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Abstract—This paper studies on-chip communication with
non-ideal heat sinks. A channel model is proposed where the
variance of the additive noise depends on the weighted sum of
the past channel input powers. It is shown that, depending on
the weights, the capacity can be either bounded or unbounded in
the input power. A necessary condition and a suf cient condition
for the capacity to be bounded are presented.

I. INTRODUCTION

Continuous advancement in VLSI technologies has resulted
in extremely small transistor sizes and highly complex mi-
croprocessors. However, on-chip interconnects responsible for
on-chip communication have been improved only moderately.
This leads to the “paradox” that local information processing is
done very ef ciently, but communicating information between
on-chip units is a major challenge.
This work focuses on an emergent issue expected to chal-

lenge circuit development in future technologies: information
communication and processing is associated with energy dis-
sipation into heat which raises the temperature of the trans-
mitter/receiver or processing devices; moreover, the intrinsic
device noise level depends strongly and increasingly on the
temperature. Therefore, the total physical structure can be
modeled as a communication channel whose noise level is
data dependent.
This channel was studied at low transmit power levels in

[1] where it was shown that in the low power limit the
heating effect is bene cial. In this paper, we focus on the
high transmit power case. When the allowed transmit power
is large, then there is a trade-off between optimizing the
present transmission and minimizing the interference to future
transmissions. Indeed, increasing the transmission power may
help to overcome the present ambient noise, but it also heats
up the chip and thus increases the noise variance in future
receptions. Prima facie it is not clear that, as we increase the
allowed transmit power, the capacity tends to in nity. This
paper studies conditions under which the capacity is bounded
in the transmit power.

A. Channel Model

We consider the communication system depicted in Fig-
ure 1. The message M to be transmitted over the channel
is assumed to be uniformly distributed over the set M =
{1, . . . , |M|} for some positive integer |M|. The encoder
maps the message to the length-n sequence X1, . . . , Xn,
where n is called the block-length. Thus, in the absence of
feedback, the sequence Xn

1 is a function of the message M ,
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Fig. 1. The communication system.

i.e., Xn
1 = φn(M) for some mapping φn : M → R

n. Here,
An

m stands for Am, . . . , An, and R denotes the set of real
numbers. If there is a feedback link, then Xk, k = 1, . . . , n
is a function of the message M and, additionally, of the past
channel output symbols Y k−1

1 , i.e., Xk = ϕ
(k)
n

(
M,Y k−1

1

)
for some mapping ϕ(k)

n : M × R
k−1 → R. The receiver

guesses the transmitted message M based on the n channel
output symbols Y n

1 , i.e., M̂ = ψn(Y n
1 ) for some mapping

ψn : R
n →M.

Let Z
+ denote the set of positive integers. The channel

output Yk ∈ R at time k ∈ Z
+ corresponding to the channel

inputs (x1, . . . , xk) ∈ R
k is given by

Yk = xk +

√√√√(
σ2 +

k−1∑
�=1

αk−�x2
�

)
· Uk (1)

where {Uk} are independent and identically distributed (IID),
zero-mean, unit-variance random variables, drawn indepen-
dently of M , and being of nite fourth moment and of nite
differential entropy

h(Uk) > −∞. (2)

The most interesting case is when {Uk} are IID, zero-mean,
unit-variance Gaussian random variables, and the reader is
encouraged to focus on this case. The coef cients {α�} in
(1) are non-negative and bounded, i.e.,

α� ≥ 0, � ∈ Z
+ and sup

�∈Z+
α� <∞. (3)

Note that this channel is not stationary as the variance of the
additive noise depends on the time-index k.
We study the above channel under an average-power con-

straint on the inputs, i.e.,

1
n

n∑
k=1

E
[
X2

k

] ≤ P, (4)
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and we de ne the signal-to-noise ratio (SNR) as

SNR � P
σ2
. (5)

B. Capacity

Let the rate R (in nats per channel use) be de ned as

R � log |M|
n

(6)

where log(·) denotes the natural logarithm function. A rate is
said to be achievable if there exists a sequence of mappings
φn (without feedback) or ϕ

(1)
n , . . . , ϕ

(n)
n (with feedback) and

ψn such that the error probability Pr
(
M̂ �= M

)
vanishes as

n tends to in nity. The capacity C is the supremum of all
achievable rates. We denote by C(SNR) the capacity under
the input constraint (4) when there is no feedback, and we
add the subscript “FB” to indicate that there is a feedback
link. Clearly,

C(SNR) ≤ CFB(SNR) (7)

as we can always ignore the feedback link.
For the above channel the capacities per unit cost which

are de ned as [2]

Ċ(0) � sup
SNR>0

C(SNR)
SNR

and ĊFB(0) � sup
SNR>0

CFB(SNR)
SNR

(8)
were studied in [1] under the additional assumptions that {Uk}
are IID, zero-mean, unit-variance Gaussian random variables,
and that the coef cients ful ll

∞∑
�=1

α� � α <∞. (9)

It was shown that, irrespective of whether feedback is available
or not, the capacity per unit cost is given by

ĊFB(0) = Ċ(0) = lim
SNR↓0

C(SNR)
SNR

=
1
2
(1 + α). (10)

In this paper, we focus on the high SNR case. Speci cally,
we explore the question whether the capacity is bounded or
unbounded in the SNR.

C. The Main Result

We show that whether the capacity is bounded or not
depends highly on the decay rate of the coef cients {α�}.
This is stated precisely in the following theorem.
Theorem 1: Consider the above channel model. Then,

i) lim
�→∞

α�+1

α�
> 0 =⇒ sup

SNR>0
CFB(SNR) <∞ (11)

ii) lim
�→∞

α�+1

α�
= 0 =⇒ sup

SNR>0
C(SNR) = ∞ (12)

where we de ne, for any a > 0, a/0 � ∞ and 0/0 � 0.
For example, when {α�} is a geometric sequence, i.e.,

α� = ρ� for 0 < ρ < 1, then the capacity is bounded.
Remark 1: Part i) of Theorem 1 holds also when Uk has an

in nite fourth moment. In Part ii) of Theorem 1, the condition

on the left-hand side (LHS) of (12) can be replaced by the
weaker condition

lim
�→∞

1
�

log
1
α�

= ∞. (13)

A proof of Theorem 1 is given in the next section. In
Section III we address the case where neither the LHS of (11)
nor the LHS of (12) holds, i.e., lim�→∞ α�+1/α� > 0 and
lim�→∞ α�+1/α� = 0. We show that in this case the capacity
can be bounded or unbounded.

II. PROOF OF THEOREM 1

In this section we provide a proof of Theorem 1. Part i) is
proven in the next subsection, while the proof of Part ii) can
be found in the subsequent subsection.

A. Bounded Capacity

In order to show that

lim
�→∞

α�+1

α�
> 0 (14)

implies that the feedback capacity CFB(SNR) is bounded,
we derive a capacity upper bound which is, like in [3,
Sec. 8.12], based on Fano’s inequality and on an upper bound
on 1

nI(M ;Y n
1 ). To simplify notation, we de ne α0 � 1.

We rst note that, due to (14), we can nd an �0 ∈ Z
+ and

a 0 < ρ < 1 so that

α�0 > 0 and
α�+1

α�
≥ ρ, � ≥ �0. (15)

We continue with the chain rule for mutual information [3]

1
n
I(M ;Y n

1 )

=
1
n

�0∑
k=1

I
(
M ;Yk

∣∣Y k−1
1

)
+

1
n

n∑
k=�0+1

I
(
M ;Yk

∣∣Y k−1
1

)
. (16)

Each term in the rst sum on the right-hand side (RHS) of
(16) is upper-bounded by

I
(
M ;Yk

∣∣Y k−1
1

)
≤ h(Yk)− h(Yk

∣∣Y k−1
1 ,M

)
= h(Yk)− 1

2
E

[
log

(
σ2 +

k−1∑
�=1

αk−�X
2
�

)]
− h(Uk)

≤ 1
2

log

(
2πe

(
1 +

k∑
�=1

αk−�

E
[
X2

�

]
σ2

))
− h(Uk)

≤ 1
2

log

(
2πe

(
1 +

(
sup

�′∈Z
+
0

α�′
) · k∑

�=1

E
[
X2

�

]
σ2

))
− h(Uk)

≤ 1
2

log

(
2πe

(
1 +

(
sup

�′∈Z
+
0

α�′
) · n · SNR

))
− h(Uk) (17)

where Z
+
0 denotes the set of non-negative integers. Recall

that sup�′∈Z
+
0
α�′ is assumed to be nite. Here, the rst in-

equality follows because conditioning cannot increase entropy;
the following equality follows because Xk

1 is a function of
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(
M,Y k−1

1

)
and from the behavior of entropy under trans-

lation and scaling [3, Thms. 9.6.3 & 9.6.4] in conjunction
with the fact that Uk is independent of

(
Xk

1 ,M, Y k−1
1

)
; the

subsequent inequality follows from the entropy maximizing
property of Gaussian random variables [3, Thm. 9.6.5] and
by lower-bounding E

[
log

(
σ2 +

∑k−1
�=1 αk−�X

2
�

)]
≥ log σ2;

the next inequality by upper-bounding each coef cient
α� ≤ sup�′∈Z

+
0
α�′ , � = 1, . . . , k; and the last inequality

follows from
∑k

�=1 E
[
X2

�

]
/σ2 ≤ n · SNR, k ≤ n which

is a consequence of the power constraint (4) and of the fact
that E

[
X2

�

]
/σ2 ≥ 0, � ∈ Z

+.
The terms in the second sum on the RHS of (16) are upper-

bounded using the general upper bound for mutual information
[4, Thm. 5.1]

I(X ;Y ) ≤
∫
D
(
W (·|x)∥∥R(·)) dQ(x) (18)

where D(·‖·) denotes relative entropy, W (·|·) is the channel
law, Q(·) is the distribution on the channel input X , and R(·)
is any distribution on the output alphabet. Thus, any choice of
output distribution R(·) yields an upper bound on the mutual
information.
For k = �0 + 1, . . . , n we upper-bound I

(
M ;Yk

∣∣Y k−1
1 =

yk−1
1

)
for a given Y k−1

1 = yk−1
1 by choosing R(·) to be of a

Cauchy distribution whose density is given by
√
β

π

1
1 + βy2

k

, yk ∈ R (19)

where we choose the scale parameter β to be1 β = 1/(β̃y2
k−�0

)
and

β̃ = min

⎧⎨
⎩ρ�0−1 · α�0

max
0≤�′<�0

α�
, α�0 , ρ

�0

⎫⎬
⎭ (20)

with 0 < ρ < 1 and �0 ∈ Z
+ given by (15). Note that (15)

together with the assumption that the coef cients {α�} are
bounded implies that

0 < β̃ < 1 and β̃α� ≤ α�+�0 , � ∈ Z
+
0 . (21)

Applying (19) to (18) yields

I
(
M ;Yk

∣∣Y k−1
1 = yk−1

1

)
≤ E

[
log

(
1 +

Y 2
k

β̃y2
k−�0

)]
+

1
2

log
(
β̃y2

k−�0

)
+ log π

− h(Yk

∣∣M,Y k−1
1 = yk−1

1

)
, (22)

and we thus obtain, averaging over Y k−1
1 ,

I
(
M ;Yk

∣∣Y k−1
1

)
≤ log π − h(Yk

∣∣Y k−1
1 ,M

)
+

1
2
E
[
log

(
β̃Y 2

k−�0

)]
+ E

[
log

(
β̃Y 2

k−�0 + Y 2
k

)]− E[log
(
Y 2

k−�0

)]− log β̃. (23)

1When yk−�0 = 0 then the density of the Cauchy distribution (19) is
unde ned. However, this event is of zero probability and has therefore no
impact on the mutual information I

`
M ; Yk

˛
˛Y k−1

1

´
.

We evaluate the terms on the RHS of (23) individually. We
begin with

h
(
Yk

∣∣Y k−1
1 ,M

)
=

1
2
E

[
log

(
σ2 +

k−1∑
�=1

αk−�X
2
�

)]
+ h(Uk)

(24)
where we use the same steps as in (17). The next term is
upper-bounded by

E
[
log

(
β̃Y 2

k−�0

)]
= E

[
E
[
log

(
β̃
(
Xk−�0 + σ

X
k−�0−1
1

· Uk−�0

)2) ∣∣∣ Xk−�0
1

]]
≤ E

[
log

(
β̃E

[(
Xk−�0 + σ

X
k−�0−1
1

· Uk−�0

)2 ∣∣∣ Xk−�0
1

])]

= E

[
log

(
β̃X2

k−�0 + β̃σ2 + β̃

k−�0−1∑
�=1

αk−�0−�X
2
�

)]

≤ E
[
log

(
σ2 +

k−�0∑
�=1

αk−�X
2
�

)]
(25)

where, conditional on Xk−1
1 = xk−1

1 ,

σ2
xk−1
1

� σ2 +
k−1∑
�=1

αk−�x
2
� . (26)

Here, the rst inequality follows from Jensen’s inequality
applied to the concave function log(x), x > 0; and the second
inequality follows from (21).
Similarly, we use Jensen’s inequality along with (21) to

upper-bound

E
[
log

(
β̃Y 2

k−�0 + Y 2
k

)]

≤ E
[
log

(
2σ2 + 2

k−�0∑
�=1

αk−�X
2
� +

k∑
�=k−�0+1

αk−�X
2
�

)]

≤ log 2 + E

[
log

(
σ2 +

k∑
�=1

αk−�X
2
�

)]
. (27)

In order to lower-bound E
[
log

(
Y 2

k−�0

)]
we need the fol-

lowing lemma:
Lemma 2: Let X be a random variable of density fX(x),

x ∈ R. Then, for any 0 < δ ≤ 1 and 0 < η < 1 we have

sup
c∈R

E
[
log |X + c|−1 · I{|X + c| ≤ δ}] ≤ ε(δ, η) +

1
η
h−(X)

(28)
where I{·} denotes the indicator function; h−(X) is de ned
as

h−(X) �
∫
{x∈R:fX(x)>1}

fX(x) log fX(x) dx; (29)

and where ε(δ, η) > 0 tends to zero as δ ↓ 0.
Proof: A proof can be found in [4, Lemma 6.7].

We write the expectation as

E
[
log

(
Y 2

k−�0

)]
= E

[
E
[
log

(
Xk−�0 + σ

X
k−�0−1
1

· Uk−�0

)2
∣∣∣∣ Xk−�0

1

]]
(30)

513

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18, 2008 at 14:19 from IEEE Xplore.  Restrictions apply.



and lower-bound the conditional expectation for a given
Xk−�0

1 = xk−�0
1 by

E
[
log

(
xk−�0 + σ

x
k−�0−1
1

· Uk−�0

)2
∣∣∣∣ xk−�0

1

]

= log σ2

x
k−�0−1
1

− 2 · E
⎡
⎣ log

∣∣∣∣∣ xk−�0

σ
x

k−�0−1
1

+ Uk−�0

∣∣∣∣∣
−1
∣∣∣∣∣∣ xk−�0

1

⎤
⎦

≥ log σ2

x
k−�0−1
1

− 2ε(δ, η)− 2
η
h−(Uk) + log δ2 (31)

for some 0 < δ ≤ 1 and 0 < η < 1. Here, the inequality
follows by splitting the conditional expectation into the two
expectations given in (32) (on the top of the next page) and by
upper-bounding then the rst term on the RHS of (32) using
Lemma 2 and the second term by − log δ. Averaging (31) over
Xk−�0

1 yields

E
[
log

(
Y 2

k−�0

)] ≥ E
[
log

(
σ2 +

k−�0−1∑
�=1

αk−�0−�X
2
�

)]

− 2ε(δ, η)− 2
η
h−(Uk) + log δ2. (33)

Note that, since Uk is of unit variance, (2) together with [4,
Lemma 6.4] implies that h−(Uk) is nite.
Turning back to the upper bound (23) we obtain from (33),

(27), (25), and (24)

I
(
M ;Yk

∣∣Y k−1
1

)
≤ log 2 + E

[
log

(
σ2 +

k∑
�=1

αk−�X
2
�

)]
+

2
η
h−(Uk)

+ 2ε(δ, η)− log δ2 − E
[
log

(
σ2 +

k−�0−1∑
�=1

αk−�0−�X
2
�

)]

− log β̃ +
1
2
E

[
log

(
σ2 +

k−�0∑
�=1

αk−�X
2
�

)]
+ log π

− 1
2
E

[
log

(
σ2 +

k−1∑
�=1

αk−�X
2
�

)]
− h(Uk)

≤ E
[
log

(
σ2 +

k∑
�=1

αk−�X
2
�

)]

− E
[
log

(
σ2 +

k−�0−1∑
�=1

αk−�0−�X
2
�

)]
+ K (34)

where

K � 2
η
h−(Uk)− h(Uk) + 2ε(δ, η) + log

2π
β̃δ2

(35)

is a nite constant, and where the last inequality in (34)
follows because for any Xk−1

k−�0+1 = xk−1
k−�0+1 we have∑k−1

�=k−�0+1 αk−�x
2
� ≥ 0. Note that K does not depend on

k as {Uk} are IID.

Turning back to the evaluation of the second sum on the
RHS of (16) we use that for any sequences {ak} and {bk}

n∑
k=�0+1

(ak − bk)

=
n∑

k=n−2�0+1

(ak − bk−n+3�0) +
n−2�0∑

k=�0+1

(ak − bk+2�0). (36)

For k = n− 2�0 + 1, . . . , n we have

E

[
log

(
σ2 +

∑k
�=1 αk−�X

2
�

σ2 +
∑k−n+2�0−1

�=1 αk−n+2�0−�X2
�

)]

≤ log

(
1 +

(
sup
�∈Z

+
0

α�

) · n · SNR
)

(37)

which follows by lower-bounding the denominator by σ2, and
by using then Jensen’s inequality together with the last two
inequalities in (17). Thus, applying (37) and (36) to (34) yields

1
n

n∑
�=�0+1

I
(
M ;Yk

∣∣Y k−1
1

)

≤ n− �0
n

K +
2�0
n

log

(
1 +

(
sup
�∈Z

+
0

α�

) · n · SNR
)

+
1
n

n−2�0∑
k=�0+1

E

[
log

(
σ2 +

∑k
�=1 αk−�X

2
�

σ2 +
∑k+�0−1

�=1 αk+�0−�X2
�

)]

≤ n− �0
n

K +
2�0
n

log

(
1 +

(
sup
�∈Z

+
0

α�

) · n · SNR
)

+
1
n

n−2�0∑
k=�0+1

E

[
log

(
σ2 +

∑k
�=1 αk+�0−�X

2
�

σ2 +
∑k+�0−1

�=1 αk+�0−�X2
�

)]

− n− 3�0
n

log β̃

≤ n− �0
n

K +
2�0
n

log

(
1 +

(
sup
�∈Z

+
0

α�

) · n · SNR
)

− n− 3�0
n

log β̃ (38)

where the second inequality follows by adding log β̃ to the
expectation and by upper-bounding then β̃α� < α�+�0 , � ∈ Z

+
0

(21); and the last inequality follows because for any given
Xk+�0−1

k+1 = xk+�0−1
k+1 we have

∑k+�0−1
�=k+1 αk+�0−�x

2
� ≥ 0.

Combining (38), (17), and (16) we obtain

1
n
I(M ;Y n

1 )

≤ n− �0
n

K− n− 3�0
n

log β̃ +
�0
2n

log(2πe)− �0
n
h(Uk)

+
�0
n

5
2

log

(
1 +

(
sup
�∈Z

+
0

α�

) · n · SNR
)

(39)

which converges to K− log β̃ <∞ as we let n go to in nity.
With this, we have shown that lim�→∞ α�+1/α� > 0 implies
that the capacity CFB(SNR) is bounded.
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E

⎡
⎣ log

∣∣∣∣∣ xk−�0

σ
x

k−�0−1
1

+ Uk−�0

∣∣∣∣∣
−1
∣∣∣∣∣∣ xk−�0

1

⎤
⎦ = E

⎡
⎣ log

∣∣∣∣∣ xk−�0

σ
x

k−�0−1
1

+ Uk−�0

∣∣∣∣∣
−1

· I
{∣∣∣∣∣ xk−�0

σ
x

k−�0−1
1

+ Uk−�0

∣∣∣∣∣ ≤ δ

}∣∣∣∣∣∣ xk−�0
1

⎤
⎦

+ E

⎡
⎣ log

∣∣∣∣∣ xk−�0

σ
x

k−�0−1
1

+ Uk−�0

∣∣∣∣∣
−1

· I
{∣∣∣∣∣ xk−�0

σ
x

k−�0−1
1

+ Uk−�0

∣∣∣∣∣ > δ

}∣∣∣∣∣∣ xk−�0
1

⎤
⎦ (32)

B. Unbounded Capacity

We shall show that

lim
�→∞

1
�

log
1
α�

= ∞ (40)

implies that the capacity C(SNR) in the absence of feedback
is unbounded in the SNR. Part ii) of Theorem 1 follows then
by noting that

lim
�→∞

α�+1

α�
= 0 =⇒ lim

�→∞
1
�

log
1
α�

=∞. (41)

We prove the claim by proposing a coding scheme that
achieves an unbounded rate. We rst note that (40) implies
that for any � > 0 we can nd an �0 ∈ Z

+ so that

α� < ��, � ≥ �0. (42)

If there exists an �0 ∈ Z
+ so that α� = 0, � ≥ �0, then we

can achieve the (unbounded) rate

R =
1

2L
log(1 + L · SNR), L ≥ �0 (43)

by a coding scheme where the channel inputs {XkL+1} are
IID, zero-mean Gaussian random variables of variance LP,
and where the other inputs are deterministically zero. Indeed,
by waiting L time-steps, the chip’s temperature cools down to
the ambient one so that the noise variance is independent of the
previous channel inputs and we can achieve—after appropriate
normalization—the capacity of the additive white Gaussian
noise (AWGN) channel [5].
For the more general case (42) we propose the following

encoding and decoding scheme. Let xn
1 (m), m ∈ M denote

the codeword sent out by the transmitter that corresponds
to the message M = m. We choose some period L ≥ �0
and generate the components xkL+1(m), m ∈ M, k =
0, . . . , �n/L
 − 1 (where �·
 denotes the oor function) in-
dependently of each other according to a zero-mean Gaussian
law of variance P. The other components are set to zero.2

The receiver uses a nearest neighbor decoder in order to
guess M based on the received sequence of channel outputs
yn
1 . Thus, it computes ‖y − x(m′)‖2 for any m′ ∈ M and
decides on the message that satis es

M̂ = arg min
m′∈M

‖y − x(m′)‖2 (44)

2It follows from the weak law of large numbers that, for any m ∈ M,
1
n

Pn
k=1 x2

k(m) converges to P/L in probability as n tends to in nity; this
guarantees that the probability that a codeword does not satisfy the power
constraint (4) vanishes as n tends to in nity.

where ties are resolved with a fair coin ip. Here, ‖·‖ denotes
the Euclidean norm, and y and x(m′) denote the respective
vectors {ykL+1}�n/L	−1

k=0 and {xkL+1(m′)}�n/L	−1
k=0 .

We are interested in the average probability of error
Pr
(
M̂ �= M

)
, averaged over all codewords in the codebook,

and averaged over all codebooks. Due to the symmetry of the
codebook construction, the probability of error corresponding
to the m-th message Pr

(
M̂ �= M

∣∣M = m
)
does not depend

on m, and we thus conclude that Pr
(
M̂ �= M

)
= Pr

(
M̂ �=

M
∣∣M = 1

)
. We further note that

Pr
(
M̂ �= M

∣∣M = 1
) ≤ Pr

(
n⋃

m′=2

‖Y −X(m′)‖2 < ‖Z‖2
)
(45)

where Z = {σX(1)kL
1
· UkL+1}�n/L	−1

k=0 which is, conditional
on M = 1, equal to ‖Y −X(1)‖2. In order analyze (45) we
need the following lemma.
Lemma 3: Consider the channel described in Section I-A,

and assume that the coef cients {α�} satisfy (40). Further
assume that {XkL+1} are IID, zero-mean Gaussian random
variables of variance P. Let the set Dε be de ned as

Dε �
{

(y, z) ∈ R
�n/L	 × R

�n/L	 :

∣∣∣∣ 1
�n/L
‖y‖

2 − (σ2 + P + α(L) · P)
∣∣∣∣ < ε,

∣∣∣∣ 1
�n/L
‖z‖

2 − (σ2 + α(L) · P)
∣∣∣∣ < ε

}
(46)

with α(L) being de ned as α(L) �
∑∞

�=1 α�L. Then,

lim
n→∞ Pr

(
(Y,Z) ∈ Dε

)
= 1 (47)

for any ε > 0.
Proof: First note that, since Uk has a nite fourth

moment, our choice of input distribution implies that
E
[
(σXk−1

1
· Uk)4

]
< ∞. This along with (42) yields that the

variances Var
(

1
�n/L	‖Y‖2

)
and Var

(
1

�n/L	‖Z‖2
)
vanish as

n tends to in nity. The lemma follows then by computing
E
[

1
�n/L	‖Y‖2

]
and E

[
1

�n/L	‖Z‖2
]
and by Chebyshev’s in-

equality [6, Sec. 5.4].
In order to upper-bound the RHS of (45) we proceed along
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the lines of [5], [7]. We have

Pr

(
n⋃

m′=2

‖Y −X(m′)‖2 < ‖Z‖2
)
≤ Pr((Y,Z) /∈ Dε

)

+
∫
Dε

Pr

(
n⋃

m′=2

‖y −X(m′)‖2 < ‖z‖2
∣∣∣∣∣ (y, z)

)
dP (y, z) (48)

and it follows from Lemma 3 that the rst term on the
RHS of (48) vanishes as n tends to in nity. Note that since
the codewords are independent of each other, conditional on
M = 1, the distribution of X(m′), m′ = 2, . . . , |M| does
not depend on (y, z). We upper-bound the second term on the
RHS of (48) by analyzing Pr

(‖y−X(m′)‖2 < ‖z‖2 ∣∣ (y, z))
for each m′ = 2, . . . , |M| and by applying then the union of
events bound.
For (y, z) ∈ Dε and m′ = 2, . . . , |M| we have
Pr
(‖y −X(m′)‖2 < ‖z‖2 ∣∣ (y, z))
≤ exp

{
− s�n/L
(σ2 + α(L) · P + ε) +

s‖y‖2
1− 2sP

− 1
2
�n/L
 log(1− 2sP)

}
, s < 0 (49)

which follows by upper-bounding ‖z‖2 by �n/L
(σ2 +α(L) ·
P + ε) and from the Chernoff bound [6, Sec. 5.4]. Using that,
for (y, z) ∈ Dε, ‖y‖2 ≥ �n/L
(σ2+P+α(L) ·P−ε) it follows
from the union of events bound and (49) that (48) goes to zero
as n tends to in nity if for some s < 0

R <
s

L
(σ2 + α(L) · P + ε) +

1
2L

log(1− 2sP)

− s

L

σ2 + P + α(L) · P− ε
1− 2sP

. (50)

Thus, choosing s = −1/2 · 1/(1 + α(L) · P) yields that any
rate below

− 1
2L

σ2 + α(L) · P + ε

1 + α(L) · P
+

1
2L

log
(

1 +
P

1 + α(L) · P

)

+
1

2L
σ2 + P + α(L) · P− ε

1 + α(L) · P
1

1 + P
1+α(L)·P

(51)

is achievable. As P tends to in nity this converges to3

1
2L

log
(

1 +
1

α(L)

)
>

1
2L

log
1

α(L)
. (52)

It remains to show that given (42) we can make α(L)

arbitrarily small. Indeed, (42) implies that

α(L) =
∞∑

�=1

α�L <
∞∑

�=1

��L =
�L

1− �L
(53)

3The same rate can also be derived by evaluating limn→∞
1
n

I(Xn
1 ; Y n

1 )
for a distribution on the channel inputs under which {XkL+1} are IID,
zero-mean, variance-LP Gaussian random variables while the other inputs
are deterministically zero. However, as the channel (1) is not stationary, it is
prima facie not clear whether there is a coding theorem associated with this
quantity.

and (52) can therefore be further lower-bounded by
1

2L
log

(
1− �L

)
+

1
2

log
1
�
. (54)

Letting L tend to in nity yields then that we can achieve
any rate below 1

2 log 1
� . As this can be made arbitrarily

large by choosing � suf ciently small, we conclude that
lim�→∞ 1

� log 1
α�

= ∞ implies that the capacity is unbounded.

III. BEYOND THEOREM 1

Theorem 1 resolves the question whether capacity is
bounded or unbounded in the SNR when the coef cients
satisfy either lim�→∞ α�+1/α� > 0 or lim�→∞ α�+1/α� = 0.
We next address the case where neither condition holds, i.e.,

lim
�→∞

α�+1

α�
> 0 and lim

�→∞

α�+1

α�
= 0. (55)

Example 1 exhibits a sequence {α�} satisfying (55) for which
the capacity is bounded, and Example 2 provides a sequence
{α�} satisfying (55) for which the capacity is unbounded.
Example 1: Consider the sequence {α�} where all coef -

cients with an even index are 1 and all coef cients with an odd
index are zero. It satis es (55) because lim�→∞ α�+1/α� = ∞
and lim�→∞ α�+1/α� = 0. Thus, at even times, the output
Y2k, k ∈ Z

+ only depends on the “even” inputs {X2�}k
�=1,

while at odd times, the output Y2k+1, k ∈ Z
+
0 only depends on

the “odd” inputs {X2�+1}k
�=0. By proceeding along the lines

of the proof of Part i) of Theorem 1 while choosing in (19)
β = 1/y2

k−2, it can be shown that the capacity of this channel
is bounded.
Example 2: Consider the sequence {α�} where α0 = 1,

where all coef cients with an odd index are 1, and where
all other coef cients (whose index is an even positive inte-
ger) are zero. (Again, we have lim�→∞ α�+1/α� = ∞ and
lim�→∞ α�+1/α� = 0.) Using Gaussian inputs of power 2P
at even times while setting the inputs to be zero at odd
times, and measuring the channel outputs only at even times,
reduces the channel to a memoryless additive noise channel
and demonstrates the achievability of [5]

R =
1
4

log(1 + 2 · SNR)

which is unbounded in the SNR.
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