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Abstract—This work introduces an optimization method
to minimize the noise and the power consumption of active
filters driven by bang-bang signals taking into account
the hard voltage-range constraints of the amplifiers and
guaranteeing their full-range operation without saturation.

I. INTRODUCTION

Although active continuous-time filters have been stud-
ied extensively for decades, almost all of the efforts
have followed frequency-domain approaches or have been
based on sinusoidal test-signals otherwise, e.g., [1]-[10].
This leaves some unanswered questions in the design and
optimization of active filters in the presence of hard time-
domain constraints.

This work lays out the basics of a new approach to
optimize active continuous-time filters driven by bang-
bang signals, i.e. of the form u(t) ∈ {±Vu} for all t ∈ �.

There are many cases where active continuous-time
filters are driven exclusively by bang-bang signals, or, the
input is allowed to be a bang-bang signal of maximal am-
plitude. Such cases include: the filtering of the output of
digital-to-analog converters, the analog filtering of pulse-
width modulated signals, the operation of sigma-delta
modulators, any (asynchronous) loop with a comparator
preceding an active continuous-time filter and the analog
filtering of continuous-time digital signals [11]-[12].

This work is motivated by the inadequacy of the
classical filter optimization techniques, based on sinewave
excitation, or, using the Euclidean norm ‖.‖2 in the time
or frequency domains, to treat signals and filters with hard
constraints of the form −VM ≤ vi(t) ≤ VM , for some
voltage VM and all t ∈ �. Such constraints are natural
in active filters due to the input and output voltage swing
range of transconductance and operational amplifiers. One
can also choose voltage VM below the hard limit to bound
the distortion (e.g. harmonic) of the amplifier [4], [13].

The above constraints raise two important questions:
1) What is the maximum absolute input voltage, Vu,
such that all node voltages of the filter satisfy −VM <
vi < VM , all the time? 2) Among the infinitely many
combinations of values of the filter’s elements resulting
in the same transfer function, which one results in the
filter with the maximum Vu, the minimum output noise
and minimum power consumption?

This paper treats the above problems in the case of
active filters driven by bang-bang signals. It illustrates

first the inadequacy of the sinewave excitation approach
to provide the answers for the above questions; then it
introduces a new metric that provides the exact maximum
(and minimum) of the filter’s nodes voltages; it uses
this metric to introduce a new optimization method for
minimum noise and power consumption based on nodes
(state) voltages balancing.

To simplify the presentation, the theory is illustrated
in the class of low-pass Gm-C filters whose output is a
node voltage. The theory can be extended to other classes
of active filters with minimal effort. Simulation results
demonstrate the performance improvements.

II. BANG-BANG VS. SINUSOIDAL INPUT

This section introduces a metric for determining the
voltage range at the nodes of active filters driven by bang-
bang signals, leading to a new power and noise optimiza-
tion methodology. The metric is introduced through an
example of a Gm-C filter and is compared to the classical
sinewave-input based characterization which is shown to
be inadequate for filters driven by bang-bang signals.
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Fig. 1. A third order Low-Pass Chebyshev Gm-C. Filter

Consider the third order, Chebyshev, low-pass Gm-C
filter1 in Figure 1. It has cut-off frequency fc = 1MHz
and 3dB in-band ripple. The capacitors are chosen to be
C1 = C2 = C3 = 1pF and the input transconductance is
g1 = 1.72μA/V. Defining the matrices and vectors

G = [Gi,j ]
3
i,j=1 =

⎡
⎣−1.88 0 0

6.28 −1.88 −5.76
0 5.76 0

⎤
⎦ μA

V
(1)

C =

⎡
⎣C1 0 0

0 C2 0
0 0 C3

⎤
⎦ , g =

⎡
⎣g1

0
0

⎤
⎦ and v =

⎡
⎣v1

v2

v3

⎤
⎦ (2)

1It was derived using MATLAB’s Cheby1 function.
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we can write the filter’s state-space equations as

Cv̇ = Gv + gu (3)

y = (0, 0, 1)v (4)

The magnitudes of the transfer functions Hj(s) �
Vj(s)/U(s) from input voltage u to the node (state)
voltages vj , j = 1, 2, 3 are shown in Figure 2. Here
the output coincides with v3 and so the filter’s transfer
function is H(s) = H3(s).
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Fig. 2. Magnitudes of the Transfer Functions: H1 in dash-dots, H2

in dashed line, H3 in solid line.

A critical piece of information in the design of active
filters is the maximum (and minimum) voltages of the
nodes, internal ones or not. This is because the input and
output voltage ranges of the amplifiers and the power
supply voltage impose hard voltage constraints which
must be respected otherwise the signal is distorted.

The typical method to estimate the maximum voltage
at the ith filter node is to assume a sinusoidal input u(t) =
sin(2πft), calculate the absolute maximum of the input-
to-ith-node transfer function, Hi(f), and multiply it by
the maximum sinusoidal amplitude allowed at the input.
Doing so for the filter in Figure 1 and assuming input
amplitude of one we derive

max
t , u : sinusoidal

|vi(t)| = max
f

|Hi(f)| (5)

for i = 1, 2, 3. The maxima of the transfer functions can
be derived from Figure 2; they are:

max
t , u : sinusoidal

|v1(t)| = 0.916 (6)

max
t , u : sinusoidal

|v2(t)| = 0.961 (7)

max
t , u : sinusoidal

|v3(t)| = 1.000 (8)

Therefore, from (6)-(8) we know that an input sinu-
soidal of amplitude one results in an output sinusoidal of
amplitude at most one in all three nodes2.

Extending this argument to the case of bang-bang
signals, of amplitude one, leads to wrong conclusions.
This is illustrated in Figures 3-5 showing voltages v1, v2

and v3, each one for a particular bang-bang input signal
u = ui(t), i = 1, 2 and 3 respectively.
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Fig. 3. Top: Bang-Bang input u = u1 maximizing v1. Bottom: v1.
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Fig. 4. Top: Bang-Bang input u = u2 maximizing v2. Bottom: v2.
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Fig. 5. Top: Bang-Bang input u = u3 maximizing v3. Bottom: v3.

It can be shown that the maximum3 value the state
voltage vi can achieve for ±1 bang-bang inputs is

sup
t,u:Bang-Bang

|vi(t)| =
∫ ∞

0

|eT
i eC−1G tC−1g| dt, (9)

which, in the case of the example above gives:

sup
t , u : Bang-Bang

|v1(t)| = 0.917 (10)

sup
t , u : Bang-Bang

|v2(t)| = 1.213 (11)

sup
t , u : Bang-Bang

|v3(t)| = 1.472 (12)

Comparing (6)-(8) to (10)-(12) we see that the nodes’
voltages can reach significantly higher values in the case
of bang-bang inputs than those in the case of sinusoidal
inputs. In this third-order filter, bang-bang inputs can
result in 47% higher voltages. The percentage increases to

2The maximum is achieved for at least one frequency f by v3. The
above statements are valid only in steady state operation.

3To be more accurate, maximum should be considered as suppremum.
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70%, 91%, 109%, 127% and 144% for similar Chebyshev
filters of orders n = 4, 5, 6, 7 and 8 respectively (derived
using MATLAB’s command “cheby1”). Therefore, the
classical approach for deriving the maxima of the absolute
nodes’ voltages cannot be used.

A. Maximum Nodes Voltages and Power Consumption

Using (9) we define the suprema of the absolute nodes
voltages, i.e.,

VM i = sup
t , u : Bang-Bang

|vi(t)| (13)

for i = 1, 2, . . . , n and set

VM = max
i=1,2,...,n

VM i (14)

to be the maximum of the suprema. E.g. in the example
above it is VM = 1.472V.

Since a bang-bang ±1 input signal (this is the class of
input signals we consider here) can bring at least one of
the nodes’ voltages arbitrarily close to VM , the input and
output voltage ranges of the transconductors should be
at least equal to VM . Similarly the power supply voltage
should be at the minimum equal to ±(VM + VR) where
VR is the voltage room required by the transconductors’
topology in the utilized technology.

Note that although the amplifiers in the filter have cer-
tain hard input and output voltage limits, they introduce
distortion even for input / output voltages below these
limits [1], [13]. Therefore, VR can be deliberately chosen
larger than the minimum possible in order to keep signal
distortion below a certain level.

The current drawn from the power supply by the
transconductors is approximately proportional to their
gain [2], [4]. Following the discussion above, the power
consumption of the filter is approximated by (15) where
η is an appropriate constant.

P = η (VM + VR)

⎛
⎝ n∑

i,j=1

|Gi,j | +
n∑

i=1

|gi|
⎞
⎠ (15)

III. FILTER OPTIMIZATION VIA STATE BALANCING

So far we have captured the power consumption of
the filter via (15) which can also be used, to a certain
extent, to bound the distortion of the amplifiers through
the choice of VR.

Filter’s chip-area is approximated by the total area
occupied by the capacitors. To simplify the presentation
of the proposed optimization method we choose all ca-
pacitors to have the same and fixed size and so the total
chip area remains constant. An additional simplifying
assumption, valid for many classes of low-pass Gm-C
filters, is that the last state of the filter is also the output
voltage, i.e. y = vn.

The noise power at filter’s output, introduced by a
transconductor, g, whose output is connected to the ith

node of the filter is given by

V 2
ni,o

= 4kTγ|g|
∫

|Hi,o(f)|2df. (16)

where Hi,o is the tranfer function from the total current
sinking into (or drained from) the ith node, to the output
node voltage y. T is the absolute temperature, k is
Boltzmann’s constant and γ is the excess noise factor of
the transconductor topology. The total noise contribution
from all transconductors is

V 2
no

= 4kTγ

n∑
i=1

⎡
⎣ n∑

j=1

|Gi,j | + |gi|
⎤
⎦

∫
|Hi,o(f)|2df (17)

This work proposses the voltage state balancing, equa-
tion (18), as an optimization method for filters driven by
bang-bang input signals,

v = Tα v̄ (18)

where α ∈ � and T is the positive diagonal matrix

T =
1

VM n

⎡
⎢⎢⎣

VM 1 0 . . . 0
0 VM 2 . . . 0

0 0
. . . 0

0 0 . . . VM n

⎤
⎥⎥⎦ . (19)

It is shown in the following examples that α = 1 is
the desirable value, i.e., the transformation is essentially
v = T v̄, however, it is worth examining the performance
of the transformed filter with α ranging within [−ε, 1+ε],
for a small ε > 0.

Transformation (18) implies the change of the transcon-
ductance matrix, G �→ T−αGTα and the change of
the input transconductance vector g �→ T−αg. Since
T is diagonal the number of transconductors and their
connectivity remain unchanged.

IV. EXAMPLES - SIMULATION RESULTS

Since the transfer function (and gain) and the chip area
of the filter remain unchanged4, we need to compare
the prototype filter (C,G,g) with the transformed one
(C,T−αGTα,T−αg) with respect to power consump-
tion and output noise power. Moreover, it can be shown
that given the considered optimization constraints an
appropriate Figure-Of-Merit of the transformed filter’s
performance vs. that of the prototype one, is 1/(P ·V 2

no
)

which is expressed in dB as

FOM = −10log10

(
P · V 2

no

)
(20)

The presented theory is applied first to a low-pass,
fourth order Chebyshev filter with cut-off frequency

4...and filter’s distortion is accounted via the choice of VR in (15)
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fc =1MHz and 3dB pass-band ripple. The prototype
filter is a direct Gm-C implementation of the state-space
matrices derived using MATLAB’s command “cheby1”.
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Fig. 6. 4th order Low-Pass Chebyshev Gm-C filter optimization

The results are shown in Figure 6a-d with respect to
parameter α ∈ [−ε, 1+ε]. Graph (a) shows the maximum
(supremum) voltages of the four nodes, (b) shows the
power consumption, (c) shows the output noise power and
(d) shows the figure of merit in solid line, given by (20),
achieving a maximum of 4.6dB at α = 1; the dashed line
gives the FOM when frequency-based maximum nodes
voltages (equation (5)) are used for state balancing.

Similar results are presented for an eighth order Cheby-
shev filter with the same parameters as in the one before.
Again, the prototype was a direct Gm-C implementation
of the state-space matrices derived using MATLAB. In
Figure 7d the FOM in solid line achieves a maximum
of 12.4dB at α = 1; again, the dashed line gives the
FOM when frequency-based maximum nodes voltage
estimation is used for balancing.

Finally, the proposed methodology can by used to
improve the performance of prototype filters that are
already optimized using classical methods. E.g. an eighth
order Chebyshev filter, [14], with the same parameters as
before has room for 2.9dB FOM improvement.

V. CONCLUSIONS

A new optimization method was introduced to min-
imize the noise and power consumption of active filters
driven by bang-bang signals. It is based on an exact metric
of the maximum achievable voltages of the filter nodes
and takes into account the hard input and output voltage-
range constraints of the amplifiers guaranteeing their full-
range operation without saturation. For presentation sim-
plicity the theory was illustrated in the class of low-pass
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Fig. 7. 8th order Low-Pass Chebyshev Gm-C filter optimization

Gm-C filters whose output is a node voltage. Simulation
results demonstrate the performance improvements.
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