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Abstract—All-digital frequency synthesis based on single-bit, 
Nyquist-rate, quantization of sinewave with independent and 
identically distributed random amplitude dithering is proposed. 
The output spectrum of the quantizer is derived in closed form 
and is related to the distribution of the random dither. 
Conditions for spurs-free output are derived, and the output 
dynamic range is defined. MATLAB simulation examples 
illustrate the results of the proposed approach. 
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I. INTRODUCTION 

The interest in all-digital frequency synthesis (FS) has been 
intensified in the R.F.I.C. industry over the past few years due 
to the increasing challenge in the design and the extra cost of 
fabrication of R.F. analog and mixed-signal I.C. versus 
standard digital ones in modern nano-scale I.C. technologies, 
e.g.  [1]- [3]. Efforts towards all-digital FS can be traced at least 
thirty years back  [4] [6]. 

Replacing a complex analog or mixed-signal frequency 
synthesizer with a fully digital one can result in faster concept 
to market cycle, lower design effort and cost and the advantage 
of using digital design and verification tools.  

Moreover, synchronous single-bit digital outputs of all-
digital synthesizers, having sinewave-like spectrum can be 
used as local-oscillator signals in RF chains and, they can be 
amplified for transmission or internal use without distortion 
and with very high efficiency using a switching amplifier. Also 
one can incorporate digital or analog phase, frequency and 
amplitude modulation directly in an all-digital synthesizer  [7]. 

The proposed single-bit-output Nyquist-rate sinewave 
quantization scheme is practically realized by a Direct Digital 
Synthesizer (DDS) with a 1-Bit output Nyquist-rate Digital to 
Analog Converter (DAC). Dither is added to the output of the 
Look-Up-Table (LUT) before the hard quantization to alleviate 
the nonlinearity and suppress the output spurs by breaking the 
periodicity of the truncation error. 

Note that the DAC is only virtually there representing the 
act of signum function, or similarly that of an MSB extractor, 
applied to the sum of the LUT's output with the dither.  

In the above setup, single-bit quantization alone, i.e. 
without dithering, typically results in dense and high-power 
frequency spurs making the output single-bit digital signal 
unusable for analog and R.F. applications (although it can by 
used for clocking digital circuitry). 

The paper derives analytically the spectrum of the single-
bit dithered quantizer as a function of the dither’s Cumulative 
Distribution Function (CDF) when the dithering sequence is 
formed of Independent and Identically Distributed (IID) 
random variables. Moreover, the noise floor power due to 
random dithering is derived analytically and the output 
dynamic range is defined and calculated explicitly. 

II. DEFINITIONS AND ASSUMPTIONS

Random dithering is commonly used to suppress the spurs 
and shape the noise of quantization in DDS  [8] and data 
converters  [9] and to eliminate periodic patterns in fractional-N 
frequency dividers  [10].  

Here we consider the extreme case of amplitude dithered 
DDS with single-bit output quantization (DAC) without 
oversampling  [9] shown in Figure 1. The cosine can be 
generated using a phase accumulator and a LUT, and the Zero 
Order Hold (ZOH) outputs a continuous-time single-bit digital 
waveform. All blocks are clocked by a clock reference of 
frequency 1/S Sf T= . 

( )cos kΩ
kx

( )tx

ku

ST

Figure 1: Dithered single-bit quantization of a sinewave 

The dithering random sequence { }ku  is subtracted from the

sinewave resulting in the discrete-time single-bit (± 1) signal 

( )( )sgn cosk kk= Ω −x u  where “sgn” is the signum function. 
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Throughout the paper we assume that the random sequence 
{ }ku  is formed of IID random variables having CDF 

: [ 1,1] [0,1]G − →  which is continuous and has continuous 

second derivative in [ ]1,1− . Therefore, for every k ∈ℤ  and 

[ ]1,1u∈ −  it is ( ) ( )Pr k u G u≤ =u , so implicitly we assume 

that essentially ku  takes values only within [ ]1,1− . This is 

plausible because ( )cos kΩ  does the same and hence any 

larger value range of the dither would be unnecessary. 

It also makes sense from an application perspective to 
assume that ( )/ 2πΩ  is rational, i.e. 2 /w qπΩ =  for some 

integer w  such that 0 / 2w q< < . In this case  

( )( )sgn cos 2 /k kwk qπ= −x u       (1) 

and since { }ku  is an IID random sequence and ( )cos 2 /wk qπ  

has period ( )/ gcd ,q q w , the random sequence { }kx  is 

cyclostationary of the same period. Since q  is a multiple of 

( )/ gcd ,q q w , { }kx is also cyclostationary of period q  and we 

consider it as such in the rest of the paper to simplify notation. 

A.  The Period-Average Autocorrelation of { }kx  

The Power Spectral Density (PSD) of a discrete-time wide-
sense stationary (WSS) process is the Discrete-Time Fourier 
Transform (DTFT) of its autocorrelation function  [11] 

( ) { },x n mr n m E= x x .         (2) 

Since { }kx  is not WSS but cyclostationary of period q  its 

PSD, ( )xs ω , is commonly defined as the DTFT of its period-

average autocorrelation  [11]- [12], i.e., of  

( ) ( )
1

0

1
,

q

x x
m

r k r k m m
q

−

=

= +∑             (3) 

and  

( ) ( ) ik
x x

k

s r k e ωω
∞

−

=−∞

= ∑ .        (4) 

To calculate ( )r kx  we express the CDF : [ 1,1] [0,1]G − →  

as a series of Chebyshev polynomials of the first kind, i.e., 

( ) ( )
0

1 1

2 2 j j
j

G u a T u
∞

=

= + ∑ .  (5) 

The summand and multiplying factor 1/ 2  is used to simplify 
the algebra. Coefficients ja  are derived according to  [13]  
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 Since G  was assumed continuous, its series expansion (5)
converges to G  everywhere in [ 1,1]− . Inversely, G can be  
defined using coefficients ja  as long as series (5) converges to 

a continuous function and G  is indeed a CDF. Assuming 

further that series (5) is term-by-term differentiable, a 
necessary and sufficient set of conditions for G to be a CDF is 

( ) ( ) ( ) [ ]1 0, 1 1 & 0    1,1G G G u u′− = = ≥ ∀ ∈ −      (7) 

Since ( ) ( )1 1
j

jT ± = ± , 0,1,2,...j = , and ( ) ( )1j jT u j U u−
′ = ⋅ , 

for 1,2,3,...j = , where jU  is the j-th Chebyshev polynomial 

of the 2nd kind  [13], Eqs. (7) can be written as  
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Section IV illustrates how coefficients ja  are calculated for 

two cases of CDF G  and used to derive the PSD. 

III.  POWER SPECTRAL DENSITY AND DYNAMIC RANGE 

Using the above definitions we can express ( )r kx  as a 

function of the coefficients ja , 0,1,2,...j = . Specifically, we 

have that  [14] the period-average autocorrelation ( )r kx of 

{ }kx  is given by (9) where 0 1δ =  and 0 0kδ ≠ = . 

( )
2 2
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2
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j j

x k
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a akjw
r k a a

q

π
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Note that xr  comprises of DC term 2
0a , harmonics of 

( )cos 2 /kw qπ  and an impulse term at 0k = . Moreover, the 

amplitude of the jth harmonic, i.e., 2 / 2ja , is half the square of 

the projection of CDF G  to the jth Chebyshev polynomial 
according to Eqs. (6). This implies that by selecting CDF G  
we can “shape” the period-average autocorrelation function 
and so the PSD of { }kx . Note however that time is discrete 

and the harmonics of ( )cos 2 /kw qπ  in Eq. (9) are subject to 

aliasing and folding into the frequency domain [ )0,2ω π∈  

simply because ( ) ( )( )( )cos 2 / cos 2 mod /kjw q k jw q qπ π= . 

A. Power Spectral Density of the Output Signal ( )tx  

The output ( )tx  of the ZOH in Figure 1 is a continuous-

time signal which can be written in the form  

( ) k
k S

t
t p k

T

∞

=−∞

 
= − 

 
∑x x       (10) 

where 1/S ST f=  is the sampling period and pulse ( )p t  is 1 

for [ )0,1t ∈  and zero otherwise corresponding to ZOH's 

operation. It can be shown  [14] that the PSD of ( )tx  is  

( ) ( ) ( )2sinc 2x S S x SS f T f T s f Tπ= ⋅ ⋅ ⋅             (11) 



where ( )xs ω  is the DTFT in Eq. (4) of the period-average 

autocorrelation rx  and ( )2sincS ST f T⋅ ⋅  is due to the shape of 

the pulse ( )p t . Combining Eqs. (4), (9) and (11), and after a 

lengthy algebraic manipulation we can derive the following 
Theorem whose proof can be found in  [14]. 

Theorem: Following the above definitions and assumptions 
and further assuming that ( )gcd , 1w q =  the PSD of ( )tx  is 

( ) ( ) ( ) ( )( )2sincx HA N DC
S

f
S f S f S f S f

f

 
= ⋅ + + 

 
   (12) 

where HArmonics, Noise and DC components are given by 
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and  
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2
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respectively. For 0,1,2,...h =  the power of the frequency 

components at ( )/h q fs±  in Eq. (13) is / 4hb  and    

( )
2

,h I h r
r

b a
∞

=−∞
∑≜    (16) 

where ( ) 1,I h r j h qr= + ; constant 1j  (and 1k  which is not 

involved in the expression) is derived solving the Diophantine 
equation 1 1 1wj qk+ = . Specifically coefficient wb  of the 

frequency components at ( )/w q fs±  is 2
1w qr

r

b a
∞

+
=−∞

= ∑ .         □ 

 Observing Eq. (16) we note that the contributions of 
coefficients ja  to the total power of frequency component at 

( )/h q fs±  are cumulative since ( )
2

, 0I h ra ≥ . Therefore, to 

minimize the spurs in the output we should zero as many of the 
coefficients ja  as possible because the smaller the set of 

nonzero coefficients ja  is, the smaller the set of frequency 

components present in ( )HAS f  will be. 

 Note that in order to derive coefficient hb  we first find a 

solution ( )1 1,j k  of the Diophantine equation 1 1 1wj qk+ =  

using the Euclidean algorithm (“gcd” function in MATLAB). 
This is always possible due to our assumption that 

( )gcd , 1w q = . Any ( )1 1,j k  of the infinitely many solutions is 

acceptable but one with absolutely small 1 1,j k  is convenient. 

Then we apply Eq. (16) where only 1j  is used in 1j h qr+ . 

The procedure is illustrated in the examples of Section IV. 

 

B. Noise Floor and Dynamic Range 

 Typically, the desirable frequency component at the output 
is at frequency ( )/w q fs  with amplitude ( )2sinc / / 4S wf f b⋅ , 

captured by ( )HAS f  in Eq. (13). Also, the output noise (which 

is the only component of continuous spectrum) has PSD 
( ) ( )2sinc / S Nf f S f⋅ . We define the Dynamic Range (DR) of 

the output as the ratio of the signal power to noise's PSD 

( )
( ) ( )

2

10 2

sinc / / 4
10log

sinc /
S w

S N

f f b
DR

f f S f

 ⋅
=   ⋅ 

          (dB) 

and after replacing the values of wb  and ( )NS f  we get 
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2
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10 102
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∑

∑
  (dB)  (17) 

The definition of the DR can be used for other frequency 
components of interest as well. Also, note that the summand 

( )1010log fs  in Eq. (17) is expected since the power of the 

sinewave’s quantization error is spread over frequency 
bandwidth proportional to the sampling frequency. The use of 
Eq. (17) is illustrated in the examples of Section IV. 

IV.  EXAMPLES AND SIMULATIONS  

First we emphasize the importance of dithering in spurs 
suppression in the case of single-bit quantization by 
considering the case of  25w =  and 64q =  without dither. 

This is the limiting case of the above setup when CDF ( )G u  is 

zero for [ )1,0u∈ −  and one for ( ]0,1u∈ , i.e. 0k =u  with 

probability one. Figure 2 shows the output spectrum ignoring 
the weighting factor ( )2sinc / Sf f . The spectrum is the result 

of MATLAB simulation and coincides completely with the 
theory, Eq. (12). Note that although G  is discontinuous at 

0u =  its series expansion, Eq. (5), is valid for 0u ≠  implying 

2 0ka =  and ( )( )2 1 4( 1) / 2 1k
ka k π+ = − +  for 0,1,2,...k = . 
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Figure 2: Spectrum of single-bit quantized sinewave without dithering when 

25w =  and 64q = ; ignoring the weighting factor ( )2sinc / Sf f .  

Now we consider the same case of 25w =  and 64q =  

when the dithering sequence { }ku  is formed of uniformly 



distributed IID random variables, i.e. the probability density 
function is constant, ( ) 1/ 2G u′ =  in [ ]1,1−  and so the CDF is 

( ) ( )1 / 2G u u= + . Since ( )1T u u=  we derive by inspection  

that 0 0a = , 1 1a =  and 0ka =  for 2,3,4,...k = .  

To derive the coefficients hb  in the Theorem we find a 

solution of the Diophantine equation 1 125 64 1j k+ = , e.g. 

( ) ( )1 1, 23,9j k = − . For hb , 0,1,2,...h =  to be nonzero, there 

must exist some r∈ℤ  for which  

( ) 1, 64 1I h r j h r= + =            (18) 

This is because 1 1a =  and 0 0a = , 0ka =  for  all 

2,3,4,...k = , therefore only 1a  can contribute to hb . Since 

1 125 64 1j k+ = , a particular solution of 1 64 1j h r+ =  is 

( ) ( )1, 25,h r k=  and so the general solution of Eq. (18) is 

( ) ( ) ( ), 25,9 64,23h r ρ= ± + , ρ ∈ℤ      (19)  

 Since it is 0h ≥  we conclude that the (only) non zero 
coefficients hb , 0,1,2,...h =  are 25b  and 64 25bη⋅ ± , 1,2,3,...η =  

From Eq. (16) we also get that  25 64 25 1b bη ⋅ ±= = , 1,2,3,...η = . 

So we derive that  

( )
25, 64 25

1,2,3,...

1

4HA
h

h h
S f f f f fs sq qη

η

δ δ
= ⋅ ±

=

    
= − + +    

    
∑ , 

( ) ( )1/ 2N SS f f=  and ( ) 0DCS f = . The result coincides 

completely with the PSD derived using simulation, shown in 
Figure 3 where the weighted factor ( )2sinc Sf T  is ignored. 
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Figure 3: Spectrum of single-bit quantized sinewave with uniformly 

distributed dither when 25w =  and 64q = ; the weighting factor 

( )2sinc / Sf f  is ignored. 1Sf GHz= , Resolution BW = 3125 Hz and 

waveform averaging Nav=10 runs. 

We note that there are only two frequency components in 
the frequency range [ ]0, Sf , the desirable one at ( )25 / 64 Sf  

and the image of it at ( )( )64 25 / 64 Sf−  due to the discrete 

time nature of { }kx . The second one cannot be eliminated 

unless a continuous-time filter is used. Since no spurs are 
present we conclude that the uniform CDF results in spurs-free 
output. This is true in general for every integers w  and q  
satisfying our assumptions. 

Since 0 0a = , 1 1a =  and 0ka =  for 2,3,4,...k = , the 
dynamic range derived from Eq. (17) is expressed as  

( )1010log  3.01DR fs= −  dB            (20) 

 In the PSD graph of the case 25w =  and 64q =  shown in 
Figure 3 the dashed white line indicates the averaged noise 
floor power. For 1f GHzs =  we get 87DR ≅  dB. Subtracting 

( )1010log RBW  dB, where 3125RBW Hz= , to account for 

the resolution BW used for the simulation we get a very good 
match to the simulated 52 dB (Figure 3). 

V. CONCLUSIONS 

All-digital frequency synthesis using single-bit, Nyquist-
rate quantization of sinewave and random dithering formed of 
independent and identically distributed random variables has 
been studied mathematically. The output spectrum has been 
calculated analytically as a function of the dither’s Cumulative 
Distribution Function. It has been shown that uniformly 
distributed dither with range equal to that of the sinewave 
results in spurious-free output spectrum. The noise floor level 
due to dithering has been calculated analytically and the output 
dynamic range has been defined and calculated explicitly for 
the case of uniformly distributed dither. Examples based on 
MATLAB have been presented to illustrate the theory. The 
simulation results are in complete agreement with the theory. 
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