match between the
linearized model obtained from the VF algorithm and the
averaged simulated MSLA modulator output spectrum.
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Fig. 7. RMS fit error vs. look-ahead steps k.

As shown in Fig. 6 there is a significant error in the
linearized model if the model order is less that 8. This makes
sense since the NTF is of order 7. The slight decrease in the
RMS error for orders greater than 8 is due to the better fitting
achieved for the unfiltered spurs of the averaged simulated
spectrum. Analogous results are obtained for band-pass MSLA
modulators and for comparison filters of different orders.

In Fig. 7 the influence of the number of look-ahead steps k
on the RMS fit error is investigated. The results are obtained
for a 3-rd order low-pass MSLA modulator. It is concluded
that the number of look-ahead steps k does not have an impact
on the accuracy of the linearized model for a specific model
order. However, as it was observed in the previous simulation
results in Fig. 6, a higher linearized model order results in
lower RMS fit error.

IV. CONCLUSION

A method for the derivation of the MSLA modulator
linearized system transfer functions has been presented. The
basics of MSLA modulators were introduced and the problem
of their analysis using conventional methods was highlighted.
It was shown that system identification methods, such as the
Vector Fitting method used here, can accurately model the
nonlinear MSLA modulator system as a linearized LTI one.
Simulation results supporting the proposed methodology were
also presented. Further refinement of our methods is due,
as well as stability analysis of the MSLA modulator using
the linearized models along with techniques used for stability
analysis of conventional ΣΔ modulators.
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