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Abstract—Single-bit Nyquist-rate quantization of sinewaves 
with amplitude dithering using a sequence of independent and 
uniformly distributed random variables has been proposed for 
all-digital RF frequency synthesis generation. This work 
demonstrates how we can improve the Dynamic Range using 
non-uniformly distributed dithering by selectively allowing some 
of the harmonics to be present in the spectrum (vs. the spurs-free 
output of the uniform distribution.). MATLAB simulation 
examples illustrate the results of the proposed approach. 
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I. INTRODUCTION 

Over the past few years all-digital frequency synthesis has 
attracted the attention of the R.F.I.C. industry  [1]- [3]. This was 
motivated by the increasing challenge in the design of R.F., 
analog and mixed-signal related circuit blocks, compared to 
alternative digital ones, as technologies downscale. 
Interestingly, efforts towards all-digital frequency synthesizers 
can be traced at least thirty years back  [4]- [6]. 

Fully digital architectures have been proposed for 
generating synchronous single-bit digital outputs of sinewave-
like spectrum which can be used as local-oscillator signals in 
RF chains and be amplified for transmission without distortion 
and with very high efficiency using a switching amplifier.  

Here we consider a single-bit-output Nyquist-rate sinewave 
quantization scheme, discussed in  [7]- [8], which is practically 
realized by a Direct Digital Synthesizer (DDS) with a 1-Bit 
output Nyquist-rate Digital to Analog Converter (DAC). 
Dithering is added to the output of the Look-Up-Table (LUT) 
before the single-bit quantization to alleviate the frequency 
spurs by breaking the periodicity of the truncation error.  

It has been shown in  [7]- [8] that uniform dithering of 
appropriate range completely eliminates the spurs. This paper 
illustrates that by selectively allowing some output harmonics 
we can reduce the noise floor level and improve the dynamic 
range of the output. 

II. A BSTRACT ARCHITECTURE AND DEFINITIONS

It is a common practice to use random dithering to suppress 
the frequency spurs of quantization in DDS  [9]- [10] and data 
converters  [11]. Here we consider the extreme case of a DDS 
with Nyquist-rate single-bit output quantization and amplitude 
dithering as shown in Figure 1. Sequence ( )cos kΩ  can be 

generated by a phase accumulator and a LUT. The Zero Order 
Hold (ZOH) provides the continuous-time single-bit digital 
waveform output and all blocks are clocked by a reference 
clock of frequency 1/S Sf T= . 

( )cos kΩ
kx

( )tx

ku

ST

Figure 1: Dithered single-bit quantization of a sinewave 

 Let 2 /w qπΩ =  for some integers w and q  such that 

0 / 2w q< < . It is not necessary that q  is a power of 2. 

Random dithering sequence { }ku  is subtracted from ( )cos kΩ  

resulting in the discrete-time single-bit (± 1) signal 

( )( )sgn cos 2 /k kwk qπ= −x u .  (1) 

We assume that { }ku  is composed of independent and

identically distributed (IID) random variables of cumulative 
density function (CDF) : [ 1,1] [0,1]G − →  with continuous 

second derivative. It is of course ( ) ( )Pr k u G u≤ =u . Also, it 

is convenient for our analysis to express the CDF G  as a series 
of Chebyshev polynomials of the first kind, i.e., 

( ) ( )
0

1 1

2 2 j j
j

G u a T u
∞

=

= + ∑ . (2) 

where the summand and multiplier 1/ 2  are used to simplify 
the algebra. Coefficients ja  are derived according to  [8],  [12]. 
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 Inversely, CDF G  can be defined using Eq. (2). Assuming 
the series in (2) converges appropriately and is term-by-term 
differentiable, G is a CDF if and only if ( )1 0G − = , ( )1 1G =  

and ( ) 0G u′ ≥  for every [ ] 1,1u∈ − . These three conditions 

can be expressed as 

( )
0 0

1 1   ,   1
j

j j
j j

a a
∞ ∞

= =

− = − =∑ ∑   (3) 

and 

( ) [ ]1
1

0      1,1j j
j

ja U u u
∞

−
=

≥ ∀ ∈ −∑     (4) 

using the fact that ( ) ( )1 1
j

jT ± = ±  for every 0,1,2,...j = , and 

( ) ( )1j jT u j U u−
′ = ⋅ , for 1,2,3,...j = , where jU  is the j-th 

Chebyshev polynomial of the 2nd kind  [12]. 

III.  OUTPUT SPECTRUM 

Under the assumption that the dithering sequence { }ku  is 

composed of IID random variables, the discrete-time sequence 
{ }kx  is formed of independent but not identically distributed 

random variables. The distribution of kx  is a periodic function 
of k∈ℤ  of period equal to q  or a divisor of it. Therefore 

{ }kx  is cyclostationary of period q . In this case it is common 

 [13]- [14] to define the period-average autocorrelation function 

( ) ( )( )1

0
, /

q

x xm
r k r k m m q

−

=
= +∑ , where ( ) { },x n mr n m E= x x ; 

then, use ( )xr k  to define the PSD of { }kx  as the discrete-time 

Fourier Transform of it, i.e., ( ) ( ) ik
x xk

s r k e ωω
∞ −

=−∞
=∑ . 

The ZOH in Figure 1 converts the discrete-time sequence 
{ }kx  into the continuous-time signal  

( ) ( )/k S
k

t p t T k
∞

=−∞

= −∑x x       (5) 

where 1/S ST f=  is the sampling period and ( )p t  is the pulse 

equal to 1 for [ )0,1t∈  and zero otherwise corresponding to 

ZOH's operation. The PSD of the continuous-time signal ( )tx  

can be expressed  [8] using ( )xs ω  as  

( ) ( ) ( )2sinc 2x S S x SS f T f T s f Tπ= ⋅ ⋅ ⋅ .            (6) 

 The following Theorem,  [8], based on the above definitions 
provides the means to calculate analytically the PSD ( )xS f . 

Theorem: Based on the aforementioned definitions and 
assumptions, if ( )gcd , 1w q =  then the PSD of ( )tx  is 

( ) ( ) ( ) ( )( )2sincx HA N DC
S

f
S f S f S f S f

f

 
= ⋅ + + 

 
   (7) 

where the HArmonics, Noise and DC components are  

( )
1

1

4HA h
h

h h
S f b f f f fs sq q

δ δ
∞

=

    
= − + +    

    
∑ ,   (8) 

( ) 2 2
0

1

1 1
1

2N j
jS

S f a a
f

∞

=

 
= ⋅ − − 

 
∑ ,          (9) 

and  

( ) ( )
2

0 03

4DC

b a
S f fδ

+
=                     (10) 

respectively. The power of the frequency components at 

( )/h q fs± , 0,1, 2,...h =  in Eq. (8) is / 4hb  and    

( )
2

,h I h r
r

b a
∞

=−∞
∑≜    (11) 

where ( ) 1,I h r j h qr= + ; constant 1j  (and 1k  which is not 

used in the expression) is derived solving the Diophantine 
equation 1 1 1wj qk+ = . Specifically, coefficient wb  of the 

frequency components at ( )/w q fs±  is 2
1w qrr

b a
∞

+=−∞
=∑ .    □ 

The application of the Theorem is illustrated in the 
following sections.  

IV.  DR AND THE TRADE-OFF WITH SPECTRAL CLARITY  

 In most practical cases the desirable frequency component 
is the one at ( )/w q fs±  with amplitude ( )2sinc / / 4S wf f b⋅ , 

captured by ( )HAS f  in Eq. (8). The output noise level has PSD 

( ) ( )2sinc / S Nf f S f⋅  captured by Eq. (9). We define the 

Dynamic Range (DR) as the ratio of the desirable signal's 

power to noise's PSD, 
( )
( ) ( )

2

10 2

sinc / / 4
10log

sinc /
S w

S N

f f b
DR

f f S f

 ⋅
=   ⋅ 

, 

in (dB), which replacing the values of wb  and ( )NS f  becomes 
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2
1
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2
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∑

∑
  (dB)  (12) 

Note that the summand ( )1010log fs  in Eq. (12) should be 

expected because the power of the sinewave’s quantization 
error is spread over the whole frequency bandwidth which is 
proportional to the sampling frequency.  

A. Case 1: Uniformly Distributed CDF G  

We consider first the case of dithering sequence { }ku  with 

uniformly distributed IID random variables, i.e. constant 
probability density ( ) 1/ 2G u′ =  in [ ]1,1−  and CDF given by 

( ) ( )1 / 2G u u= + . Observing Eq. (2) and using the fact that  

( )1T u u=  we get 0 0a = , 1 1a =  and 0ka =  for 2,3,4,...k = .  



Now we apply the Theorem for a pair of integers w  and q  

with 0 / 2w q< <  and ( )gcd , 1w q = . Since only 1 1a =  is 

nonzero, for hb , 0,1,2,...h =  to be nonzero there must exist an 
integer r∈ℤ  such that  

( ) 1, 1I h r j h qr= + =           (13) 

Since ( )1 1,j k  is a solution of the Diophantine equation 

1 1 1wj qk+ =  the general solution of Eq. (13) is  

( ) ( ) ( )1 1, , ,h r w k q jρ= ± + − , ρ ∈ℤ      (14)  

and since 0 w q≤ < , the nonnegative values of h  are 
h w qρ= +  for 0,1,2,...ρ =  and h w qρ= − +  for 1,2,...ρ = . 

We conclude that the only nonzero coefficients hb , 

0,1,2,...h =  are wb  and q wbη⋅ ±  for 1,2,3,...η = giving 

( )
,

1,2,3,...

1

4HA
h w q w

h h
S f f f f fs sq qη

η

δ δ
= ⋅ ±

=

    
= − + +    

    
∑ , 

( ) ( )1/ 2N SS f f=  and ( ) 0DCS f =  respectively. So the only 

two frequency components in the frequency range [ ]0, Sf  are 

at ( )/ Sw q f  and its image at ( )1 / Sw q f− . This is true in 

general for integers w  and q  satisfying our assumptions. 

Therefore uniform CDF G  leads to spurs-free output. 

For example if 25w =  and 64q =  then the only nonzero 

coefficients are 25b  and 64 25bη⋅ ±  for 1,2,3,...η = . Moreover 

25 64 25 1b bη ⋅ ±= = , 1,2,3,...η = .The results are confirmed by the 

PSD in Figure 2 derived using simulation, where the weighting 
factor ( )2sinc Sf T  is ignored. 
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Figure 2: Spectrum of single-bit quantized sinewave with uniformly 

distributed dither when 25w =  and 64q = ; the weighting factor 

( )2sinc / Sf f  is ignored. 1Sf GHz= , Resolution BW = 3125 Hz and 

waveform averaging Nav=10 runs. 

Two more cases of simulated PSD when 0 0a = , 1 1a =  

and 0ka =  for 2,3,4,...k =  are shown in Figures 3 and 4  for 

different values of w , q , sf  and waveform averaging runs 
Nav. As expected from the Theorem the spectra are spurs-free. 
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Figure 3: PSD of simulated random sequence { }kx  when 0 0a = , 1 1a =   and 

0ka = , 2,3,4,...k = ; 17723w = , 162q = ; 1Sf GHz= , Resolution BW = 

1526 Hz and waveform averaging Nav=10 runs.    
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Figure 4: PSD of simulated random sequence { }kx  when 0 0a = , 1 1a =   and 

0ka = , 2,3,4,...k = ; 162 1w = − , 192q = ; 2Sf GHz= , Resolution BW = 

1907 Hz and waveform averaging Nav=18 runs.    

 The dynamic range for the case of 0 0a = , 1 1a =  and 

0ka =  for 2,3,4,...k = , is derived from Eq. (12) to be  

( )1010log  3.01DR fs= −  dB            (15) 

In the PSD of the case 25w =  and 64q =  in Figure 2 the 
dashed white line indicates the averaged noise floor power. For 

1f GHzs =  we get 87DR ≅  dB. Subtracting ( )1010log RBW  

dB, where 3125RBW Hz= , to account for the resolution BW 
used for the simulation we get a very good match to the 
simulated 52 dB (Figure 2). Similarly for the case 17723w =  
and 162q =  in Figure 3 where again Eq. (15) gives 87DR ≅  

dB and after subtracting ( )1010log 32RBW ≅ we get about 55 

dB (Figure 3). Similarly in the case in Figure 4. 

B. Case 2: 1 3, 0a a ≠  & All Other Coefficients ka  are Zero 

Suppose now that 1 3, 0a a ≠  and all other coefficients ka  

are zero then since ( )1T u u=  and ( ) 3
3 4 3T u u u= −  we have 

( ) ( )3311
4 3

2 2 2

aa
G u u u u= + + −  from Eq. (2). For G  to be a 

CDF Eqs. (3) and (4) must hold implying 1 3 1a a+ =  and 

( ) ( )2
1 32 12 3 0G u a a u′ = + − ≥  for every [ ]1,1u∈ − .  

Note that function ( )2G u′  achieves its minimum either at 

0u =  or at 1u = ±  so ( ) 0G u′ ≥  for every [ ]1,1u∈ −  if and 

only if 1 33 0a a− ≥  and 1 39 0a a+ ≥ . Therefore G  is a CDF if 

and only if 1 3 1a a+ = , 1 39 0a a+ ≥  and 1 33 0a a− ≥ . The 

solution is ( )1 6 3 / 8a ρ= +  and ( )3 2 3 / 8a ρ= − , [ ]0,1ρ ∈ . 



Assuming 4q >  implies 2 2
11 qrr

a a
∞

+=−∞
=∑  and Eq. (12) 

gives 
( )

( )
2
1

10 102 2
1 3

2
10log 10log  6.02

2

a
DR fs

a a

 
 = + −
 − + 

 dB. 

Using the expressions of 1a  and 3a  above, DR becomes a 
strictly increasing function of ρ  with maximum value 

( )1010log -0.55DR fs=  (dB) for 1ρ = , corresponding to 

1 9 / 8a =  and 3 1/ 8a = − . In this case the DR  is about 2.5 dB 
higher than in Case I but the 3rd harmonic is present here as 
shown in the following. 

For 25w =  and 64q =  the simulated PSD is shown in 
Figure 5. Applying the Theorem again we conclude that the 
only frequencies in the spectrum ( )0, Sf  are at ( )25 / 64 fs  

and ( )1 25 / 64 fs−  corresponding to the fundamental and its 

image as well as ( )1 3 25 / 64 fs− + ⋅  and ( )2 3 25 / 64 fs− ⋅  

corresponding to the 3rd harmonic and its image. Moreover for 
0,1,2,...,63h =  the only nonzero hb  are 2

25 (9 / 8)b = , 
2

39 (9 / 8)b = , 2
11 (1 / 8)b =  and 2

53 (1 / 8)b =  corresponding to  
frequencies above. Results agree with simulation in Figure 5. 
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Figure 5: PSD of simulated random sequence { }kx  when 1 9 / 8a = , 

3 1/ 8a = −  and all other coefficients 0ka = ; 25w =  and 64q =   

C. Case 3: 1 3 5, , 0a a a ≠ & All Other Coefficients ka  are Zero 

The case of 1 3 5, , 0a a a ≠  with all other coefficients ka  zero 

implies ( ) ( ) ( ) ( )3 51
1 3 5

1

2 2 2 2

a aa
G u T u T u T u= + + +  which is a 

CDF if and only if 1 3 5 1a a a+ + =  and ( )2G u′ =  

( )4 2
5 3 5 1 3 580 12 60 3 5 0a u a a u a a a+ +− − + ≥  for all  [ ]1,1u∈ − .  

The derivation of ( )1 3 5, ,a a a  maximizing DR  is more 

involved than before. It turns out that the maximum is achieved 
for 1 1.1906a = , 3 0.2375a −= , 5 0.0469a =  and all other 

coefficients ka  zero; ( )1010log 1.31DR fs= +  (dB), i.e. about 

4.3 dB higher than with uniformly distributed dither in Case I. 

For 25w =  and 64q =  the simulated PSD is shown in 
Figure 6. The fundamental the 3rd and the 5th harmonics and 
their images are the only components in the spectrum, which  
can be shown using the Theorem as well. 

0 0.2 0.4 0.6 0.8 1
-60

-50

-40

-30

-20

-10

0

f / fs

N
or

m
al

iz
ed

P
ow

er
(d

B
)

fs = 1 GHz
RBW = 3125 Hz
Nav = 10

3rd

5th

56
.3

6 
dB

DR = 
91.3 dB

0 0.2 0.4 0.6 0.8 1
-60

-50

-40

-30

-20

-10

0

f / fs

N
or

m
al

iz
ed

P
ow

er
(d

B
)

fs = 1 GHz
RBW = 3125 Hz
Nav = 10

3rd

5th

56
.3

6 
dB

56
.3

6 
dB

DR = 
91.3 dB

 
Figure 6: PSD of simulated random sequence { }kx  when 1 1.1906a = , 

3 0.2375a −= , 5 0.0469a = , all other coefficients 0ka = ; 25w = , 64q =       

V.  CONCLUSIONS 

Single-bit, Nyquist-rate quantization of sinewave with 
additive random dithering formed of independent and 
identically distributed random variables has been discussed as 
a means for all-digital frequency synthesis. Using the 
uniformly distributed dither, resulting in spurious free output, 
as a reference, other distributions have been considered in an 
effort to increase the dynamic range by trading-off the presence 
of selected harmonics in the output for lower output noise 
floor. An improvement of about 4.3 dB has been shown when 
the third and fifth harmonics are allowed to be present. 
Examples based on MATLAB simulation have been discussed 
illustrating the presented theory. 
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