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Abstract— Diophantine Frequency Synthesis1 2 (DFS) is
a new approach to high-resolution3, fast-hopping, low-spurs
frequency synthesis. It is based on mathematical properties
of integer numbers and employs two or more Phase-Locked
Loops (PLL)s to achieve frequency steps arbitrary finer
than the phase-comparator frequencies of the constituent
PLLs. A case study of a forward, two-PLL DFS synthesizer
is presented that achieves frequency resolution about 100

times finer than that of the two constituent PLLs. Spectral
measurements demonstrate the resolution of the architecture
and the spectral purity of the output signal.

I. INTRODUCTION

Frequency synthesis is involved in many engineering
systems. Depending on the application, certain specifica-
tions of the synthesizer are more challenging to achieve
than others, e.g., fast frequency hopping is needed in
high-speed frequency-domain multiplexing and certain
ultra-wide-band communication systems, low spurious
levels are required in instrumentation systems, very high
frequency resolution is important in timing systems and
atomic clocks [1]-[2].

Diophantine Frequency Synthesis1 (DFS) [3]-[4] is
a new methodology for designing frequency synthesis
architectures having fast frequency hopping, very high
resolution (small frequency step) and low spurs4, at the
same time, with low circuit complexity and modular
designs.

DFS is based on mathematical properties of integer
numbers and Diophantine equations [5]. DFS architec-
tures employ two or more basic phase locked loops
(PLL)s whose output frequencies are added (or sub-
tracted) to give the output frequency of the synthesizer.

DFS distributes the frequency resolution among the
PLLs. Some basic facts of DFS theory are presented in
the following section. More details are available in [3].

The paper presents a forward two-PLL DFS archi-
tecture and a circuit implementation of it. It illustrates
how the high-level DFS methodology can be realized
using commercially available PLL devices to achieve a
frequency synthesizer with much higher resolution than

1Patent Pending
2The detailed theory of DFS is available at [3]
3It can easily achieve sub-Hertz frequency resolution.
4...especially in the vicinity of the carrier - in contrast to methodolo-

gies based on dither, interpolation or pulse removal.

those of the constituent PLLs without sacrificing hopping
speed or PLL loop bandwidths.

Specifically, the output-frequency steps (resolutions)5

of the two PPLs are 43 kHz and 67 kHz while that of
the DFS synthesizer is 542Hz, i.e. about ×100 times
finer. The (used) frequency range of the PLLs is 10MHz
and the output frequency range of the synthesizer is 0 −
10MHz.

II. ELEMENTS OF DFS
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Fig. 1. Basic PLL

DFS uses two or more basic PLLs like that in Fig. 16

that have fixed prescaler divider R. The feedback divider
is the sum n̄ + n, of a fixed value n̄, and, a variable n
which can take both negative and positive values within
a predefined range. For all values of n, the sum n̄ + n
is positive. An output divider, Q, may be present and the
output frequency of the PLL is

fout =
n̄ + n

Q × R
fin.

The general high-level k-PLL DFS architecture is
shown in Fig. 2. The PLLs, with parameters Q, Ri, ni

and n̄i, i = 1, 2, . . . , k, are driven by the same signal
and their output frequencies are added (or subtracted) to
provide the output frequency of the synthesizer,

fout =

(
n1

R1

+
n2

R2

+ . . . +
nk

Rk

)
fin

Q

+

(
n̄1

R1

+
n̄2

R2

+ . . . +
n̄k

Rk

)
fin

Q
(1)

5The phase-comparator frequencies of the PLLs are 130 kHz and
133 kHz respectively which are different than their output frequency
steps because of the additional output dividers, see Fig. 3. Note however
that the output dividers are not essential for the DFS.

6The Phase Comparator (PC) may also be a Phase-Frequency com-
parator or detector etc. Also, an output divider (Q) may be present.
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Fig. 2. k-PLLs DFS scheme. Parameters n̄1 to n̄k are omitted.

The second term in the right side of (1) is fixed;
moreover we set

f̄out =

(
n̄1

R1

+
n̄2

R2

+ . . . +
n̄k

Rk

)
fin

Q
(2)

Now we focus on the first term in the right side of (1),
which is variable. DFS’ main Theorem follows [3].

Theorem 2.1: [3] If R1, R2, . . . , Rk are pairwise rel-
atively prime positive integers (i.e., no pair of them has
common divider other than ±1) then, for every integer
n, such that −R1R2 · · ·Rk ≤ n ≤ R1R2 · · ·Rk we
can find n1, n2, . . . , nk with −Ri ≤ ni ≤ Ri, for all
i = 1, 2, . . . , k, for which

n1

R1

+
n2

R2

+ . . . +
nk

Rk

=
n

R1R2 · · ·Rk

. (3)

Rephrasing Theorem 2.1 and using equation (1) we
conclude that by appropriately adjusting the feedback
dividers, ni’s (and therefore the PLL frequencies), the
output frequency, fout, can take all values within the
range [

f̄out −
fin

Q
, f̄out +

fin

Q

]

with uniform frequency step equal to

fstep =
fin

QR1R2 · · ·Rk

.

Note that if some of the PLL frequencies, f1, f2, . . . , fk

were subtracted, instead of being added to the general
sum, i.e. if ni/Ri were replaced by −ni/Ri for some
indices i in (3), the length of the output frequency range
would also be 2fin/Q, i.e. exactly the same as before,
because the ranges of n1, n2, . . . , nk are symmetric with
respect to 0. The output frequency step, fstep, would also
remain the same.

A significant advantage of DFS is that with small
values of k, R1, R2, . . . , Rk and Q, the frequency step,
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Fig. 3. High-level two-PLL DFS architecture

fstep, can be made very small, while at the same time, the
phase-comparator frequencies of the PLLS, i.e. fin/Ri,
i = 1, 2, . . . , k, and the output frequency range are large.

III. A TWO-PLL FORWARD-DFS SYNTHESIZER

The purpose of this paper is to present a DFS synthesis
example and its associated tricks and not to repeat well-
know facts regarding PLL design. To this end off-the-
shelf components were used. Specifically, Texas Instru-
ments’ programmable triple-PLL CDCE706 device was
selected for convenience since it automatically adjusts
its loop-filter parameters and VCO’s tuning ranges. It is
noted however that this design convenience is paid by low
SFDR in the order of 50 to 55 dBc.

Two of the three PLLs in CDCE706 were employed in
the DFS scheme. The high level architecture is shown in
Fig. 3. The range of the prescaler, feedback and output
dividers are shown in Table I.

Divider Min Max
Ai 1 4095

Bi 1 511

Ci 1 127

TABLE I

RANGES OF THE FREQUENCY DIVIDERS

The total range of the VCO’s is 80 MHz−300 MHz
therefore implying (see Fig. 3) that

80 MHz ≤
Ai

Bi

fin ≤ 300 MHz.

A. Choosing the DFS Parameters

The desirable in this case study has been to achieve
frequency range 0 − 10MHz with high frequency reso-
lution while maintaining relatively high phase-comparator
frequencies in the individual PLLs.



From Fig. 3 we have that, for each PLL i = 1, 2,

fi =
Ai

BiCi

fin, (4)

the VCO’s frequencies are

fV COi
=

Ai

Bi

fin (5)

and the phase-comparator frequencies are

fPCi
=

fin

Bi

(6)

Now the frequency dividers in expressions (4) can be
written as

BiCi = RiQ, (7)

i = 1, 2, where Q = gcd(B1C1, B2C2) implying
gcd (R1, R2) = 1, i.e. R1, R2 are relatively prime as it
is required by Theorem 2.1. Moreover, we can express
Ai = ni + n̄i (and impose the constraint required from
the Theorem, that −Ri ≤ ni ≤ Ri ) so from (4) we have

fi =
ni + n̄i

Ri

(
fin

Q

)
(8)

From expressions (8), (3), the fact that we have chosen
fout � f2 − f1 (see Fig. 3) and Theorem 2.1 we have

fout =

(
n̄2

R2

−
n̄1

R1

)
fin

Q
+

n

R1R2

fin

Q
(9)

with n ranging from −R1R2 to R1R2. Therefore fout

ranges from f̄2 − f̄1 − fin/Q to f̄2 − f̄1 + fin/Q.
Since the desirable output range of the synthesizer is

0 − 10MHz, this means that f̄2 − f̄1 − fin/Q = 0 and
f̄2 − f̄1 + fin/Q = 10MHz, so

f̄2 − f̄1 = 5MHz (10)

and

fin

Q
� 5MHz (11)

The input (reference) frequency used was fin =
64MHz, and so fin/5MHz = 12.8. Therefore the
maximum value of Q resulting in at least 10MHz of
output range is

Q = 12 (12)

The maximum desirable difference fout = f2 − f1

is 10MHz and in order to minimize spurious signals
generated in the mixing, in general, we would like to
have high ratio f̄i/10MHz, i = 1, 2. However high f̄i

frequencies may also result in relatively high phase noise
of fout. A conservative choice is to pick f̄1, f̄2 close to
100MHz so that f̄i/10MHz is about ten.

Given the frequency limits of the VCO’s, this choice
allows for Ci’s to take any of the three values {1, 2, 3}.

However, we don’t want both of them to take the maxi-
mum possible value, because if C1 = C2 = 3 then they
contribute only a factor of 3 to the product R1R2Q and
this “improves” frequency resolution (see Eq. (9)) only
by 3. In contrast, we set

C1 = 3 and C2 = 2 (13)

which contribute7 a factor of 6 to R1R2Q.
To simplify the rest of the derivation we assume that

C1 and C2 are factors of R1 and R2 respectively, i.e.
equivalently that the greatest common divider, Q, of
B1C1 and B2C2 is entirely a factor of B1 and B2 and
so because of (12) it is

B1 = 12X and B2 = 12Y (14)

for some integers X and Y . Note however that from Table
I we have

X,Y ≤ 511/12 = 42.583 . . . . (15)

To maximize the product R1R2Q, and therefore the
resolution of the synthesizer, we could try to give X and
Y their maximum possible values, i.e. X = 42 and Y =
41, or, X = 41 and Y = 42.

In the first case we get B1C1 = 1512 and B2C2 =
984 which imply Q = gcd(1512, 984) = 24 (which is
different than the value of Q we have set), R1 = 63 and
R2 = 41 and so R1R2Q = 61, 992; in the second case
we get R1R2Q = 41, 328.

In contrast if we choose X = 41 and Y = 40, i.e.
slightly smaller values, we end up with Q = 12, R1 =
123 and R2 = 80 giving R1R2Q = 118, 080. We finally
get that

B1 = 12 · 41 = 492 and B2 = 12 · 40 = 480 (16)

The following set of equations summarizes the deriva-
tions up to now:

B1 = 492 C1 = 3 R1 = 123

B2 = 480 C2 = 2 R2 = 80

Now, following the previous discussion on f̄1 and f̄2

we choose

n̄1 = 2168 and n̄2 = 1485 (17)

which give

f̄1 =
n̄1

B1C1

fin =
2168

492 · 3
64MHz = 94.005, 420Hz

and

f̄2 =
n̄2

B2C2

fin =
1485

480 · 2
64MHz = 99.000, 000Hz.

7One has to decide how to “form” the greatest common divider of
the pair R1Q1 and R2Q2...



Finally, following the DFS guidelines, the ranges of the
dividers A1 and A2 are

2168 − 123 ≤ A1 ≤ 2168 + 123
1485 − 80 ≤ A2 ≤ 1485 + 80

(18)

The above choices of the prescalers and output dividers
and the ranges of the feedback dividers result in the DFS
scheme with frequencies given in Table II.

B. The Mixer
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Fig. 4. Mixer, Low-Pass Filters and Buffers

The high-level schematic of the mixer is shown on
Figure 4. The mixer is based on the four-quadrant multi-
plier AD835 chosen for its high linearity and appropriate
bandwidth8. Two wide-band buffers, LMH6559, are used
to isolate the PLLs from the filters and the multiplier and
reduce backward signal leakage.

The two low-pass filters LPF1 and LPF2 are 7th order
Chebyshev Type-I with passive ladder implementations
and 1 dB ripple in the pass-band. They remove the
harmonics of the square-wave signals coming from the
PLLs and feed clean sinusoidals to the multiplier. The
pass-bands of LPF1 and LPF2 are 0 − 112MHz and
0 − 123MHz respectively.

The third filter, LPF3 following the multiplier removes
the high frequency product of the multiplication, at
around 200MHz. It is a 5th order low-pass Chebyshev
Type-I passive ladder filter with pass-band 0 − 10MHz
and 1 dB ripple.

IV. RESULTS

Programming the two PLLs using the DFS parameters
derived in Section III-A and the DFS algorithms in [3],
it is possible to generate all predicted frequencies

fout = 4, 994, 580Hz + n · 542Hz (19)

with integer n ranging

n = −9840 . . . 9840. (20)

Given the desirable value of n, parameters n1 and n2

are derived using the theory and algorithms in [3]. The

8Although this multiplier can be used as a mixer in several applica-
tions, better noise-level performance can be achieved by other types of
mixers.

frequency ranges of the PLLs and the output signal, along
with their resolutions, are shown in Table II.

Min Central Max Step
fin - 64.000,000 - -
f1 (PLL 1) 88.672,087 94.005,420 99.338,753 43,360
f2 (PLL 2) 93.666,667 99.000,000 104.333,333 66,667
fout (DFS) -338,753 4,994,580 10,327,913 542

TABLE II

FREQUENCY RANGES AND RESOLUTIONS OF THE SIGNALS IN THE

DFS SCHEME (IN HZ).

Therefore this simple two-PLL DFS scheme achieves
frequency step (resolution) of 542Hz when the output-
frequency steps of the constituent PLLs are

f1step
= 43, 360Hz

f2step
= 66, 667Hz

In addition, this allows for fast frequency hopping and
easy removal of the side-band spurs introduced by the
phase-comparator9, leading to clean output spectrum.

Fig. 5 shows the spectrum of the (output) signal for five
consecutive synthesized frequencies and demonstrates the
542 Hz resolution.
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Fig. 5. Five consecutive frequencies, D1: 3, 690, 515Hz,
D2: 3, 691, 057Hz, D3: 3, 691, 599Hz, D4: 3, 692, 141Hz, D5:
3, 692, 683Hz. The DFS frequency step is 542 Hz while the con-
stituent PLLs’ frequency steps are 43 kHz and 67 kHz. For the
measurements it was used: RBW=10Hz, VBW=10Hz.

The parameters of the synthesizer resulted in the fre-
quencies shown in Fig. 5 are listed in Table III.

9The phase-comparator frequencies of the PLLs are even higher than
the corresponding output steps, specifically, fPC1

= 130, 081 Hz and
fPC2

= 133, 333 Hz.



n1 n2 n f1 f2

D1 −27 −2 7, 435 95, 176, 151 98, 866, 666

D2 −7 −15 7, 436 94, 308, 943 98, 000, 000

D3 −110 52 7, 437 98, 775, 067 102, 466, 666

D4 −90 39 7, 438 97, 907, 859 101, 600, 000

D5 −70 26 7, 439 97, 040, 650 100, 733, 333

TABLE III

FREQUENCY RANGES AND FREQUENCY STEPS (RESOLUTIONS) OF

THE SIGNALS IN THE PRESENTED DFS SCHEME. ALL FREQUENCIES

ARE IN HZ.

V. CONCLUSIONS

Application aspects of the Diophantine Frequency Syn-
thesis (DFS) methodology have been presented through
the design of a forward two-PLL DFS frequency synthe-
sizer. DFS is based on number theory and Diophantine
equations, uses two or more basic PLLs and allows
for independent choices for the output frequency step
(resolution) and the phase-comparator frequencies of the
PLLs. The Diophantine Frequency Synthesis (DFS) leads
to very fine frequency resolution and fast frequency
hopping architectures with low spurs, especially in the
vicinity of the carrier.
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