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Abstract— Diophantine Frequency Synthesis1 (DFS) is a
new approach to high-resolution, fast-hopping, low-spurs
frequency synthesis. DFS is based on mathematical properties
of integer numbers and employs two or more Phase-Locked
Loops (PLL)s to achieve frequency resolution arbitrary
smaller than the phase-comparator frequencies of the con-
stituent PLLs. A two-PLL DFS synthesizer is presented that
achieves frequency resolution about 100 times finer than that
of the two constituent PLLs. It has output frequency range
195 − 205 MHz and frequency step 542 Hz. Measurements
demonstrate the resolution of the architecture and the spec-
tral purity of the output signal.

I. INTRODUCTION

Most of the modern engineering systems involve a
frequency synthesis block. It may be a simple Integer-N
PLL, like the ones in digital processors or a complex one
like those in timing systems and atomic clocks [1]-[2].

Diophantine Frequency Synthesis1 (DFS) [3]-[4] is a
new methodology for designing frequency synthesis ar-
chitectures having fast frequency hopping, high resolution
(small frequency step) and low spurs (especially in the
vicinity of the carrier), simultaneously, with relatively low
circuit complexity.

DFS is based on mathematical properties of integer
numbers and Diophantine equations [5]. DFS architectures
employ two or more basic phase locked loops (PLL)s
whose output frequencies are added (or subtracted) to give
the output frequency of the synthesizer.

DFS distributes the frequency resolution among the
PLLs. Some basic facts of DFS theory are presented in
the following section. More details are available in [3].

The paper presents a forward two-PLL DFS architecture
and a circuit implementation. It illustrates how the high-
level DFS methodology can be realized using commer-
cially available multi-PLL devices to form a frequency
synthesizer with much higher resolution than those of the
constituent PLLs, with affecting their hopping speed or
loop bandwidths.

Specifically, the output-frequency steps of the con-
stituent PLLs, are about 43 kHz and 67 kHz while the
steps of the synthesizer are 542Hz. The (used) frequency
ranges of the PLLs are 10MHz wide and the output
frequency range of the synthesizer is 195 − 205MHz.
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Fig. 1. Basic PLL

II. BASICS OF DFS

DFS uses two or more basic PLLs like that in Fig. 12

that have fixed prescaler divider R. The feedback divider
is the sum n̄ + n, of a fixed value n̄, and, a variable n
which can take both negative and positive values within
a predefined range. For all values of n, the sum n̄ + n is
positive. An output divider may be present and the output
frequency of the PLL is

fout =
n̄ + n

Q × R
fin.

The general high-level k-PLL DFS architecture is shown
in Fig. 2. The PLLs, with parameters Ri, ni and n̄i, i =
1, 2, . . . , k, are driven by the same signal and their output
frequencies are added (or subtracted) to provide the output

1Patent Pending
2The Phase Detector (PD) could also be a Phase-Frequency Compara-

tor or equivalent circuit-block. An output divider, Q, may be present but
it is not necessary for DFS.
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Fig. 2. Abstract k-PLLs DFS scheme.
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frequency of the synthesizer,

fout =
(

n1

R1
+

n2

R2
+ . . . +

nk

Rk

)
fin

Q

+
(

n̄1

R1
+

n̄2

R2
+ . . . +

n̄k

Rk

)
fin

Q
(1)

The second term in the RHS of (1) is fixed. We set

f̄out =
(

n̄1

R1
+

n̄2

R2
+ . . . +

n̄k

Rk

)
fin

Q
(2)

Now we focus on the first term in the right side of (1),
which is variable. DFS’ main Theorem follows [3].

Theorem 2.1: [3] If R1, R2, . . . , Rk are pairwise rela-
tively prime positive integers (i.e., no pair of them has
common divider other than ±1) then, for every integer
n, such that −R1R2 · · ·Rk ≤ n ≤ R1R2 · · ·Rk we
can find n1, n2, . . . , nk with −Ri ≤ ni ≤ Ri, for all
i = 1, 2, . . . , k, for which

n1

R1
+

n2

R2
+ . . . +

nk

Rk
=

n

R1R2 · · ·Rk
. (3)

Rephrasing Theorem 2.1 and using equation (1) we
conclude that by appropriately adjusting the feedback
dividers, ni’s (and therefore the PLL frequencies), the
output frequency, fout, can take all values within the range[

f̄out − fin

Q
, f̄out +

fin

Q

]

with uniform frequency step

fstep =
fin

Q R1R2 · · ·Rk
.

Note that if some of the PLL frequencies, f1, f2, . . . , fk

were subtracted, instead of being added to the general sum,
i.e. if ni/Ri were replaced by −ni/Ri for some indices
i in (3), the length of the output frequency range would
also be 2fin/Q, i.e. exactly the same as before, because
the ranges of n1, n2, . . . , nk are symmetric with respect
to 0. The output frequency step, fstep, would also remain
unchanged.

An advantage of DFS is that with small values of k,
R1, R2, . . . , Rk and Q, the frequency step, fstep, can be
made very small, while at the same time, the phase-
comparator frequencies of the PLLS, i.e. fin/Ri, i =
1, 2, . . . , k, and the output frequency range are large.

III. A TWO-PLL FORWARD-DFS SCHEME

The purpose of the paper is to present a DFS example,
and, not to repeat well-know facts regarding PLL and
frequency mixer design. To this end, it was preferred
to trade design time with performance and use Texas
Instruments’ programmable triple-PLL CDCE706 device
which automatically adjusts its loop-filter parameters and
VCO’s tuning ranges. It is noted however that this design
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Fig. 3. High-level two-PLL DFS architecture

convenience is paid by SFDR of 50 to 55 dB, according
to the specifications of the device.

Two of the three PLLs in CDCE706 were employed in
the DFS scheme. The high level architecture is shown in
Fig. 3. The range of the prescaler, feedback and output
dividers are Ai : 1− 4095, Bi : 1− 511 and Ci : 1− 127.

The total range of the VCO’s is 80 MHz − 300 MHz
therefore implying (see Fig. 3) that

80 MHz ≤ Ai

Bi
fin ≤ 300 MHz.

A. Choosing the DFS Parameters

The desirable is to achieve frequency range 195 −
205MHz with high frequency resolution while maintain-
ing relatively high phase-comparator frequencies in the
constituent PLLs.

From Fig. 3 we have that, for each PLL i = 1, 2,

fi =
Ai

BiCi
fin, (4)

the VCO’s frequencies are

fV COi
=

Ai

Bi
fin (5)

and the phase-comparators frequencies are

fPCi
=

fin

Bi
(6)

Now the frequency dividers in expressions (4) can be
written as

BiCi = RiQ, (7)

i = 1, 2, where Q = gcd(B1C1, B2C2) implying
gcd (R1, R2) = 1, i.e. R1, R2 are relatively prime as it
is required by Theorem 2.1. Moreover, we can express
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Ai = ni + n̄i (and impose the constraint required from the
Theorem, i.e., −Ri ≤ ni ≤ Ri ) so from (4) we have

fi =
ni + n̄i

Ri

(
fin

Q

)
(8)

From (3) and (8), the fact that we have chosen fout �
f1 + f2 (see Fig. 3) and Theorem 2.1 we have

fout =
(

n̄1

R1
+

n̄2

R2

)
fin

Q
+

n

R1R2

fin

Q
(9)

with n ranging from −R1R2 to R1R2. Therefore fout

ranges from f̄1 + f̄2 − fin/Q to f̄1 + f̄2 + fin/Q.
Since the desirable output range of the synthesizer is

195 − 205MHz, it is f̄1 + f̄2 − fin/Q = 195MHz and
f̄1 + f̄2 + fin/Q = 205MHz, and so

fin

Q
= 5MHz (10)

The input (reference) frequency used is fin = 64MHz,
and so fin/5MHz = 12.8. Therefore the maximum value
of Q resulting in at least 10MHz of output range is

Q = 12 (11)

We choose to have the ranges of the constituent PLLs
near 100MHz. This along with the frequency limits of
the VCO’s in the PLLs allow Cis to take any of the three
values {1, 2, 3}. However, we don’t want both of them to
take the maximum possible value, because if C1 = C2 =
3 then they contribute only a factor of 3 to the product
R1R2Q and this “improves” frequency resolution (see Eq.
(9)) only by 3. In contrast, we set

C1 = 3 and C2 = 2 (12)

which contribute3 a factor of 6 to R1R2Q.
To simplify the rest of the derivation we assume that

C1 and C2 are factors of R1 and R2 respectively, i.e.
equivalently that the common divider, Q, of B1C1 and
B2C2 is entirely a factor of B1 and B2 and so because of
(11) it is

B1 = 12X and B2 = 12Y (13)

for some integers X and Y . Note however that from the
ranges of the feedback and prescaler dividers ( Section III)
we have

X,Y ≤ 511/12 = 42.583 . . . . (14)

To maximize the product R1R2Q, and therefore the
resolution of the synthesizer, we could try to give X and Y
their maximum possible values, i.e. X = 42 and Y = 41,
or, X = 41 and Y = 42.

In the first case we get B1C1 = 1512 and B2C2 = 984
which imply Q = gcd(1512, 984) = 24, R1 = 63 and

3One has to decide how to “form” the greatest common divider of the
pair R1Q1 and R2Q2...

R2 = 41 and so R1R2Q = 61, 992; in the second case we
get R1R2Q = 41, 328.

In contrast if we choose X = 41 and Y = 40, i.e.
slightly smaller values, we end up with Q = 12, R1 = 123
and R2 = 80 giving R1R2Q = 118, 080. We finally get

B1 = 12 · 41 = 492 and B2 = 12 · 40 = 480 (15)

The following set of equations summarizes the deriva-
tions up to now:

B1 = 492 C1 = 3 R1 = 123
B2 = 480 C2 = 2 R2 = 80

Now, we would like the output frequencies of the PLLs
to be close to 100MHz but we have to make sure
that their harmonics and dominant IMD products of the
mixer are as far away of the output range of interest, i.e.
195 − 205MHz, as possible. One choice that allows for
≥ 20MHz gap between the desirable output range and
major spurs is the following:

n̄1 = 1903 and n̄2 = 1762 (16)

which give

f̄1 =
n̄1

B1C1
fin =

1903
492 · 3 64MHz = 82, 514, 905.1Hz

and

f̄2 =
n̄2

B2C2
fin =

1762
480 · 2 64MHz = 117, 466, 666.7Hz.

Finally, following the DFS guidelines, the ranges of the
dividers A1 and A2 are

1903 − 123 ≤ A1 ≤ 1903 + 123
1762 − 80 ≤ A2 ≤ 1762 + 80 (17)

The above choices of the prescalers and output dividers
and the ranges of the feedback dividers result in the DFS
scheme with frequencies given in Table I. Note that the
frequency step of the whole architecture is about two
orders of magnitude smaller than those of the constituent
PLLs.

B. The Mixer

LPF 1 

LPF 2 

LMH 6559

AD 835

1f

2f

outf

LMH 6559

BPF

Fig. 4. Mixer, Low-Pass Filters and Buffers
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The high-level schematic of the mixer is shown in Figure
4. The mixer is based on the four-quadrant multiplier
AD835 chosen for its high linearity and appropriate band-
width4. Two wide-band buffers, LMH6559, are used to
isolate the PLLs from the filters and the multiplier and
reduce backward signal leakage.

The two low-pass filters LPF1 and LPF2 are 7th order
Chebyshev Type-I with passive ladder implementations
and 1 dB ripple in the pass-band. They remove the har-
monics of the square-wave signals coming from the PLLs
and feed clean sinusoidals to the multiplier. The third filter,
BPF, following the multiplier, is an 8th order, 3 dB ripple
Elliptic band-pass one that removes the off-band spurs
from the mixing and the harmonics of the PLLs leaking
through the mixer.

IV. RESULTS

Programming the two PLLs using the DFS parameters
derived in Section III-A and the DFS algorithms in [3], it
was possible to generate all predicted frequencies

fout = 199, 981, 572Hz + n · 542Hz (18)

with integer n ranging within (note that 123×80 = 9840)

n = −9840 . . . 9840. (19)

Given the desirable value of n, parameters n1 and n2

are derived using the theory and algorithms in [3]. The
frequency ranges of the PLLs and the output signal, along
with their resolutions, are shown in Table I.

Min Central Max Step
fin - 64.000,000 - -
f1 (PLL 1) 77,181,572 82,514,905 87,848,238 43,360
f2 (PLL 2) 112,133,333 117,466,667 122,800,000 66,667
fout (DFS) 194,648,238 199,981,572 205,314,905 542

TABLE I
FREQUENCY RANGES AND RESOLUTIONS OF THE SIGNALS IN

THE DFS SCHEME (IN HZ).

Therefore this simple two-PLL DFS scheme achieved
frequency resolution of 542Hz when the phase-
comparator frequencies of the PLLs are

fPC1 = 130, 081.3Hz

fPC2 = 133, 333.3Hz

This allows for fast frequency hopping and easy removal
of the side-band spurs introduced by the phase-comparator,
leading to clean output spectrum.

Fig. 5 shows the spectrum of the (output) synthesized
signal for four consecutive achievable frequencies. The
achieved frequency step is only 542 Hz, compared to the
43 kHz and 67 kHz frequency steps of the two PLLs
(note the divisions by 3 and 2).

4Better noise performance can be achieved by other types of mixers.
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Fig. 5. Four consecutive frequencies, S1: 202, 691, 599 Hz, S2:
202, 692, 141 Hz, S3: 202, 692, 683 Hz, S4: 202, 693, 225 Hz.
RBW=10Hz, VBW=10Hz.

The parameters of the synthesizer resulted to the fre-
quencies shown in Fig. 5 are listed below in Table II.

n1 n2 n f1 f2

S1 1 40 5, 000 82, 558, 266 120, 133, 333
S2 21 27 5, 001 83, 425, 474 119, 266, 667
S3 41 14 5, 002 84, 292, 683 118, 400, 000
S4 61 1 5, 003 85, 159, 892 117, 533, 333

TABLE II
FREQUENCY RANGES AND FREQUENCY STEPS (IN HZ)

V. CONCLUSIONS

Application aspects of the Diophantine Frequency Syn-
thesis (DFS) methodology have been presented through the
design of a forward two-PLL DFS frequency synthesizer.
DFS is based on number theory and Diophantine equations,
uses two or more basic PLLs and allows for independent
choices for the output frequency step (resolution) and the
phase-comparator frequencies of the PLLs.
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