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Abstract—The Flying-Adder frequency synthesizer architecture 
is modeled and analyzed mathematically. Its fundamental 
discrete and continuous-time periods, average output frequency, 
and strict bounds of its deterministic jitter measures are given. 
Examples of its output spectrum are given and discussed. The 
analytical results have been verified with MATLAB simulations. 

INTRODUCTION 
Most of the modern electronic products and advanced 

systems have an imbedded frequency synthesizer of some 
form. Depending on the application the synthesizer may be 
simple or complex. In all cases, the best signal quality is 
desirable for the smallest possible cost, power consumption, 
chip-area or physical size, etc.  

Flying-Adder frequency synthesizer [1] is a relatively new, 
elegant architecture that belongs to the general class of period 
(vs. frequency) digital synthesizers [2-4]. It is very simple, it 
offers good frequency (period) resolution, it can be directly 
combined with a ring oscillator (that is very often present in 
integrated designs) and has the advantages of digital circuits in 
terms of design convenience and fabrication. 

This paper presents results of mathematical modeling and 
analysis of the Flying-Adder and it was motivated by the 
request for such theoretical development in [5].  

Specifically, analytical expressions are given of the 
discrete and the continuous-time periods and of the average 
output frequency. Also, strict bounds of several measures of 
output’s determinist jitter are provided along with strict 
bounds of the output pulse lengths. Finally, the spectrum of 
the Flying-Adder is derived numerically and discussed for 
certain combinations of its parameters.  

THE FLYING ADDER SYNTHESIZER 
The Flying-Adder is driven by a family of clock phases, 

like the one in Figure 1, containing 2mM =  (m=2 here) 
periodic, 50%  duty-cycle square waves (of the same 
frequency) and relative phase-offsets forming an arithmetic 

progression with step 2 /Mπ−  rads which corresponds to  
time shifts equal to /2mTΔ = . A convenient way to 
generate these signals is by using a ring oscillator with the 
corresponding number of stages as shown in Figure 1a. 

 
The basic structure of the Flying-Adder architecture is 

shown in Figure 2. It is driven by the 2mM =  clock phases, 
one of which is selected by the M-to-1 multiplexer (MUX). 
The rising edges of MUX’s output (signal ( )s t ) trigger the n-
bit register changing its value from kx  to  

( )1 mod2nk kx x w+ = + . 

where w is the n-bit long frequency (period) control word. The 
integer variable k here counts the rising edges of ( )s t  and it is 
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Figure 1: Clock Phases Driving the Flying-Adder 

(a) 

Φ0 Φ1 Φ2 Φ3 

978-1-4244-3510-4/09/$25.00 ©2009 IEEE 788

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on September 2, 2009 at 06:23 from IEEE Xplore.  Restrictions apply. 



the discrete-time reference for the Flying-Adder. The 
register’s value, kx , is then truncated by keeping the first m 
most significant bits. This defines  

 div 2n mk ky x −=  

which controls the MUX and therefore chooses the input 
phase that passes through the MUX. The signals ( )s t  which is 
a sequence of pulses, or spikes or both, is fed to the D-Flip-
Flop which acts as a frequency divider by-2 providing the 
output signal ( )v t . Two consecutive rising edges of ( )s t  
result in an output pulse. 

 
EXAMPLE: FLYING-ADDER WITH 4n = , 2m =  & 15w =  

As an example of the Flying-Adder’s operation we 
examine the case where 4n = , 2m =  and 15w = . 
MATLAB simulation results are shown in Figure 3 with all 
signals corresponding to the ones in Figure 2.  

The x-axis in Figure 3 is the (real) time axis in multiples of 
Δ and the four input phases, iΦ , 1,2,3, 4i = , are shown in 
Figure 3a. The input phase, iΦ , propagating to the output is 
selected by the MUX based on the value of ( ) ki k y= . The 
time intervals in which the phases are selected are indicated 
with thick line segments. 

The discrete-time k, shown in Figure 3f, is the result of 
counting the rising edges in ( )s t . The discrete-time has value 
k between the kth and k+1 rising edges. 

Sequence kd , shown in part (d) of Figure 3, is defined as 
( )1 mod 2mk k kd y y −= −  and is used to calculate the real-

time length between consecutive rising edges (it is not 
proportional to it), details can be found in [6]. 

The D-Flip-Flop counts the rising edges (spikes or pulses) 
in ( )s t  modulo-2, (frequency-division by 2) generating the 
output signal ( )v t  shown in Figure 3g. 

OUTPUT PERIOD AND AVERAGE FREQUENCY 
The discrete-time period of the output has been derived 

based on the discrete-time counter – variable k. We have the 
following theorem whose proof can be found in [6]. 

Theorem 1: The fundamental discrete-time period of the 
output signal ( )v t  is: 
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Note that this is the fundamental (minimum possible) 
discrete-time period of ( )v t .  

Calculating the real-time duration, kΔ , of the k-th  
discrete-time period, for all 1,2, 3,...k =  and using Theorem 
1 we can derive the length of the continuous-time period of  

the output ( )s t , 
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continuous-time period of output ( )v t  is  
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The average frequency, avef , of the output ( )v t  is defined 
as the number of cycles in ( )v t  within a period vT  divided by 
vT  (see [6,7]). It can be shown that [6], 
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where by definition ( )1/ 1/ 2mclkf T= = Δ . 

OUTPUT JITTER 
For most of the values of w, the output signal ( )v t  of the 

Flying-Adder is irregular, especially when 2n mw −< . Its 
period is composed of a number of pulses of unequal lengths 
as in the case of Figure 3. Therefore, the FA’s output has 
deterministic jitter (except for very few values of w). 

Figure 2: The Flying-Adder architecture   
shown here with 4 input phases 
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To derive analytic estimates of the timing errors and jitter 
we compare the output ( )v t  to the ideal 50% duty-cycle 
periodic squarewave of average frequency avef , whose first 
rising edge coincides with that of ( )v t  at time 0t = . The 
situation for the  j-th pulse is shown in Figure 4. 

Here, jt  and jτ  be the times of the j-th rising and falling 
edges of ( )v t  respectively. It can be shown that it is 

( )2 1
2j n m
j w

t −
−⎡ ⎤= ⋅ Δ⎢ ⎥

⎣ ⎦
 

and  

Figure 4 : The jth  pulse in ( )v t and the jth  pulse in the 
ideal squarewave of the average frequency, fav, when 
2n−m < w < 2n and L > 1. 

Figure 3 : The signals of the Flying-Adder synthesizer for 4n = , 2m =  and 15w = . 
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( )2 1
2j n m
j w

τ −
−⎡ ⎤= ⋅ Δ⎢ ⎥

⎣ ⎦
 

Moreover, for the ideal squarewave we have that 

( )2 1
2j n m
j w

t −
−

= ⋅ Δ  

and 

( )2 1
2j n m
j w

τ −
−

= ⋅ Δ  

From the above we conclude that j j jt t t− Δ < ≤    and   

j j jτ τ τ− Δ < ≤ . 

Using this result and some further analysis we derive strict 
upper bounds for different jitter measures. Specifically it can 
be shown that [6], a) Absolute Jitter ≤ Δ , b) Absolute Cycle-
to-Cycle Jitter ≤ Δ , c) Accumulated Jitter /2≤ Δ , d) Cycle 
Average Jitter /2≤ Δ , and, d) Cycle-to-Cycle Average Jitter 
≤ Δ . All jitter estimates are based on the rising edge of ( )v t  
(as well as those of the ideally squarewave). 

 
Figure 5 shows the numerical values of five measures of 

the deterministic jitter of the output ( )v t  when n = 6, m = 4 and 
w = 4, 5 ,6 , …, 63. (Note that we deliberately excluded the cases of 

2n mw −<  as they result in very irregular waveforms.) 

In addition to jitter, one can comment on the size of the 
pulses in ( )v t . Specifically, if 2 2n m nw− ≤ <  then the 
length of every 0 or 1 interval in equals one of the two values 

2n m
w
−

⎡ ⎤ ⋅ Δ⎢ ⎥⎣ ⎦
,   

2n m
w
−

⎡ ⎤ ⋅ Δ + Δ⎢ ⎥⎣ ⎦
 

and within every continuous-time period vT  there exist two 
intervals (0 or 1 or both) of length equal to each of the above 
values. In addition, the length of every cycle (0-interval 
followed by 1-interval, or, vice versa) equals one of the values  

2
2n m
w
−

⎡ ⎤ ⋅ Δ⎢ ⎥
⎣ ⎦

,   2
2n m
w
−

⎡ ⎤ ⋅ Δ + Δ⎢ ⎥
⎣ ⎦

 

and within every continuous-time period vT  there exist at least 
two cycle of length equal to each of these two values. 

 

OUTPUT SPECTRAL CHARACTERISTICS 
Since the fundamental continuous-time period of the 

output signal is vT , the spectrum of ( )v t  consists of (some of 
the) harmonics at frequencies / vf T= , 0,1,2,...= . 
Output ( )v t  can be expressed as a Fourier series accordingly. 
Since the analytic expression of vT  is known the discrete 
spectrum can be easily derived numerically. Given the digital 
structure of the FA one should not expect significant deviation 

Figure 6 : The spectrum of ( )v t for n = 4, m = 2, w = 7 

Figure 7 : The spectrum of ( )v t  for n = 8, m = 4, w = 101 
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Figure 5 : Jitter measures when n = 6, m = 4 and w = 4, 5 ,6 , 
…, 63.  JA: Absolute Jitter, JAC2C: Absolute Cycle-to-Cycle 
Jitter, JACCU: Accumulated Jitter, JCA: Cycle Average Jitter 
and JC2CA: Cycle-to-Cycle Average Jitter. 
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between numerical results and actually measurements – with 
the exception of high-order harmonics whose amplitude may 
be altered due to bandwidth limitations of the implementation 
or excessive imbalance between the clock phases of the (ring) 
oscillator. 

Figure 6 shows the spectrum in the case of n = 4, m = 2 
and  w = 7 which implies that 4L = , 1.14ave clkf f≅ ⋅  and 
avef  is the second harmonic in the spectrum. Moreover, it is 

7vT = ⋅ Δ . The SFDR is about 8dB. 

Figure 7 shows the spectrum in the case of  n = 8, m = 4 
and w = 101 which implies that 16L = , 1.27ave clkf f≅ ⋅  
and avef  is the eight harmonic in the spectrum. Moreover, it is 

101vT = ⋅ Δ . The SFDR is about 20dB if we exclude the 
harmonics of avef , or about 10dB otherwise. 

CONCLUSSIONS 
Results of detailed mathematical modeling and analysis of 

the Flying-Adder frequency synthesizer have been presented, 
including the discrete and continuous-time period, the average 
output frequency and strict bounds of several measures of 
output’s determinist jitter. 

Based on the presented results it appears that the Flying-
Adder can be very useful for digital circuits that can tolerate 
certain deterministic timing irregularity. Use of the Flying-
Adder in analog  / RF applications is expected to be limited 
due to very low spurious free dynamic range, which could 
potentially be improved through some form of random 
dithering at the cost of higher noise floor.  
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