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Abstract: A field theory employing Green’s functions is 

used to develop an imaging algorithm of weak conductivity 

variations in EIT. The algorithm results in a linear system 

of equations whose solution gives both the potential and the 

conductivity distributions. 

1 Introduction 

EIT imaging of soft deep-body tissues, away from the skin, 

challenges the numerous existing image reconstruction 

algorithms. Part of the difficulty is to image significantly 

small inhomogeneous internal conductivity variations 

without resorting to memory-expensive inverse problem 

solution ways [1].  

2 Methods 

2.1 The Forward Problem 

Consider a 2D medium with conductivity ! = !(") and two 

point electrodes sourcing and sinking current # and be 

placed at "$ and "% respectively. The EIT’s equation is 

 &!&' + *&,' = #[-(" . "$) . -(" . "%)] (1) 

where ' = '(") is the potential and r is the observing 

position. Assuming no other current sources are present and 

integrating over the domain of interest /0, with the use of 

Green’s theorem [2], we get the integral equation 

V(") = 12("3 "0) &*("0)*("0) &'("0)4/056
+ #[2("3 "$) . 2("3 "%)]*7 88888888888888888(9)!

Where "0 is the position vector within /0 where integration 

takes place. Let σ0 be the homogeneous conductivity 

reference and G be a Green’s function solution of the 

homogeneous Laplace’s equation &,2("3 "0) = -(" . "0). 
Assuming a circular area of radius :7  and keeping the 1st 

Fourier series term, the Green’s function gives 
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Where ? = F"F, ?0 = F"0F and C3 C0 are the angles of "3 "0 
respectively. For small conductivity variation e.g. when |* .8*7| H *7I;J it is &' K &'7 and the homogeneous 

potential V0 equals the Green function’s solution.  

2.2 The Inverse Problem 

To solve the inverse problem near the centre, the internally 

inscribed orthogonal parallelogram of the circle is 

discretized to square pixels, with Δα side length. Each pixel 

corresponds to a conductivity contribution *LMNM  such that 

ln *LMNM = O O PLQNQR%
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Where "6 = UbL,3 cN,Y are the central point coordinates of 

an arbitrary pixel and "defg"hi = UbL^3 cN^Y are the central 

coordinates of the referring pixel. Parameter j must be 

small enough to avoid aliasing. Taking the gradient of Eq. 

(4) and using it in Eq. (2) we replace the non-linear term &*I*. Using the midpoint integral rule, the inhomogeneous 

part of equation 2 is written as 
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In Eq. (5), vector " is the position of the voltage observation 

points. Taking into consideration the homogeneous and 

inhomogeneous model measurements, the problem 

concludes to a linear system of equations xy = z, where z 

is the measurement vector, y is the unknown vector of the 

coefficients  PLQNQ 8and the entries of x are 
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`

NM_^

\

LM_^. 2("i$�3 "6)]8&ln("6)|LM3NM&'vU"�3�$�3 "6Y (�) 
Where �3 � + ; refer to the current electrode pairs and �3 � +; refer to the voltage pairs. In order to have a well-defined 

problem, the total number of pixels is chosen in such a way 

to equal the number of the total measurements. Since x is 

close to singular, the system is solved using the biconjurate 

gradient’s method with preconditioner [3].   

3 Results 

For the testing, inhomogeneous models were created using 

the FEMM along with the MATLAB tool. The electrode 

measurements were computed using Εq. (2) assuming 

opposite strategy with 32 electrodes and a reconstruction 

performed using the back-projection algorithm. Then, 

conductivities were calculated using the method described. 

 
Figure 1: Image reconstruction of two small conductivities near 

the centre: EIDORS (centre), described approach (right).  

4 Conclusion 

This approach of EIT conductivity imaging provides a 

relatively simple and alternative way to image deep-body 

soft tissue conductivity variations. Applications could be 

developed in chest imaging and breast cancerous 

inhomogeneities detection. 
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