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Abstract— This work considers two aspects of the design of
Diophantine Frequency Synthesizers' which are important for
wireless applications: I) the choice of DFS parameters leading
to decimal frequency resolution (10" Hz) and acceptable input
reference frequency, and, II) the choice of the mixer(s) used in
DFS architectures and the frequency planning in the constituent
PLLs that lead to high Spurious Free Dynamic Range at the
output.

I. INTRODUCTION

Frequency synthesis is used in the majority of modern
electronic systems. Quality frequency synthesizers are critical
components in wireless and wired communications, radars,
navigation, instrumentation and in many other systems.

Diophantine Frequency Synthesis (DFS) is a relatively new
methodology for frequency synthesis; it was introduced in [1]
and was further evolved in [2]. DFS is a high-level approach in
the sense that it uses a two or more simpler frequency synthesis
blocks, like integer-N PLLs?, programs their frequency multi-
plication factors appropriately and adds/subtracts their output
frequencies to generate the output frequency of the synthesizer.

Based on properties of the solutions of Diophantine equa-
tions and using certain properties of integer numbers, DFS
distributes the frequency resolution of the synthesizer among
the constituent PLLs. Doing so, it allows for relatively high
phase-detector frequencies at the constituent PLLs and there-
fore fast frequency hopping and suppressed phase-detector
spurs. If necessary attention is paid in the design of the mixers,
DES can lead to high resolution, fast hopping synthesizers with
high Spurious Free Dynamic Range (SFDR).

Two aspects of DFS application that are especially important
for wireless applications are discussed in this work.

The first is the choice of the DFS programming parameters
that lead to decimal (i.e. 10™Hz) output frequency step
(resolution). Most communication standards require frequency
step equal to a power of 10 or a product of it. The same is
true for instrumentation and other equipment.

Conditions for decimal frequency steps leading to a bal-
anced distribution of the resolution to the constituent PLLs are
presented and the case of the GPRS standard is considered as
an example.

!Patent Pending
2 Although practically any standard frequency synthesis block can be used,
integer-N PLLs are preferred for convenience in illustrating the method.

Then, the mixing of PLL output frequencies and the choice
of the appropriate mixer are discussed. Minimizing mixing
spurs is critical in obtaining a clean output signal. It can
be very easy or very challenging depending on the desirable
specifications, the design constraints and the implementation
form.

II. ELEMENTS OF DFS FOR 2-PLIL SCHEMES

Although the general DFS theory can be found [1], it is
convenient to briefly review some basic facts for the special
case of 2-PLL DFS schemes.
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Basic PLL

DFS employs two or more simple frequency synthesis
blocks, like integer-N PLLs shown in Fig. 1 having fixed
prescaler divider R and feedback divider that is the sum n+n,
of a fixed value i > R, and, a variable n which can take values
within the range — R, ..., R. An output divider, (), may also
be present. The output frequency of the PLL is

fout = nQ+Rn fzn

A high-level 2-PLL DFS architecture is shown in Fig. 2.
Both PLLs are driven by the same signal and their output
frequencies are added (or subtracted) to provide the output
frequency of the synthesizer
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Fig. 2. Abstract 2-PLLs DFS Scheme.



where f,q; is fixed and equals the central output frequency of
the synthesizer. It is
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The following theorem is a special case (for 2 PLLs) of
DFES’ main theorem [1].

Theorem 2.1: [1] If ged (Ry, R2)=1 then, for every integer
n, such that —Ry R» < n < Ry Rs we can find integers ny, ns
with —R; < n; < R;, i = 1,2, for which

nq %) n
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Ry Ry RiR» 3)

Theorem 2.1 tells us that by appropriately adjusting the
feedback dividers, n1,ns within the ranges —R; < n; < Ry
and —R> < ns < R,, respectively, the output frequency can
take every one of the values

n fm 7
= AL 4
fout R1R2 Q + fout ( )
where n = —R 1 R», ..., Ry Ry; i.e. the range of f,,; is
fout_% ) fout‘l'% (5)
and the (uniform) frequency step of it is
fin
= . 6
fstep QR1R2 ( )
Nothing changes if we replace 1’;—11 + 1’;—";_ by Z—ll - Z—"; or

—Z—ll + }% in (3), except the central value f,,; which should
be adjusted accordingly. This is true because the ranges of 7
and no are symmetric with respect to zero. Generalizations
of Theorem 2.1 for any number of basic frequency synthesis

blocks (PLLs here) can be found in [1] and [2].

III. DFS wiTH DECADE-BASED RESOLUTION

Many important applications require synthesizers with fre-
quency steps equal to 10" (Hz), where A is an integer number.
From expression (6) this means that
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It may or may not be possible to satisfy (7) exactly,
depending on the constraints of the design and the specific
numbers involved.

We consider the case where we are allowed to select the
input reference frequency, preferably within a set of “standard”
frequencies, and, the common frequency divider in the PLLs
is set to one, i.e, @ = 1.

Starting with the 2 - PLL DFS scheme in Figure (2) we can
choose

= 10" (7

Ry =2™ | Ry=5M2. ®)

since they lead to “standard” frequencies for several combina-
tions of values of integers mq, ms. Since ged (Ry, R2) = 1,
this choice is acceptable for DFS.

mi | me Ry R RiRy | A(mi,m2)
2 1 4 5 20 1.25
3 1 8 5 40 1.60
4 2 16 25 400 1.56
5 2 32 25 800 1.28
6 3 64 125 8000 1.95
7 3 128 125 16000 1.02
8 3 256 125 32000 2.05
9 4 512 625 320000 1.22

10 4 1024 625 640000 1.64

11 5 2048 3125 6400000 1.53

12 5 4096 3125 12800000 1.31

13 6 8192 15625 128000000 1.91

14 6 16384 15625 | 256000000 1.05
TABLE I

RANGES OF THE FREQUENCY DIVIDERS

Now note that the frequency hopping speed of the synthe-
sizer is essentially equal to the minimum of the frequency
hopping speeds of the two PLLs?. Moreover, the frequency
hopping speed of a PLL is approximately proportional to its
loop band-width which is typically approximately proportional
to the phase-detector frequency,

fpd1 =

fpdg =

10" Ry

10" R, ©)

Based on these, and given that the resolution depends on
the product R; R», it makes sense to try to have R; & R».
Formally this can be written as the minimization of

max { 2™,5™2}

min { 2m1,5m2} (19

A(ml,mz) =

If we consider m as a free variable and m» as a function

of mq, then the minimum of the expression (10) is equal to 1
and is achieved when

In (2)
In (5)
which however is not an integer number for m; € Z. Instead,

the optimal integer value of ms is given by (11) where < x >
is a nearest integer to x.

me = (28,

Table I shows the values of msy for m, ranging from 1 to 14
along with the values of the prescaler dividers Ry, Ro, their
products and the corresponding values of A in (10).

mo = mq

(I

Example 3.1: Suppose we would like to have output fre-
quency step equal to 1kHz, which means that h = 3,
and phase-detector frequencies at the PLLs around 100kHz.
Equation (9) implies that we need to find R; and R» so that
100kHz = R; - 1kHz. A convenient choice, from Table I is
R, = 27 =128 and Ry = 5% = 125, which because of (7)
implies f;, = 16 MHz.

3This is because the contribution of the (filters in the) mixer is typical
negligible. The only possible exception to this is when foyut << f1, fo.



The ranges of f; and f, are derived from (5), and, since
Q@ =1, they are

nq n1
A L B .16 MH
h [128 1, ’128+1] 16 MHz
and
fig fig
(22 g™ 9] 16MHz
f [125 ’ ’125+} 6 MHz

The values of 77 and 75 as well as the choice of f,,; =
Ji+ f2 or four = f1 — fo determine the central frequencies

fly f? and fout-

Example 3.2: Now suppose we want to design a DFS
synthesizer for the General Packet Radio Service (GPRS)
system. GPRS has a 200kHz channel spacing, reverse channel
frequencies 890-915 MHz and forward channel frequencies
935-960 MHz.

Lets assume for the moment a 100kHz frequency step re-
quirement, i.e. h =25, and that we need to cover both the reverse
and forward channels range, i.e. (960 — 890)MHz/200kHz=
350 (+1) synthesized frequencies are needed.

From Theorem 2.1 we know that the number of synthesized
frequencies using a 2-PLL DFS scheme is equal to 2Ry Ry +1.
Based on this, it is convenient to select Ry = 16 and Ry = 25
from Table I giving 2R; Ry + 1 = 801.

In this case equation (7) results in f;, = 40MHz. Taking
into account the factor of two in the frequency step we con-
clude that f;, = 80MHz. Then, the phase detector frequencies
are fpa1 = fin/R1 = 5MHz and f,q1 = fin/R1 = 3.2MHz.

We can choose the central output frequency to be at the
center of the total frequency band, ie. f,,; = 925MHz.
Moreover, note that expression (2) for f,,; is similar to that
for the variable part of f,,;. This means that we can choose
the value of f,,; with the same resolution fstep-

IV. FREQUENCY MIXING IN DFS

Since DFS requires frequency addition (or subtraction),
frequency mixing is necessary. Careful choice of the central
frequencies, f;, i = 1,2, the frequency ranges [f; — fin, fi +
fin], the shape and amplitude of PLLs’ output waveforms
entering the mixer, and of course the mixer are important in
minimizing the unwanted spurious signal components m f; +
n fo. The difficulty of these choices varies significantly from
one application to another.

It is important to note that frequency mixing in synthesizers
is quite different from frequency mixing in RF receivers. In
the first case both mixed signals have large amplitudes which
means that strong unwanted intermodulation products will be
generated if we don’t pay the necessary attention to the design;
at the same time, noise is not usually an issue. In contrast,
in RF receivers, the local oscillator’s signal is strong but the
input signal is typically very small, this means that unwanted
intermodulation products are usually generated only by the
harmonics of the local oscillator, and they are far away from
the frequency range of interest*; moreover, the mixer’s noise
is a major issue.

4... with the exception of Ultra Wide Band systems

Consider the 2-PLL DFS scheme in Figure 2. Assuming
for simplicity that Q = 1, equation (5) gives that the PLL
frequencies f;, i = 1,2, range within

[fz - fzn ’ f2 +fin]a

1 = 1, 2 respectively in order to generate all output frequencies
covering the range

[fout - fm ) fout + fzn]
with step equal to fsiep = fin/(R1R2).
If fout = f1 — fo the DFES algorithm [1] implies that for all

output frequencies the pair (fi, fo) lies within the hexagon in
Figure 3 below, [2].

/y o
A fz_.f;:fZ_.f;+ﬁlx
\7‘2+f;n7777 /
]72 e
'f_;_'f;n7777
Ay
S R .
F-fn T T+l

Fig. 3. Ranges of variation of f1, fo and fout When fout = fo — fi1.

Since four = fi — fo = (fi + Af) = (fo + Af) for every
frequency offset A f, we can shift the hexagon in parallel to
the y = x line without changing the output frequency. This
gives us some freedom to minimize output spurious signals.

When f,u: = fi + fo the pair (f1, f2) lies within the
hexagon in Figure 4.

5 o
+ f2;'_fi=f2+fi+f;'n
-f_V2+~f;n -
7 \
-f_;_'f;ﬂ r
htf=Ft T ),
_ P .
F-fn T T+

Fig. 4. Ranges of variation of f1, fo and fout When fout = f1 + fo.

Here, four = f1 + fo = (fi + Af) + (f2 — Af) for every
frequency offset Af, and so shifting the hexagon in parallel



to the y = —x line does not change the output frequency. As
before, we can use this flexibility to minimize output spurious
signals.

A. The Choice of the Mixer

Several types of mixers can be used for DFS. A rough
classification can be done based on the waveforms of the
two inputs (or equivalently the smoothness of the mixer’s
nonlinearity with respect to each of the input variables).

The “smoothest” mixing is performed by multiplication of
sinusoidal signals. As shown in Figure 5 the signals x; (%)
and z5(t) from the PLLs are filtered and their harmonics
are suppress to yield pure sinewaves that enter a multiplier.
The multiplier is typically implemented as a Gilbert cell with
appropriate input “pre-distortion” so that it does not distort
any of the signals [3].
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Mixing of two sinusoidal signals

If Z1(t) = Ay cos(wit) and &2(t) = As cos(wst) are the
outputs of the filters corresponding to x; and x5 respectively,
then the output of the multiplier-mixer is’

Tme(t) =  Ame cos ((w1 + w9t + ¢)

+ B cos (w1 — ws)t + 1)) (12)

The filter at the output of the mixer selects one frequency
or the other. The filter may be low-pass, band-pass, high-pass
or even band-reject.

One can use a quadrature version of the multiplier-mixer
to remove the unwanted term from (12) and easy the require-
ments for the output filtering. To use the quadrature mixer we
need to generate the I and () signal components of the two
PLLs. Perhaps the easiest way to do this in DFS is by using
quadrature oscillators in the PLLs, or divide the oscillator’s
frequency by 2 using a divider with quadrature output.

Finally, the use of buffers at the inputs of the mixer helps
isolating the PLLs. This is important especially when the
phase-detector frequencies of the PLLS, f;,/R;, are close
to each other and any coupling can potentially generate
beating tones, appearing as output spurs at the intermodulation
frequencies of the phase-detector frequencies.

A simpler mixer structure, and perhaps the most common
one, that can be used in DFS as well is shown in Figure 6. Here
the mixer is essentially a switch multiplying a sinewave with
a square-wave. Balanced RF and microwave Diode mixers
behave very much like this.

5... at least ideally. Also note that the amplitudes and the phases may differ
due to bandwidth limitations of the multiplier.
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Mixing of sinusoidal with a square signal

Typically, the switch is implemented differentially and the
output signal, ., is the multiplication of a the sinewave
Z1(t) = Aj cos(wyt) times the +£1 square-wave. Expressing
the last one in Fourier series,

431
Eo(t) = ;ZO T sin ((2r + 1) wa t) (13)

we derive the signal at the output of the switch®

™

Tme(t) = 241 lz 27'{1- . sin (((27’ + 1w + wl)t)

e’} 1 )
+ ;0 TEwEL (((Qr + 1w, — wl)t)] (14)

Therefore the output of the switch contains signal compo-
nents at frequencies

wE = |w1 + (2m+ 1)w2| (15)
with amplitudes’
Aw, £
A, = “witws 16
o 2m+1 (16)

where m = 0,1,2,..., and Ay, 14, = 241 /7.

When the minimum value of wy is large compared to the
range of the desirable output frequency, wy +ws or |ws — w1 |,
the filter at the output of the mixer can suppress the unwanted
spurs effectively.

Imperfections in the switch(es) introduce more undesirable
IMD products. For example in the classical (balanced) diode
mixer [4]-[5], the diodes biased by one of the signals act a
the switch for the other one. A typical behavior of a doubly-
balanced mixer is shown in Table II, where m, r refer to the
IMD products at frequency |mw; £ 7 ws.

Finally, the frequency mixing can be done semi-digitally,
using for example an XOR gate as shown in Figure 7. In this
case we have that

) 4~ 1
:L'1(t):;7;2m+1sm((2m+1)w1t)

and @5 (t) is given by (13). Multiplication of the two series
results in the desirable signal component at frequency wi +ws,

For notational simplicity we assume the behavior of the switch does not
alter the phase or amplitude of the output frequency components. Also, a gain
factor may multiply expression (14).

7For simplicity we ignore the case where some frequencies (15) coincide.
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TABLE 1T
TYPICAL BEHAVIOR OF DOUBLY-BALANCED DIODE-MIXER. m, 7 REFER
TO THE IMD PRODUCTS AT FREQUENCY |m w1 £ r wz|. ( FROM
SYNERGY MICROWAVES CORPORATION’S APPLICATION NOTES [6] ).
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Fig. 7. Mixing of two square signals

or |wy —ws| with amplitude A, +,,, = 8/ and the spurious
components at frequencies

w(“—Lm7r) = |(2m + Dwy £ (2r + 1)w2| (17)
with amplitudes®
A
Amr) = L (18)

2m+1)(2r+1)

where m,r = 0,1,2,... and Ay, 44, = 8/7%.

In general the XOR mixer introduces a lot of high level
spurious signals. However, it can be a useful choice when | f; —
fal/lf1+ f2] << 1 orwhen fi/fs << 1, [7]. In particular, it
can be used in the frequency offsetting technique below.

B. The Frequency Offsetting
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Fig. 8. Frequency Offset Loop: It provides either the sum f, + f or the
difference, f, — fp of the two input frequencies. It is a preferable mixing
approach when f, << fq.

The frequency offsetting, or offset PLL concept is shown in
Figure 8. It is an effective way for adding/subtracting a small
frequency f, to/from a large one f,.

8For simplicity we ignore the case where some frequencies (17) coincide.

It can be used as a convenient alternative to mixing the
signals when fou: = fo + fo (O four = fa — fo) is very close
to fq, because the PLL’s loop-bandwidth acts as a narrow
band-pass filter centered at f,,;. Instead, mixing f, with f;
directly generates output spurious signals that require a very
narrow-band filter to remove, which is usually challenging to
build.
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Fig. 9. A 2-PLL DFS scheme for timing applications using frequency
offsetting [8].

Figure 9 shows a example of a DES scheme, with two offset
PLLs, for timing applications requiring very small output
frequency range but very high resolution and signal purity [8].

V. CONCLUSIONS

Two important aspects of the application of Diophantine
Frequency Synthesis (DFS) method have been discussed: The
choice of the DFS parameters that lead to decimal output
frequency resolution (10™Hz) for “standard” reference fre-
quencies, and, the choice of the frequency mixer required in
PLL-based DFS.
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