
 

 

 

  

Abstract—After a review of different sets of equations 

covering mitosis we give a MATLAB realization of a basic set 

and from that we design some transistor circuits for their 

implementation. These can serve for a model reference for 

control of mitosis. 

I. INTRODUCTION 

In order to stop the progression of cancer it should be 

important to stop uncontrolled cell division. This cell 

division occurs through the process of mitosis which is one 

stage in the cell cycle, the four main stages being shown in 

Figure 1. These stages are set out in standard texts [1] [2] 

and comprise the following:  

 

1. Mitosis (M) when the cell divides in two 

2. Gap one (G1) when proteins are assembled for   

 DNA replication 

3. DNA synthesis (S) when DNA is replicated 

4. Gap two (G2) when the spindle for cell division   is 

 formed. 

 

>

>

>

M=mitosis

>G2 G1

S=DNA synthesis

 
Figure 1. The four basic portions of the cell cycle 

 

Although determination of all fine detail is still not 

complete, enough is known to be able to plot hundreds of 

molecular reactions [3]. And enough knowledge is available 

to be able to set up state variable equations which describe 

the primary activities of the cell. Indeed these exist in 

various levels of detail, almost all of which could be put into 

VLSI (Verry Large Scale Integrated) circuits but for which 

we concentrate upon a relatively simple set. For this we 

proceed by using the set of four state equations given by 

Petrov, Nikolova, and Timmer [4, p. 72] where the basic 

ideas follow those developed by Tyson and Novak [5]. One 

of the key notions of Tyson and Novak is that the S-G2-M-
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G1 cycle basically can be broken into two parts, the S-G2-M 

and the G1 portion, and, thus, their theory, which we follow 

here, is built around modeling signals representing these two 

portions of the full cycle.  

 

Here we set up BJT (Bipolar Junction Transistor) circuits, 

suitable for VLSI fabrication, which realize a modified 

version of the equations of [4]. In the end these circuits can 

be used as model reference for control of mitosis for which 

almost any of the parameters can be used as inputs, including 

the cell mass, and for which outputs can be various 

molecules to control the mitosis.   

 

II. THE STATE VARIABLE EQUATIONS   

We follow the notation of [4] for the following four state 

variable equations. 
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k k k y x
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1
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µ
 

= − 
 

         (1d) 

 

In these the state variables have physical meaning, these 

being given in Table 1 

 

 

Table 1. Variables Definition 

x  : Cyclin/Ckd dimmer concentration 

y  : Active Cdh1/APC complex concentration 

z  : Concentration of phosphatase Cdc14 that 

activates Cdh1 at end of mitosis 
m
 

: Cell mass 

 

The k’s are rate constants, the j’s are Michaelis-Menton 

constants with n, M, µ, and p being constants which are 

found by curve fitting. The values used in [4] are given in the 

following table. 
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Table 2 Constants for equations (1) 

1 0.04k =  2 0.04k ′ =  2 1k ′′ =  3 1k ′ =  

3 10k ′′ =  4 35k =  5 0.005k′ =  5 0.2k ′′ =  

6 0.1k =  3 0.04j =  4 0.04j =  5 0.3j =  

0.01µ =  10M =  4n =  100p =  

 

Equations (1) are due to Tyson and Novak [5] where rather 

than equation (1d) for the cell mass, the mz
p
/M term was 

without the z
p
; then m was scaled down to m/2 when it 

exceeded the maximum size, m*, to which a cell could grow 

with the value m*=1.2 chosen [5, p. 255]. Figure 2 shows 

typical solutions for x, y, z, and m of the mitosis equations of 

(1) as obtained from Simulink. Note that m does reset to 

about half when the division occurs and that there are two 

distinctive portions to the cycle.  

 

 
Figure 2 typical x, y, z, m signals from Simulink runs. 

 

Since p=100 in equation (1d)  is very inconvenient for 

transistor realization we have found that similar results occur 

when (1d) is replaced by  

( )( )1 10 1
dm

m m z
dt

µ= − −     (1e) 

(where we have used the fact that 10Μ = ). Therefore for 

transistorization we use (1e) along with (1a)-(1c). In order to 

use BJT’s or CMOS in subthreshold we desire exponential 

nonlinearities for which we make the following  change of 

variables 

, , ,x e y e z e m eα β γ δ= = = =       (2a,b,c,d) 

Applying these to equations (1) gives 

 

       1 2 2

da
k e k k e

dt

α β− ′ ′′= − −     (3a) 
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γ −
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  (3c) 

pd
e

dt M

δ γδ µ
µ += −        (3d) 

( )1 10 10
d

e e
dt

δ γ δδ
µ += − +        (3e) 

III. TRANSLINEAR BJT CIRCUIT IMPLEMENTATION OF THE 

STATE VARIABLE EQUATIONS   

Each of these equations is realized by Bipolar Junction 

Transistor (BJT) transistor circuits along with current 

sources to give the various constants and capacitors, one for 

each derivative. We use the BJT’s simplified -yet very 

accurate for normal operation- equation 

T

V

V

C S
I I e

ΒΕ

=          (4) 

where 
C

I  is the collector’s current, 
BE

V  is the base-emitter 

current, and parameters IS and VT:
S

I  is the saturation current 

(typical value is 1410−  Amperes) and 
T

V  is the thermal 

voltage (typical value is 26mV at room temperature. ) 

 

Figures 3 through 8 show the (sub)circuits realizing the 

system of equations (3a-e). To simplify the schematics, the 

collector terminals of the BJTs that are shown open are 

assumed connected to the positive power supply, 
dd

V . Also, 

all diodes are assumed to be implemented using a BJT with 

the base connected to the collector. Finally, all BJTs (and 

diodes) have the same geometry and size. 

 

In deriving the differential equations modeling the circuits’ 

behavior, we ignore the base currents assuming that the 

current gain, beta, of the BJTs is sufficiently large, i.e. 100 

or more, which is a common case in current technologies. 

This assumption is typical in dealing with translinear circuits.  

 

The state voltages , ,α β γ  and δ  are represented by 

voltages   , ,V V Vα β γ  and Vδ  respectively. Specifically, we 

assume the representation 

 

( ) ( )
( ) ( )

0 0

0 0

, ,

,

T T

T T

V V V V

V V V V

α β

γ δ

α α β β

γ γ δ δ

= + = +

= + = +
      (5) 

 

where 0 0 0 0, , ,α β γ δ  are appropriate constants to allow for 

scaling and balancing of the circuit parameters. 

Finally, in this analysis of the circuits we deliberately avoid 

mentioning where we use the translinear principle [6], a 

standard tool for analyzing translinear circuits, in an effort to 

make the paper and presentation accessible to a broader 

audience. 

565

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on September 2, 2009 at 06:27 from IEEE Xplore.  Restrictions apply. 



 

 

 

 

 
Figure 3, Subcircuit for the realization of Eq. (3a) 

 

Figure 3 shows the subcircuit realizing Eq. (3a). Based on 

our assumptions above, we have ( )1,1 1,12 ln /
T S

V V I I=  as 

well as 

1,1

1,2
T T

VV V

V V

S S

dV
C I e I I e

dt

βα

α
α

−

= − − .   

Combining these two equations gives 

2

1,1

1,2
T T

VV

V V

S

S

IdV
C e I I e

dt I

βα

α
α

−

= − −      (6) 

which matches Eq. (3a). 
 

 

Figure 4, Subcircuit for the realization of Eq. (3b) - Part-1 

 

The subcircuit in Figure 4 realizes differential equation (7). 

C.M. stands for “current mirror” [7]. 

2 3

2,1 2,4

2,3 2,6

2,5

T

T T

T

V

V V V V

V V

V
S

V

S S

dV I I e
C e I e I

dt I
I I I e

β

β γ β

β

β
β

−−
−

= + − −
 
 −
 
 

 (7) 

where 2,6I  is derived using the subcircuit in Figure 5. To 

show this, we start from the top part of the circuit deriving 

( )2,1 2,43 ln /T sV V I I=  exactly as in the previous 

subcircuit. Also, we have that 
2,2 2,1V V Vβ= −  as well as  

2,5

2,4 2,2 ln T

V

V

T

S

I
V V V e

I

β 
 = − −
 
 

 

giving 

2,4 2,5

2,4 3 ln ln T

V

V

T T

S S

I I
V V V V e

I I

β

β

  
 = − − −      

. 

 

Moreover, from the bottom right part we have that 

( )2,5 2,3ln /T SV V V I Iγ= + . Finally from the bottom left 

part of the circuit we get  

 

2,5 2,42

2,1

2,6
T T T

V V V V

V V V

S S

S

dV I
C e I e I I e

dt I

β β

β
β

−
−

= + − −  (8) 

 

which combined with the expressions for 
2,4V  and 

2,5V results in Eq. (7). To match Eq. (7) to Eq. (3b) we 

generate current 
2,6I  using the subcircuit in Fig. 5. 

 

 

Figure 5, Subcircuit for the realization of Eq. (3b) - Part-2 

Note that equations 
3,1 3,2

3,1 2
lnT

S

I I
V V

I

 
=  

 
 and 

3,3

3,2 3,1 lnT

S

I
V V V

I

 
= −  

 
 imply that  

3,2I

2,6I

3,1I

3,3I

3,4I

3,5I

3,1V

3,2V
3,3V

3,4V

3,5V

Vα Vδ

Vβ

3,6I
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 C.M  x1 
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Vβ

Cβ Vγ
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2,4V
2,3V

2,5V
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Vα

Cα
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3,1 3,2

3,2

3,3

lnT

S

I I
V V

I I

 
=   

 
. Also 

3,4 3,5

3,4 2
lnT

S

I I
V V

I

 
=  

 
 as 

well as 
3,3 3,4 3,2V V V= − . Combining these equations with 

3,2 3,6
T

V

V

SI I I e

β

= + , 
3,3

T

V

V

SI I e

α

=  and 
3,5

T

V

V

SI I e

δ

=  we get  

3,3

3,4 3,5 3,3

2,6

3,1 3,2

2

3,3 3,4 3,5 3,4

3,1 3,2

3,1 3,6

T

T

T

V

SV

S

S

V V

V

S

V

V

S

I I I I
I I e

I I I

I I I I I e

I I
I I I e

α δ

β

+

= = ⋅

= =
 
 +
 
 

   

Which combined with (8) gives (7). 

 

Figure 6, Subcircuit for the realization of Eq. (3c) - Part-1 

 

The circuit in Figure 6 realizes Eq. (9) 

2 3

4,1 4,3

4,2

4,4

T T

V V

V V

S S

dV I I
C e I e

dt I I I

γ γ

γ
γ

− −

= − −         (9) 

This can be verified starting from the top part of the circuit 

which gives  

4,42

4,1

4,2
T T

V V

V V

S

S

dV I
C e I I e

dt I

γ

γ
γ

−

= − − . 

 

The bottom part of the circuit implies that 

4,3

4,23 lnT

S

I
V V V

I
γ

 
= + 

 
 

as well as 

4,4

4,2 4,4 lnT

S

I
V V V

I

 
= +  

 
. 

Combining the last three equations we get  

4,3 4,4

4,4

3

4,3

2

4,4

3 ln ln

ln

T T

S S

T

S

I I
V V V V

I I

I
V V

I I

γ

γ

   
= − −   

   

 
= −  

 

 

and Eq. (9). Current 4,4I  is generated by the following 

circuit. 

 

Figure 7, Subcircuit for the realization of Eq. (3c) - Part-2 

It is 
5,1

5,2 3 lnT

S

I
V V

I

 
=  

 
 and 

5,1

5,3 3 lnT a

S

I
V V V

I

 
= − 

 
 

giving 
5,1

5,4 3 lnT a

S

I
V V V V

I
δ

 
= − − 

 
,  

5,5 5,2 5,42V V V= − , 

5,6 5,2 5,52V V V= −  and 
5,7 5,1 5,6V V V= −  where 

5,1V  is given 

by 
5,1

5,1 2 lnT

S

I
V V

I

 
=  

 
. Combining the above we get  

( )

5,7 5,1 5,2 5,5

5,1 5,2 5,4

5,1

2

4

4 7 lnT

S

V V V V

V V V

I
V V V

I
α δ

= − +

= + −

 
= + −  

 

 

which implies that 

5,1I

Vα

Vδ

4,4I

5,1V

5,2V

5,3V

5,4V 5,5V 5,6V

5,7V

5,2I

4 ,1I

Vγ

Cγ
4,2I

4 ,3
I

4,4I

4,1V

4,3V

4,2V

4,4V
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5,7 8 4

4,4 5,2 5,27

5,1

T T

V V V

V VS
S

I
I I e I e I

I

α δ+

= + = +           (10) 

Combining Eq. (9) with Eq. (10) gives 

2 3

4,1 4,3

4,2
8 4

5,27

5,1

T

T

T

V

V V

V

V V
S VS

S

dV I I e
C e I

dt I I
I e I

I

γ

γ

α δ

γ
γ

−
−

+
= − −

 
+ 

 
 

   

(11) 

As seen here, we have selected to implement Eq. (3c) with 

4n =  which is also listed in Table 2. 

 

Figure 8, Subcircuit for the realization of Eq. (3e) 

Finally, the last equation, (3e) is realized using the circuit in 

Figure 8 which gives 
6,1

6,1 lnT

S

I
V V V

I
δ

 
= + 

 
 and 

6,2

6,3 6,1 lnT

S

I
V V V

I

 
= −  

 
 as well as  

6,4 6,3V V Vγ= + ,   

6,4

6,6 6,4 lnT

S

I
V V V

I

 
= −  

 
 and the differential equation 

6,3 6,6

6,3
T T

V V

V V

S S

dV
C I e I I e

dt

δ
δ = + − .  

 Combining the above gives 
6,1

6,3

6,2

lnT

I
V V V

I
δ

 
= +  

 
 and 

6,1

6,6

6,2 6,4

ln
S

T

I I
V V V V

I I
δ γ

 
= + +  

 
 resulting in  

2

6,1 6,1

6,3

6,2 6,2 6,4

T T

V VV

S SV V
I I I IdV

C e I e
dt I I I

γ δδ

δ
δ

+

= + − .     (12) 

  

IV. DISCUSSION 

We have introduced the basics for realizing circuits which 

can serve as model references for control of mitosis. These 

are preliminary ones and due to limited space only a limited 

set of the circuits and simulation results are given. But this 

topic does give rise to a number of interesting areas where 

results are needed. 

a)  Sensors:  In controlling mitosis it would be useful to be 

able to monitor the cell mass. But at present we are unaware 

of any sensors which would be suitable for doing this in real 

time non-invasively on a living body. One topic which may 

be suitable for investigation may be optical coherence 

tomography since it is being developed to “spot cancer at the 

smallest size” [8] 

 

b) Circuits: The circuits given are just a start since the 

equations themselves are for the most primitive model 

available. Further the equations when converted to 

exponential form hold for both BJT (Bipolar Junction 

Transistors) and subthreshold operation of CMOS 

(Complementary Metal Oxide Silicon) transistors; further 

development could use either form. Since equation (1d) is 

empirical we have used an alternate in (1e) which gives 

equivalent responses (as found by trial and error) but which 

is more reasonable for transistor realization. We have found 

two others which are also convenient, these being 

 

( )0.2 1 0.35
dm

mz mz
dt

= −     (1d’) 

 

( )( )0.1 1 10 sgn( 1) 1
dm

m z
dt

= − − +    (1d”) 

 

Also there are polynomial forms of the basic equations and 

those are conveniently realized in standard analog CMOS 

form. These require various products as well as third and 

fourth order polynomials some of which we presently have 

under investigation.    

c) Control: The original paper of Tyson and Novak [4] uses 

cell mass m as an “external” variable and it would seem that 

such may be the best variable to monitor for the control of 

cancer. In such a case m could be taken as the control system 

input. One also needs to determine reasonable outputs to 

feed to the cells. In [3] it is mentioned that any of the rate 

constants can be used as controls, but if truly rate constants 

they are constant. But the proteins and enzymes for which 

the rate constants apply can be changed in which case the 

determination of practical means of controlling them should 

be determined.  

 

Vγ

C.M  x 1 , x 1 6 ,1I

6,2I
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Vδ Cδ
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6,5V
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