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Abstract— Cascaded Diophantine Frequency Synthesis1

(CDFS) is a new systematic methodology for developing and
programming modular multi-loop frequency synthesizers
with high frequency resolution, fast frequency hopping and
potentially very low spurs, especially near-in. CDFS results
in significantly reduced frequency ranges of the intermediate
signals in the frequency mixing stages compared to the
predecessor, Diophantine Frequency Synthesis methodology.
This simplifies the design and frequency planing for the
synthesizer and allows for improved spectral purity of the
output signal.

I. INTRODUCTION

Cascaded Diophantine Frequency Synthesis (CDFS) is
based on Diophantine equations [1] and shares the same
mathematical principles with its predecessor, Diophan-
tine Frequency Synthesis (DFS) methodology, that was
introduced in the IEEE Frequency Control Symposium
of 2006, [2].

Both methods employ two or more Frequency Syn-
thesis Blocks (FSB), like Phase Locked Loops (PLL),
Direct Digital Synthesizers (DDS) or others2 [3], which
are driven by the same reference frequency signal and
whose output frequencies are added or subtracted to give
the output frequency of the DFS / CDFS synthesizer.

Both methods use only exactly-periodic signals, with-
out employing any dithering, interpolation, pulse removal
or other approximately-periodic waveform that may cor-
rupt the near-in spectrum3, and, they result in high-level
architectures whose output fractional-frequency resolu-
tion is equal to the product of the FSB’s fractional-
frequency resolutions. This allows for the output fre-
quency step to be made (arbitrarily) small while using
a relatively high frequency reference for the FSBs.

CDFS has all desirable properties of DFS and in
addition it offers the following significant advantage: it
minimizes the frequency ranges of all intermediate signals
involved in frequency mixing which allows for improved
spectral purity and lower design complexity compared to
DFS, [4]-[5].

1Patent Pending
2Almost any frequency synthesizer can be used as a constituent block

of DFS or CDFS synthesizers; in general one would prefer simple(r)
structures like Integer-N PLLs.

3However, one may choose FSBs that do so.

It is instructive to summarize DFS and discuss the
frequency properties of the intermediate signals involved
in the frequency mixers, first, in order to introduce and
motivate CDFS.

II. NOTATION

The Frequency Synthesis Blocks (FSB)s used to com-
pose a CDFS or DFS synthesizer are shown in abstract
form in Figure 1a as frequency multipliers by n̂/R.
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Fig. 1. (a) High-level notation for Frequency Synthesis Blocks (FSB),
(b) Frequency mixer notation - the output is either f1 + f2 or f1 − f2.

Both the frequency multiplier n̂ and the frequency
divider R are assumed to be positive. Moreover, since
most of the possible FSB have output frequency range
extending from a non-zero minimum frequency up to
a maximum frequency4 it is useful to decompose the
frequency multiplier into the sum n̂ = n̄ + n, where n̄
is fixed and greater than R, and, n is an integer variable
ranging from −R to +R. The output frequency is

fout =
n̄ + n

R
fin. (1)

An additional, fixed, frequency divider, Q, may also
be be present in (1), i.e. fout = n̄+n

Q R fin. Moreover, the
range of n can also be expanded in multiples of R.

The mixing of two signals at frequencies f1 and f2

is denoted as in Figure 1b where the outcome can be
either f1 + f2 or f1 − f2 (fixed choice). The context in
the paper indicates whether the sum or the difference
is considered. The mixing process here includes pre-
and post-filtering to remove all unwanted intermodulation
products (including f1 + f2 when the desirable output is
f1 − f2, and vice versa). Mixing of three or more signals
has a similar interpretation.
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Fig. 2. Abstract high-level k-PLL DFS scheme.

III. SUMMARY OF DFS’ PROPERTIES

DFS uses two or more basic FSBs, like that in Fig. 1, as
shown in Fig. 2 depicting the general abstract high-level
k-FSB DFS architecture. The FSBs, have parameters, Ri,
ni and n̄i, i = 1, 2, . . . , k, and are driven by the same
input reference fin. Their output frequencies are added, or
subtracted, (in any - but fixed pattern) to give the output
frequency fout of the synthesizer

fout = f̄out +

(
k∑

i=1

αi
ni

Ri

)
fin (2)

where αi ∈ {−1, 1}, i = 1, 2, . . . , k, are the frequency
- weighting coefficients, whose values correspond to
whether a frequency is added or subtracted from the
general sum in the mixing process, and,

f̄out =

(
k∑

i=1

αi
n̄i

Ri

)
fin (3)

is the central (fixed) value of the output frequency fout.
Now following the DFS methodology [6] the FSBs are

designed so that n̄i’s and Ri’s are fixed, n̄i > R, and ni

can take any integer value from −R to +R. Therefore,
for the output frequencies of the FSBs we have

fi ∈
[

f̄i − fin , f̄i + fin

]
(4)

where the central output frequencies of the FSBs are

f̄i =
n̄i

Ri
fin. (5)

4Note that DDS and some multiloop synthesizers, used as FSBs, may
have zero minimum output frequency.

Moreover, the positive integers R1, R2, . . . , Rk are
chosen to be pairwise relatively prime. Then DFS guar-
antees that by programming the values of nis using the
DFS algorithm [6], fout, can take (all) values within the
range

[
f̄out − fin , f̄out + fin

]
(6)

with uniform frequency step equal to

fstep =
fin

R1R2 · · ·Rk
. (7)

where f̄out is given by (3). More specifically, fout can
take any of the values

fout = f̄out +
n

R1R2 · · ·Rk
fin, (8)

where

n = −R1R2 · · ·Rk, . . . , R1R2 · · ·Rk, (9)

by programming the values of ni’s within their ranges,

−Ri ≤ ni ≤ Ri, (10)

i = 1, 2, . . . , k, ( using the DFS algorithm [6]).
The central output frequencies of the FSBs, f̄is have

to be chosen appropriately to result in the desirable value
of f̄out and alow for a spectrally clean output - based on
the chosen frequency mixing process. Note that f̄out can
be set with the same resolution, (7), as fout.

DFS implies that with relatively small values of k and
R1, R2, . . . , Rk, the frequency step, fstep, can be made
very small, while at the same time, the required frequency
steps of the FSB, i.e. fin/Ri, i = 1, 2, . . . , k, can be
large. The fractional resolution of the DFS scheme is RG

times larger than the geometric mean of the fractional
resolutions of the constituent FSBs, where

RG =
(
R1R2 · · ·Rk

) k−1
k

IV. MOTIVATING CDFS

CDFS methodology requires the same frequency
ranges and resolutions from FSBs, and results in the same
frequency range and resolution of the synthesizer’s output
signal with its predecessor DFS [6].

The advantage of CDFS is the significantly reduced
(and from certain aspects - minimal) frequency ranges of
the intermediate signals in the frequency mixing stages.

The following examples clarify the situation and mo-
tivate the new approach.
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Fig. 3. A 3-FSB DFS synthesizer

A. DFS Example 1

Consider the DFS scheme in Figure 3 using three FSBs
with parameters R1 = 4, R2 = 3 and R3 = 5 (the values
of n̄i’s are not important here as they only set f̄i’s, f̄I

and f̄out).
Using the DFS algorithm, [6], to program the values

of ni’s, within their ranges (10), we generate all output
frequencies (8) for n = −R1R2R3, . . . , R1R2R3. The
normalized output frequency (fout − f̄out)/fin ranges
from −1 to +1, as shown in the last graph of Figure
4. The rest of the graphs show the normalized FSBs’
frequencies and normalized intermediate frequency fI .

1 1

in

f f

f

−

3 3

in

f f

f

−

2 2

in

f f

f

−

I I

in

f f

f

−

out out

in

f f

f

−

-60 -40 -20 0 20 40 60
-1

0

1

-60 -40 -20 0 20 40 60
-1

0

1

-60 -40 -20 0 20 40 60
-1

0

1

-60 -40 -20 0 20 40 60
-2

-1

0

1

-60 -40 -20 0 20 40 60

-1

0

1

n

Fig. 4. Normalized FSB’ and intermediate, fI , frequencies involved
in generating all output frequencies of the DFS synthesizer in Figure 3
using the DFS algorithm.
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Fig. 5. A 5-FSB DFS synthesizer

Note that the normalized fi’s range within −1 and
+1 as expected, however, the normalized intermediate
frequency fI ranges from −1.75 to +1 (fourth graph).
Moreover, changing the values of R1, R2 and R3 to 41, 56
and 61 respectively results in the normalized intermediate
frequency fI ranging from −1.98 to +1.

This indicates that in general, the ranges of the in-
termediate frequencies fIj

in the mixing stages can be
significantly larger that [f̄Ij

− fin, f̄Ij
+ fin].

The ranges of the intermediate frequencies can increase
with the number of FSBs, k, in the DFS synthesizer.

B. DFS Example 2

The ranges of the intermediate frequencies can be even
larger in schemes with more FSBs, e.g. when the scheme
in Figure 5 is programmed using the DFS algorithm, it
results in normalized intermediate frequencies fIa

and
fIb

ranging from −2.87 to 1 and from −0.78 to 1.89
respectively.

In contrast to DFS, the CDFS methodology and al-
gorithm result in all normalized intermediate frequencies
ranging from −1 to +1, i.e. the intermediate frequencies
fIj

in the mixing are always within [f̄Ij
−fin, f̄Ij

+fin].

V. CDFS ARCHITECTURES & ALGORITHM

The high-level general CDFS scheme is shown in
Figure 6. Parameters Ri, ni and n̄i are integers as before,
n̄i and Ri are fixed and such that n̄i > Ri and ni is a
variable taking values within the range −Ri ≤ ni ≤ Ri,
for all i = 1, 2, . . . , k.
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Fig. 6. Abstract high-level k-FSB CDFS scheme.

As in DFS, all FSBs are driven by the same reference
signal fin and their output frequencies are added or
subtracted (in any chosen but fixed pattern) to produce
fout. Again, αi ∈ {−1, 1}, i = 1, 2, . . . , k, are the
corresponding frequency - weighting coefficients in the
mixers.

The resulting output frequency, fout, of the synthesizer
is given by (2) and (3) and the intermediate frequencies
fIj

involved in the mixing process are given by5

fIj
= f̄Ij

+

(
j∑

i=1

αi
ni

Ri

)
fin. (11)

where the fixed part of it, f̄Ij
is

f̄Ij
=

(
j∑

i=1

αi
n̄i

Ri

)
fin. (12)

For convenience we define fI1 � f1 as well.
The foundation of CDFS is the following theorem

whose proof and discussion can be found in [7].

Theorem 5.1: Let R1, R2, . . . , Rk be pairwise rela-
tively prime positive integers (i.e., no pair of them has
common divider other than ±1), and αi ∈ {−1, 1},
i = 1, 2, . . . , k, be a fixed set of mixing weights, then:

For every integer n with |n| ≤ R1R2 · · ·Rk we can
find integers n1, n2, . . . , nk with |ni| ≤ Ri, for all i =
1, 2, . . . , k, satisfying Diophantine equation

5Note that some intermediate frequencies may be negative (always),
e.g. if α1 = α2 = −1 then fI2 = −f1 − f2 and since it is always
fi > 0 for all i’s, it is fI2 < 0. In a physical implementation this
simply means that the frequency sum, f1 + f2, generated by the first
mixer, must be “subtracted” in the second mixer if α2 = 1 or added to
f3 if α2 = −1 and so on.

k∑
i=1

αi
ni

Ri
=

n

R1R2 · · ·Rk
(13)

and inequalities (14) for all j = 2, 3, . . . , k∣∣∣∣∣
j∑

i=1

αi
ni

Ri

∣∣∣∣∣ ≤ 1. (14)

Moreover, There exists no constant β < 1 with the
property that for every n with |n| ≤ R1R2 · · ·Rk we
can find a solution of (13) satisfying |ni| ≤ βRi for all
i = 1, 2, . . . , k. �

Interpreting the Theorem into frequency synthesis we
have that: given the stated conditions on Ri’s and αi’s
we can synthesize all frequencies given by (8) and (9),
by appropriately setting the values of ni’s within their
ranges (10), and, at the same time satisfy

fi ∈
[

f̄i − fin , f̄i + fin

]
, (15)

for all i = 1, 2, . . . , k, and

fIj
∈ [ f̄Ij

− fin , f̄Ij
+ fin

]
(16)

for all j = 1, 2, . . . , k − 1.

A. CDFS Algorithm

The CDFS algorithm is summarized below (details can
be found in [7]) and uses the parameterized function f
defined as follows:

Let A,B be two relatively prime positive integers;
given two integers, x1 and x2 we define z1 = x1 mod A,
z2 = x2 mod B, and, μ = x1 div A + x2 div B. We set

f(A,B)(x1, x2) =

⎧⎨
⎩

(z1−A, z2−B) if μ = −2
(z1−A, z2) if μ = −1
(z1, z2) otherwise

(17)

CDFS Algorithm

• STEP 0: If n = ±R1R2 · · ·Rk then set n1 = ±R1,
respectively, set ni = 0 for i = 2, . . . , k and STOP;
otherwise proceed to STEP 1.

• STEP 1: For i = 1, 2, . . . , k − 1 derive, using the
Euclidean algorithm, and store a solution (zi, wi+1)
of the Diophantine equation

zi

R1R2 · · ·Ri
+

wi+1

Ri+1
=

1
R1R2 · · ·Ri+1

(18)

• STEP 2: Set xk = n and derive sequentially the k−1
vectors (xk−i, nk−i+1), i = 1, 2, . . . , k − 1, using

(xk−i, nk−i+1) =
f(
∏k−i

�=1 R�, Rk−i+1)

(
xk−i+1zk−i, xk−i+1wk−i+1

)
(19)

• STEP 3: Set n1 = x1. �
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Vector (n1, n2, . . . , nk) is a solution of (13), as spec-
ified in Theorem 5.1 (and satisfies (14)) when αi = 1
for all i = 1, 2, . . . , k. For the general case one should
replace (n1, n2, . . . , nk) with (α1n1, α2n2, . . . , αknk).

B. Using the CDFS Algorithm to programm the (C)DFS
synthesizer in Figure 3

The CDFS algorithm is applied to the 3-FSB scheme
in Figure 3 where k = 3, R1 = 4, R2 = 3, R3 = 5 and
α1 = α2 = α3 = 1.

Based on the previous Section, the CDFS algorithm
provides solutions of the Diophantine equation

n1

4
+

n2

3
+

n3

5
=

n

4 · 3 · 5 (20)

that satisfy the desirable inequalities (10) and (14) -
translated here as

−4 ≤ n1 ≤ 4
−3 ≤ n2 ≤ 3
−5 ≤ n3 ≤ 5

and ∣∣∣n1

4
+

n2

3

∣∣∣ ≤ 1,

∣∣∣n1

4
+

n2

3
+

n3

5

∣∣∣ ≤ 1

respectively - for all integers n such that |n| ≤ 4 · 3 · 5.
The steps of the CDFS algorithm are:

• STEP 0: If n = ±4 · 3 · 5 = ±60 then set n1 = ±4,
respectively, set ni = 0 for i = 2, 3 and STOP;
otherwise proceed to STEP 1.

• STEP 1: Derive (some) solutions (z1, w2) and
(z2, w3) of the following Diophantine equations us-
ing the Euclidean algorithm.

z1

4
+

w2

3
=

1
4 · 3

z2

4 · 3 +
w3

5
=

1
4 · 3 · 5

Using the “gcd” function in MATLAB we get
(z1, w2) = (−1, 1) and (z2, w3) = (5,−2).

• STEP 2: Set x3 = n and derive sequentially vec-
tors (x2, n3) and (x1, n2) using “two parameterized
versions” of function f .

(x2, n3) = f(4·3, 5)(x3z2, x3w3)
(x1, n2) = f(4, 3)(x2z1, x2w2)

• STEP 3: Set n1 = x1. �
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Fig. 7. Normalized FSB’ and intermediate, fI , frequencies involved in
generating all output frequencies of the (C)DFS synthesizer in Figure
3 using the CDFS algorithm.

CDFS algorithm is used to program the values of
ni’s, within their ranges (10) and generate all output
frequencies (8) for n = −4 · 3 · 5, . . . , 4 · 3 · 5.

As expected the normalized output frequency (fout −
f̄out)/fin ranges from −1 to +1, as shown in the last
graph of Figure 7. The rest of the graphs show the
normalized FSB and intermediate fI frequencies.

In contrast to DFS programming resulting in Figure 4,
here the normalized intermediate frequency fI (shown in
the fourth graph of Figure 7) ranges from −1 to +1 as
expected.

VI. CONCLUSIONS

The Cascaded Diophantine Frequency Synthesis
(CDFS) has been presented and compared to its pre-
decessor, Diophantine Frequency Synthesis methodology
(DFS).

CDFS leads to fine frequency-step, fast frequency-
hopping frequency synthesis architectures with potentially
very low spurs, especially in the vicinity of the carrier.

CDFS results in significantly reduced frequency ranges
of the intermediate signals in the frequency mixing stages
compared to (DFS) simplifying the design of the mixers
and offering improved spectral purity of the output sig-
nal.
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