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Abstract—In this work we propose an algorithm for calibration
of both 3-axis accelerometers and 3-axis magnetometers based
on a computationally efficient modification of a popular calibra-
tion method. The proposed algorithm achieves fast convergence
without requiring any external piece of equipment like a turn-
table. The evaluation of the proposed algorithm is done using
experimental data.
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I. INTRODUCTION

Accelerometers in combination with magnetometers are
used in many applications including navigation and head-
ing estimation. For low-cost applications, Micro-Electro-
Mechanical (MEMS) accelerometers are most commonly used
due to their cost effectiveness and small size. However,
MEMS-based accelerometers lack in measurement accuracy
mostly due to their manufacturing imperfections. Thus, when
accuracy is needed, a calibration procedure is required.

In order to calibrate a 3-axis accelerometer, most authors use
the fact that the magnitude of gravity is constant. Based on
that, and assuming a number of accelerometer measurements
while the sensor is still, they most commonly formulate a
maximum likelihood estimation problem [1] or a linear least-
squares problem [2] to estimate the calibration parameters.

Magnetometers also require a calibration procedure to com-
pensate for their measurement errors. In case of magnetic
sensors, the dominant part of their measurement error is caused
by nearby materials which distort the measured magnetic field.
More specifically, hard-iron distortion is created by magnetic
materials attached to the magnetometer’s reference frame and
causes a bias to the measurements. Soft-iron distortion is
caused by materials attached to the magnetometer’s reference
frame which influence the measured magnetic field but don’t
generate a magnetic field.

Similarly to the accelerometer case, the constant magnitude
of the magnetic field is usually exploited for magnetometer
calibration. Authors in [3] and [4] solve a maximum likelihood
estimation problem to estimate the calibration parameters. In
[5] a Kalman filter is applied to a properly formulated state
estimation problem for magnetometer calibration.

In many applications, accelerometer and magnetometer cal-
ibration are implemented as part of an embedded system.
Thus, in such applications, the calibration algorithm must be

computationally efficient in order to be implemented in micro-
controllers or Field-Programmable Gate Arrays (FPGAs) with
limited hardware resources. In this work we propose a modi-
fication of a popular calibration approach [4] [6], resulting in
a quadratic optimization problem, for both accelerometer and
magnetometer calibration. The proposed algorithm excels in
computational efficiency and provides fast convergence requir-
ing no external piece of equipment. The proposed algorithm
is evaluated using experimental data.

This paper is organized as follows. In section II accelerom-
eter’s and magnetometer’s measurement models are presented.
The proposed calibration algorithm is described in Section III.
Finally, evaluation of the proposed algorithm using experimen-
tal data and conclusions are presented in sections IV and V.

II. MEASUREMENT MODELS

For accelerometer and magnetometer calibration, a mathe-
matical model that relates the sensors’ measurements with the
true values of specific force and magnetic field respectively is
required.

A. Accelerometer Measurement Model

The measurement of an accelerometer is modeled as [7] [8]

ya = f + Tsff + Tccf + ha + ε, (1)

where

ya : 3× 1 measurement vector
f : 3× 1 true specific force vector

Tsf : 3× 3 diagonal matrix representing the scale-factor error
Tcc : 3× 3 matrix representing the cross-coupling error
ha : 3× 1 accelerometer’s bias vector
ε : random error

Defining Ta , I3 +Tsf +Tcc, where I3 is the 3×3 identity
matrix, (1) can be written as

ya = Taf + ha + ε (2)
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B. Magnetometer Measurement Model

The measurement of a magnetometer is modeled as [6], [9],
[4], [10]

ym = TsfTcc (Tsim+ hhi) + hb + ε (3)

where
ym : 3× 1 measurement vector
m : 3× 1 true magnetic field vector
Tsf : 3× 3 diagonal matrix representing the scale-factor error
Tcc : 3× 3 matrix representing the cross-coupling error
Tsi : 3× 3 matrix representing the soft-iron distortion
hb : 3× 1 magnetometer’s bias vector
hhi : 3× 1 bias vector due to hard-iron distortion
ε : random error

Setting Tm , TsfTccTsi and hm , TsfTcchsi + hb, the
magnetometer’s measurement model becomes

ym = Tmm+ hm + ε (4)

As seen, (2) and (4) share the same form, so the general
model (5) can be used for both sensors’ calibration.

y = Tn+ h+ ε (5)

III. CALIBRATION ALGORITHM

A popular calibration approach ( [4], [6]) uses the fact that
the measured magnitude of the specific force or magnetic
field should be constant. Assuming N measurements and
using (5), the calibration algorithm is formulated as the error
minimization problem in (6).

minimize
N∑

k=1

‖yk − Tnk − h‖2

subject to ‖nk‖ = 1, k = 1, 2, ..., N

(6)

For both accelerometer and magnetometer, without loss of
generality, we assume the magnitude of the specific force and
magnetic field respectively is one. Note that both T and nk in
the product Tnk are unknowns and therefore (6) is a quartic
optimization problem. A popular approach to solving (6) is
via the penalty function method, i.e., forming

J0(x) =

N∑
k=1

{
‖yk − Tnk − h‖2 + λ

(
‖nk‖2 − 1

)2}
(7)

where λ > 0 and

x =
[
vec(T )T hT nT1 . . . nT

N

]T
and minimizing it using the gradient descent method. The
gradient vector of the penalty function J0(x) is

∇J0(x) =

[
=

∂J0(x)

∂vec(T )

T
∂J0(x)

∂h

T
∂J0(x)

∂n1

T

. . .
∂J0(x)

∂nN

T
]T

(8)

Defining uk = yk − h, we have

∂J0(x)

∂vec(T )
= 2

N∑
k=1

{
nk ⊗ (Tnk)− (nTk ⊗ uTk )T

}
∂J0(x)

∂h
= 2

N∑
k=1

{h− yk + Tnk}

∂J0(x)

∂nl
= 2

N∑
k=1

{2nk(nTk nk − 1)− TTuk + TTTnk}

where ⊗ denotes the Kronecker’s product [11].
As already mentioned, optimization problem (6) is quartic

because both T and nk are unknowns and the penalty function
involves the square of their product. This results in slow
convergence as shown in Section IV. To overcome this and
achieve a computationally efficient algorithm we introduce the
following transformation which converts (6) into a quadratic
problem. Specifically, we multiply (5) by H = T−1 to derive

Hy = n+ v + ε̃, (9)

where H , T−1, v , T−1h and ε̃ = T−1ε. Then,
minimization of the square error ε̃ leads to the quadratic
optimization problem (10).

minimize
N∑

k=1

‖Hyk − nk − v‖2

subject to ‖nk‖ = 1, k = 1, 2, ..., N

(10)

Note that ε̃ is a legitimate definition of the error as it adds
directly to the specific force. We write the penalty function
corresponding to (10)

J(x) =

N∑
k=1

{
‖Hyk − nk − v‖2 + λ

(
‖nk‖2 − 1

)2}
(11)

where λ > 0 and

x =
[
vec(H)T vT nT1 . . . nT

N

]T
The gradient vector of the penalty function (11) is

∇J(x) =

[
∂J(x)

∂vec(H)

T
∂J(x)

∂v

T
∂J(x)

∂n1

T

. . .
∂J(x)

∂nN

T
]T
(12)

where

∂J(x)

∂vec(H)
= 2

N∑
k=1

[
yk ⊗ (Hyk − nk − v)

]

∂J(x)

∂v
= 2

N∑
k=1

[
−Hyk + v + nk

]
∂J(x)

∂nk

∣∣∣
k=1,2,...,N

= −2(Hyk + nk − v) + 4λnk‖nk‖2
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Optimization problem (10) can be solved using the gradient
descent method. In order for the gradient descent algorithm to
converge, a good initial estimate of the unknown vector x is
required.

For the accelerometer, under the reasonable assumption of
small scale-factor and cross-coupling errors, an initial estimate
of H is the 3× 3 identity matrix (I3). In a similar way, bias
vector v is initialized as the 3× 1 zero vector (03×1).

For the magnetometer, deriving an initial estimate of the
unknown vector x is not trivial due to the hard-iron and soft-
iron distortions. To this end, the authors in [4] and [9] use a
linear least-squares problem to find an initial estimate of x.

Finally, for better convergence, the backtracking line-search
method [12] is incorporated in the gradient descent method.

The proposed algorithm is summarized in Algorithm 1.

Algorithm 1: Calibration Steps
Step 1: Initialize H and v

Step 2: Initialize nk = yk, k = 1, 2, . . . , N ,

Step 3: Initialize λ, t, a, b

Step 4: Determine the descent direction:
∆x=-∇J(x)

Step 5: Choose step size:
while g(x+ t∆x) > J(x) + at∇J(x)T ∆x

t := βt

Step 6: Update x = x+ ∆x

Step 7: Calculate J(x)

Step 8: Repeat steps 4-7 until J(x) is sufficiently small

IV. EXPERIMENTAL RESULTS

The proposed algorithm is evaluated using experimental
data. To that purpose an accelerometer - magnetometer device
based on Bosch Sensortec BNO055 was designed. BNO055 is
a System in Package (SiP), integrating a 3-axis accelerometer,
a 3-axis gyroscope and a 3-axis magnetometer. Accelerometer
and magnetometer data were recorded while the device was
placed still in several different orientations.

A. Algorithm Convergence
For five different datasets, the convergence of the proposed

algorithm is presented in Figures 1 and 2. The proposed
algorithm minimizes the penalty function J to a sufficiently
small value for both magnetometer and accelerometer in all
the recorded datasets.

In order to evaluate the computational efficiency of the
proposed algorithm, we compare the convergence of the op-
timization problem (6) to that of the proposed optimization
problem (10). More specifically, both calibration algorithms
are applied to the same accelerometer’s data. The convergence
of each algorithm is evaluated using both penalty functions J0
and J . Setting a sufficiently small penalty function value as
optimization target, the proposed algorithm converges signifi-
cantly faster as seen in Figure 3.
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Fig. 1: Algorithm convergence for accelerometer data.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration

10-1

100

101

102

P
en

al
ty

 F
un

ct
io

n 
V

al
ue

Dataset 1
Dataset 2
Dataset 3
Dataset 4
Dataset 5

Fig. 2: Algorithm convergence for magnetometer data.

B. Calibration Results

Calibration is based on the fact that the measured gravity
and magnetic field should be constant and independent of
the sensors’ orientation. In figures 4 and 5, the normalized
magnitude of both accelerometer’s and magnetometer’s mea-
surements, before and after calibration, is presented.
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mization problem and optimization problem (6)
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Fig. 4: Normalized magnitude of accelerometer’s measure-
ments before and after calibration
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Fig. 5: Normalized magnitude of magnetometer’s measure-
ments before and after calibration

V. CONCLUSION

A new calibration algorithm for 3-axis accelerometers and
magnetometers is presented. It achieves significantly faster
convergence and higher computational efficiency compared
to a popular calibration approach. Applying the proposed
algorithm does not require any special piece of equipment
like a turn-table in order to calibrate an accelerometer or a
magnetometer. Experimental data confirmed the algorithm’s
efficiency and robustness.
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