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Abstract—All-digital frequency synthesis based on single-bit, Note that the DAC is only virtually there representing the

Nyquist-rate, quantization of sinewave with independent and act of signum function, or similarly that of an MSB extractor,

identically distributed random amplitude dithering is proposed.  applied to the sum of the LUT's output with the dither.
The output spectrum of the quantizer is derived in closed form . . o .
and is related to the distribution of the random dither. In the above setup, single-bit quantization alone, i.e.

Conditions for spurs-free output are derived, and the output ~Without dithering, typically results in dense and high-power

dynamic range is defined. MATLAB simulation examples frequency spurs making the output single-bit digital signal

illustrate the results of the proposed approach. unusable for analog and R.F. applications (although it can by
used for clocking digital circuitry).

Keywords—Digital-to-frequency converter, direct digital

synthesis, frequency spurs, quantization The paper derives analytically the spectrum of the single-

bit dithered quantizer as a function of the dither's Cumulative
Distribution Function (CDF) when the dithering sequence is
.- INTRODUCTION formed of Independent and Identically Distributed (IID)
The interest in all-digital frequency synthesis (FS) has beerandom variables. Moreover, the noise floor power due to
intensified in the R.F.I.C. industry over the past few years dueandom dithering is derived analytically and the output
to the increasing challenge in the design and the extra cost @ynamic range is defined and calculated explicitly.
fabrication of R.F. analog and mixed-signal I.C. versus

standard digital ones in modem _nano—scale I.C. technologies, . DEFINITIONS AND ASSUMPTIONS
e.g. [1]-[3]. Efforts towards all-digital FS can be traced at least o
thirty years back [4][6]. Random dithering is commonly used to suppress the spurs

_ _ ) and shape the noise of quantization in DDS [8] and data
Replacing a complex analog or mixed-signal frequencyonverters [9] and to eliminate periodic patterns in fractional-N
synthesizer with a fully digital one can result in faster concepequency dividers [10].

to market cycle, lower design effort and cost and the advantage ) . .
of using digital design and verification tools. Here we consider the extreme case of amplitude dithered

) o DDS with single-bit output quantization (DAC) without

~ Moreover, synchronous single-bit digital outputs of all-oversampling [9] shown in Figure 1. The cosine can be
digital synthesizers, having sinewave-like spectrum can bgenerated using a phase accumulator and a LUT, and the Zero
used as local-oscillator signals in RF chains and, they can lgder Hold (ZOH) outputs a continuous-time single-bit digital
amplified for transmission or internal use without distortionwaveform. All blocks are clocked by a clock reference of
and with very high efficiency using a switching amplifier. Also frequency fo=1/T.
one can incorporate digital or analog phase, frequency and
amplitude modulation directly in an all-digital synthesizer [7].

+ 1 Xk
The proposed single-bit-output Nyquist-rate sinewave cos(Qk)»@—» :F | zoH —X(t)
guantization scheme is practically realized by a Direct Digital . -1 Ts
Synthesizer (DDS) with a 1-Bit output Nyquist-rate Digital to
Analog Converter (DAC). Dither is added to the output of the u,
Look-Up-Table (LUT) before the hard quantization to alleviate
the nonlinearity and suppress the output spurs by breaking the Figure 1: Dithered single-bit quantization of a sinewave

periodicity of the truncation error. The dithering random sequen{mak} is subtracted from the

sinewave resulting in the discrete-time single-hitl] signal
X, :sgn( coiQk)—uk) where “sgn” is the signum function.



Throughout the paper we assume that the randonesequ further that series (5) is term-by-term differebteg a
{Uk} is formed of IID random variables having CDF necessary and sufficient set of conditions®io be a CDF is
G:[-1,1]—[0,1] which is continuous and has continuous G(-1)=0, G()=1 & G'(u)=0 Vue[-1]1 (7)

second derivative in—1,1{ . Therefore, for everk e Z and : , ]
vative ifj-1,1] verk e SinceT, (+x1)=(+1)’, j=0,1,2,.., and T, (u)=j-U, (u),

for j=1,2,3,.., whereU, is thej-th Chebyshev polynomial

of the 2nd kind [13], Egs. (7) can be written as
plausible becauseos(Qk) does the same and hence any

larger value range of the dither would be unnecgssa

ue[-L1] it is Pr(u,<u)=G(u), so implicitty we assume
that essentiallyu, takes values only withifi—-1,1] . This is

© .
j=0 j=0
o0

It also makes sense from an application perspedtve . (8)

assume that)/(2r) is rational, i.e.Q=2zw/q for some jau,;(u)20 vue[-1]
integerw such thatO<w< q/2. In this case =

X, = sgn( co$ 2wk q)_uk) (1) Section IV illustrates how coefficients, are calculated for

two cases of CDF5 and used to derive the PSD.

and since{u, } is an 11D random sequence ands( 2rwk /g
has period q/gcd(q,w) , the random sequenc@k} is I1l.  POWERSPECTRALDENSITY AND DYNAMIC RANGE
cyclostationary of the same period. Singds a multiple of Using the above definitions we can expr@g¢k) as a
a/gcd(q.w), {x,}is also cyclostationary of periogl and we  function of the coefficients,, j=0,1,2,.... Specifically, we

consider it as such in the rest of the paper tplfiymotation.  have that [14] the period-average autocorrelafigfik) of

A. The Period-Average Autocorrelation of {x, } X} Is given by (9) where, =1 and ., =0.

The Power Spectral Density (PSD) of a discrete-tivitke- J zﬂkjw , & aj2
sense stationary (WSS) process is the Discrete-Fmeier r(k)=a, +Z co q + -8, —27 5 (9)
Transform (DTFT) of its autocorrelation functiohl]] 1=

r.(nm)=E{x,x,}. 2) Note thatT, comprises of DC terna,’ , harmonics of
Since{x, } is not WSS but cyclostationary of periodits ~ €oS( 2rkw /g) and an impulse term &=0. Moreover, the
PSD, s, (o), is commonly defined as the DTFT of its period- amplitude of thg" harmonic, i.e.a,” /2, is half the square of

average autocorrelation [11]-[12], i.e., of the projection of CDFG to the j" Chebyshev polynomial
) according to Egs. (6). This implies that by setegtCDF G
_ k):lirx(k+m, m) 3 we can “shape” the period-average autoco-rrelat.imc.tfon
(o eurd and so the PSD dfix, } . Note however that time is discrete
and and the harmonics afos( 2rkw /q) in Eq. (9) are subject to
s ()= lerx(k)e—ikw. 4) aliasing and folding into the frequency domaire [0, 2r)
® simply becauseos Zrkjw /q) = co$ 2ZK((jw) mod) d).
To calculatey (k) we express the CDB:[-1,1]— [0,1] g ) é (( ) ) )
as a series of Chebyshev polynomials of the firsd k.e., A. Power Spectral Density of the Output Signal x(t)
1 1
U)=§+EZ(;31TJ (u). ®) The outputx(t) of the ZOH in Figure 1 is a continuous-
= . . . . .
The summand and multiplying facttv 2 is used to simplify time signal which can be written in the form
the algebra. Coefficienta; are derived according to [13]
x(t)= Zxkp ——k (10)
ao__.[ G(u) du-1, a jG(U)T U) (6) P
1V1-u° Vi-u’ where T, =1/ f,

is the sampling period and pulggt) is 1
SinceG was assumed contmuous its series expansion (5)

converges toG everywhere in[-11] . Inversely,G can be [0f t€[0,1) and zero otherwise corresponding to ZOH's
defined using coefficienta; as long as series (5) converges tooperation. It can be shown [14] that the PSIX ) is

ti functi ¢ is indeed a CDF. A [
a continuous function an is indeed a ssuming S.(f)=Te-sin(f-To)-s,(201T,) (11)



where s, (@) is the DTFT in Eq. (4) of the period-average B. Noise Floor and Dynamic Range

autocorrelatiorfy and T -sinc (f -T) is due to the shape of

Typically, the desirable frequency component atdhtput

the pulsep(t). Combining Egs. (4), (9) and (11), and after 4is at frequency(w/ q) fs with amplitudesinc®(f /f)-b, /4,

lengthy algebraic manipulation we can derive thiofang
Theorem whose proof can be found in [14].

Theorem: Following the above definitions and assumptionsSincz (f Ifs)-

and further assuming thacd(w,q) = 1 the PSD ofx(t) is

S(1)=sie( - {(Su(1)+8.(1)+5(1) ) 2

where HArmonics, Noise and DC components are dgbyen

8B

%(f)=%-[1—ﬁ—§ia?], (14)

and
Soc(f)=b°+Tsa°5(f) (15)

respectively. Forh=0,1,2,... the power of the frequency
components at-(h/q) fg in Eq. (13) ish, /4 and

b, £ rZ, alz(h,r)
where | (h,r)=|j;h+ar|; constantj, (and k, which is not

involved in the expression) is derived solving Biephantine
equation wj, +gk, =1 . Specifically coefficienth, of the

(16)

frequency components at(w/q) fg is b, = > qiqr‘ : O

Observing Eg. (16) we note that the contributicofs

coefficientsa; to the total power of frequency component at,, weighting factoslncz(f I15).

+(h/q)fg are cumulative sincea,, >0 . Therefore, to
minimize the spurs in the output we should zermasy of the

captured byS,,(f) in Eqg. (13). Also, the output noise (which

is the only component of continuous spectrum) h&D P
S\ (f). We define the Dynamic Range (DR) of

the output as the ratio of the signal power to&lsiPSD

) sinc (f /f)-h, /4
DR_10|0910(SmCZ(f /fs)ﬁu(f)J

and after replacing the valuesiaf and S (f) we get

(dB)

\IM8

2
a}hqr\
2
aJ

JZE

The definition of the DR can be used for other firexgcy
components of interest as well. Also, note thatghmmand

10log,( fs) in Eq. (17) is expected since the power of the
sinewave’s quantization error is spread over frague

bandwidth proportional to the sampling frequenclge Tise of
Eq. (17) is illustrated in the examples of Sectidn

DR=10log, +10log, ( fg)— 6.0: (dB) (17)

1-
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IV. EXAMPLES AND SIMULATIONS

First we emphasize the importance of dithering pars
suppression in the case of single-bit quantizatibn
considering the case ofw=25 and q=64 without dither.

This is the limiting case of the above setup wh&F@(u) is

zero forue[-1,0) and one forue(0,1], ie. u, =0 with

probability one. Figure 2 shows the output spectignoring
The spectrum is the result

of MATLAB simulation and coincides completely wittne
theory, Eq. (12). Note that althoudh is discontinuous at

coefficients a, as possible because the smaller the set ot =0 its series expansion, Eq. (5), is valid to#0 implying
nonzero coefficientsa, is, the smaller the set of frequency x =0 anda,., =4(- D I((%+Yz) for k=0,1,2,.

components present |ﬁHA( ) will be.

Note that in order to derive coefficiebf we first find a
solution (j,,k;) of the Diophantine equatiorwj, + gk, =1

using the Euclidean algorithm (“gcd” function in MTAAB).
This is always possible due to our

ged(w,g) = 1. Any (j,,k) of the infinitely many solutions is
acceptable but one with absolutely smplk, is convenient.
Then we apply Eq. (16) where only is used in|jh+ar|.
The procedure is illustrated in the examples otiSedV.

assumption that

o

f.=1GHz
RBW = 1000 Hz
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Figure 2: Spectrum of single-bit quantized sinewaitbout dithering when
w=25 and q=64; ignoring the weighting factosinc( f /f;) .

Now we consider the same case w25 and q=64
when the dithering sequenc{elk} is formed of uniformly



distributed IID random variables, i.e. the probability density

function is constant’(u) =1/2 in [-1,1] and so the CDF is
G(u)=(u+1)/2. SinceT,(u)=u we derive by inspection
thata, =0, a, =1 anda, =0 for k=2,3,4,...

To derive the coefficient®, in the Theorem we find a
solution of the Diophantine equatio5j, + 64, =1, e.g.
(i, k)=(-23,9. Forh,, h=0,1,2,.. to be nonzero, there
must exist some € Z for which

I (h,r)=|jh+64|=1 (18)

This is becausea, =1 and a,=0, a =0 for all
k=2,3,4,.., therefore onlya, can contribute tdy, . Since
25j,+ 64, =1, a particular solution ofjh+64r=1 is
(h,r)=(25k,) and so the general solution of Eq. (18) is

(h,r)=%(25,9+ (64,23, peZ (19)

Since it ish>0 we conclude that the (only) non zero

coefficientsh,, h=0,1,2,...areb,; and b q,.,;, 7=1,2,3,...

From Eq. (16) we also get thdt,, =b, ¢, ,s=1, 7=1,2,3,...

So we derive that
h h
S| f——fg|+0| f+—f ,
{ ( q Sj ( q SD

S (f)=1/(2fs) and S,.(f)=0. The result coincides

completely with the PSD derived using simulationgown in
Figure 3 where the weighted facsind ( f T) is ignored.
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Figure 3: Spectrum of single-bit quantized sinewaitd uniformly
distributed dither wherw =25 and q =64 ; the weighting factor
sind(f /fs) isignored. fs =1GHz , Resolution BW = 3125 Hz and
waveform averaging Nav=10 runs.

We note that there are only two frequency companant
the frequency rangf0, f], the desirable one #25/64) f

and the image of it af(64- 25 /64 f5 due to the discrete

Since a,=0, a,=1 and a, =0 for k=2,3,4,..., the
dynamic range derived from Eq. (17) is expressed as

DR=10log, ( fs)—- 3.0:dB (20)

In the PSD graph of the case=25 and q=64 shown in

Figure 3 the dashed white line indicates the aestagpise
floor power. Forfg=1GHz we getDR=87 dB. Subtracting

10log,(RBW) dB, where RBW =3125Hz, to account for

the resolution BW used for the simulation we geeesy good
match to the simulated 52 dB (Figure 3).

V. CONCLUSIONS

All-digital frequency synthesis using single-bityduist-
rate quantization of sinewave and random dithefimmed of
independent and identically distributed random alalgs has
been studied mathematically. The output spectrus been
calculated analytically as a function of the ditheumulative
Distribution Function. It has been shown that umifty
distributed dither with range equal to that of thieewave
results in spurious-free output spectrum. The ntiem level
due to dithering has been calculated analyticaily the output
dynamic range has been defined and calculatedcitiyplfor
the case of uniformly distributed dither. Examphlessed on
MATLAB have been presented to illustrate the thedriie
simulation results are in complete agreement wightheory.
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